
1. The Relevance of Volcanism to Europa's Habitability
Other than the Earth, Jupiter's moon Europa is one of the most likely bodies in our Solar System to harbor an 
environment that is currently habitable for life as we understand it. There, liquid water is in direct contact with 
the silicate layer below, providing both the solvent and elemental building blocks necessary for life. Biologically 
useful sources of energy may be the limiting condition (Chyba & Hand, 2001; Gaidos et al., 1999). Life as we 
know it must extract energy from its environment to perform cell maintenance, metabolic activity, and reproduc-
tion. In the absence of sunlight, life in Europa's ocean must extract energy from chemical disequilibrium within 
the environment (i.e., from the available Gibbs free energy (see Hand et al., 2009 for a review)). Both oxidation 
and reduction reactions are possible (e.g., Hand et al., 2009; Zolotov & Shock, 2004), and the identification of 
organisms utilizing such biochemical pathways in challenging terrestrial environments such as Lake Vostok (e.g., 
Christner et al., 2006) lends credence to the plausibility that such reactions could sustain life on Europa's seafloor. 
Less certain, however, is whether geochemical cycles can maintain chemical disequilibrium in Europa's ocean. 
That is, without at least a periodic influx of reactants, Europa's ocean could reach chemical equilibrium, leading 
to what has been termed “thermodynamics-driven extinction” (Gaidos et al., 1999).

Two potential pathways exist for providing reactants to Europa's ocean. In the first, reactants are introduced to 
the ocean from above by surface-ocean exchange. In a thin (∼1 km) ice shell, radiolytically produced oxidants 
on the surface (e.g., O2, H2O2) can easily be transferred to the ocean on short timescales (Greenberg,  2010; 
Greenberg et al., 2000). However, in the more-likely case of a thick (∼10s of km) ice shell (e.g., Howell, 2021; 
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Singer et al., 2021; Tobie et al., 2003; Turtle & Pierazzo, 2001) exchange between the surface and ocean is far 
from assured. Hand et al. (2009) assumed that the delivery timescale for surface material to the ocean is similar 
to Europa's surface age of ∼100 Myrs (Bierhaus et al., 2009). However, the mechanism of resurfacing is uncertain 
and may not involve substantial surface-ocean exchange. For example, chaos formation may involve disruption 
and resurfacing by warm ice diapirs (Pappalardo et al., 1998) rather than actual interchange with the ocean below. 
Widespread subsumption of the icy lithosphere may inject surface material directly into the ocean (Kattenhorn & 
Prockter, 2014), but the subsumption process is mechanically difficult and poorly understood (Bland & McKin-
non, 2019; Howell & Pappalardo, 2019; Johnson et al., 2017).

The second pathway is for reactants to be introduced into the ocean from below by volcanism and hydrothermal 
activity (McCollom, 1999) or by serpentinization (S. D. Vance et al., 2016); however, until recently, the evolution 
of Europa's silicate interior has often been neglected entirely or highly simplified (e.g., Mitri & Showman, 2005; 
Sotin et al., 2002; Tobie et al., 2003). Tidal dissipation studies (Greeley et al., 2004) and simple attempts to 
scale Io's heat flux to Europa (Geissler et al., 2001) suggest that partial melting and volcanism are possibili-
ties, although such scalings have considerable uncertainty. Moore and Hussmann (2009) provide a much more 
robust investigation of the thermal state of Europa's silicate interior by applying a model originally derived for 
Io (Moore, 2001, 2003) that includes the potential for the formation of partial melt and its effect on convection 
and tidal dissipation. This model identified two stable equilibrium states: a cold state in which no partial melting 
occurs, and a hot state with temperatures above the solidus. The latter state implies that active volcanism could 
indeed occur. Models of the coupled orbital-thermal evolution of Io and Europa find that Europa can, in fact, 
persist in the “hot state” (Hussmann & Breuer, 2007; Hussmann & Spohn, 2004; Moore & Hussmann, 2009). 
More recently, Bĕhounková et  al.  (2021) have argued, based on three-dimensional numerical modeling, that 
melting of Europa's silicate interior can occur throughout most of Europa's history, with melt volumes similar to 
those of large igneous provinces on Earth. However, the model assumes instantaneous melt extraction and thus 
neglects how the presence of melt would decrease the viscosity of the asthenosphere, increase convective vigor 
and the associated cooling rate, and thus decrease the rate of melt formation. Elder and Bland (2018) applied the 
one-dimensional melt formation and migration model of Elder (2015), which explicitly includes the coupling 
between melt fraction and viscosity, to Europa's silicate interior and found that melting does occur, but only when 
substantial tidal energy is dissipated in the silicates (e.g., the hot state of Moore and Hussmann (2009)).

In both the Bĕhounková et al. (2021) and Elder and Bland (2018) models, melt is assumed to be extracted from 
the system by volcanic eruption. Melt formation in the asthenosphere (i.e., the warm, ductile region where tidal 
dissipation can occur) cannot, however, be equated with silicate volcanism, or even hydrothermal activity, on 
Europa's seafloor. For seafloor volcanism to occur magma must be transported via dikes across the entire thick-
ness of the cold silicate lithosphere, a distance >100 km (e.g., the conductive lid is 300–400 km thick in the 
models of Bĕhounková et al.  (2021)). Terrestrial studies have shown that a substantial fraction of the Earth's 
magma inventory is intruded in the lithosphere rather than extruded on the surface as lava. Typical intrusive/
extrusive ratios are estimated to be between 5:1 and 10:1 (e.g., Crisp,  1984), although the range of inferred 
ratios is large (White et al., 2006). Furthermore, the process of dike formation is complex in terrestrial settings, 
and models of dike propagation have never been applied to magma transport through Europa's lithosphere. Melt 
escaping the asthenosphere is a necessary but insufficient condition for sustaining a habitable seafloor envi-
ronment on Europa by magmatism and/or hydrothermal activity. The driving question for this work, then, is to 
determine the conditions under which the melt generated within Europa's asthenosphere can fully penetrate the 
lithosphere and erupt on the seafloor.

2. Models of Dike Formation
Given the existence of melt in the asthenosphere, the plausibility of seafloor volcanism occurring depends, to first 
order, on whether dikes can transport magma through the lithosphere faster than the dike freezing timescale. The 
freezing timescale depends most sensitively on the width of the dike. Thus, by determining likely dike widths, 
propagation velocities, and cooling timescales, we can begin to assess whether seafloor volcanism is possible on 
Europa.

The mechanism by which a fluid-filled crack can propagate through an elastic medium has been described by at 
least two different high-heritage endmember conceptual models (i.e., a Weertman style model and a fluid dynamic 
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model) with different implications for dike geometry and propagation (Rivalta et al., 2015). Both endmembers 
are simple in that they assume a single, isolated dike in an infinite half space with constant material properties. In 
reality, multiple dikes may form and interact (e.g., Kuhn & Dahm, 2008), and the existence of the free surface will 
modify fracture dynamics (e.g., Kuhn & Dahm, 2008; Meriaux & Jaupart, 1998; Pollard & Holzhausen, 1979; 
Rivalta & Dahm, 2006). Magma may not be positively buoyant throughout the lithosphere (Lister, 1991; Wilson & 
Head, 1992, 2002), and it may accumulate to form magma chambers that subsequently become over-pressurized and 
erupt more evolved magmas (e.g., Parfitt et al., 1993; Wilson & Head, 2002). Magma may also move laterally due 
to reduced buoyancy or in response to stress gradients (Dahm, 2000a; Menand et al., 2010) or layering (Kavanagh  
et al., 2006). The elastic properties of the lithosphere may change with depth or the medium may be layered  
(e.g., Maccaferri et al., 2010; Taisne & Jaupart, 2009). Positive feedback between dike width and magma flow 
can lengthen or shorten dike lifetime (e.g., Bruce & Huppert, 1989; Carrigan et al., 1992; Fialko & Rubin, 1999). 
In short, all of the complications of magma transport common to terrestrial volcanology are likely to occur on 
Europa if magma is generated in the asthenosphere. Of particular importance in eruption dynamics on terrestrial 
planets is the exsolution of the gas phase as the dike approaches the surface (e.g., Wilson & Head, 1981). Given 
the relatively high pressure at Europa's seafloor (∼100 MPa), we neglect the exsolution of volatiles; however, we 
note that extremely low fluid pressure at the tip of a propagating dike resulting from the large pressure gradient 
required to drive fluid into the narrow gap could result in exsolution even deep in the lithosphere (e.g., Lister & 
Kerr, 1991). Given our current lack of constraints on the composition and structure of Europa's silicate interior, 
and any magma plumbing system within it, we choose to focus on simple systems to address first-order questions.

The Weertman endmember model for dike propagation posits a static, fluid-filled crack initially in contact with 
the bottom of an elastic plate (the elastic lithosphere) under tensile stress and calculates the displacement of 
the crack tip due to the buoyant fluid (Pollard, 1976; Pollard & Muller, 1976; Secor & Pollard, 1975; Weert-
man, 1971a, 1971b). In this conception, crack growth is governed by a balance between buoyancy forces and 
the fracture toughness of the medium. When the fluid is positively buoyant, the displacement of the crack tip 
is positive (i.e., upward) and the crack will grow until it reaches a critical length, Lc, given by, for example, 
Dahm (2000a) as

𝐿𝐿𝑐𝑐 =

[

𝑘𝑘𝑐𝑐

Δ𝜌𝜌𝜌𝜌
√
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]
2

3
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where kc is the fracture toughness (with units of MPa m 1/2), g is the gravitational acceleration (1.3 m s −2), and ∆ρ 
is the density contrast between the fluid and the elastic plate. Once the critical length is reached, crack growth 
stops, and the entire crack begins to propagate upward by simultaneously opening at the crack tip and closing 
at the crack bottom. The result is an isolated, upward-propagating coin-shaped lens of fluid with length Lc and 
a narrow, inverted teardrop shape with half-width, w, as a function of depth, z, governed by (Dahm,  2000b; 
Weertman, 1980)
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and υ is the Poisson's ratio (0.25) and G the shear modulus (30 GPa), both chosen for consistency with basalt. 
Increasing G by a factor of 2 (a value more consistent with dunite) would decrease the dike half-width by an 
equal factor. The resulting fluid lens is long in the vertical and one horizontal axis but very narrow in the other.

Whereas calculating the shape of the dike in this conceptional model is relatively straightforward, deriving the 
upward propagation velocity, v, is less so. Dahm (2000a) used a finite difference model that accounts for both 
the pressure drop associated with fluid flow within the fracture (Nakashima, 1993; Nunn, 1996) and trailing 
fluids in the crack tail that prevent crack closure and retard upward propagation (e.g., Stevenson, 1982) to predict 
propagation velocities of 0.1–1 m s −1 (depending on the dike width) for terrestrial conditions and assuming a 
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large fracture toughness of 1,000 MPa m 1/2. The result is consistent with inferences of the rising velocities of 
mantle xenoliths (Dahm, 2000a). The propagation velocity is directly proportional to both the pressure gradient 
associated with viscous resistance and the square of the dike width, which are both larger for larger kc (Rivalta 
et al., 2015). Thus, smaller fracture toughness somewhat unintuitively results in smaller propagation velocities (a 
factor of 2 decrease in kc results in a factor of 5 decrease in v (Dahm, 2000a)). The velocity also depends on the 
gravity of the body such that v ∼ g. For identical material properties (to first order, silicate bodies across the Solar 
System have broadly similar peridotitic mantle compositions that generate basaltic melt (Lofgren et al., 1981)), 
propagation velocities are thus roughly an order of magnitude lower on Europa than on Earth. We therefore take 
0.1 m s −1 as the maximum propagation velocity for a Weertman style dike on Europa, assuming kc of 1,000 MPa 
m 1/2 (i.e., an order of magnitude lower than the maximum terrestrial velocity derived by Dahm (2000a)) and we 
use the relationship between kc and v reported by Dahm (2000a) to conservatively estimate that for kc of 100 MPa 
m 1/2 the propagation velocity is ≤0.01 m s −1.

Of critical importance to this model is the fracture toughness of the medium, which influences both the geometry 
of the dike (Equations 1–3) and its propagation velocity. Unfortunately, kc is poorly known. Laboratory meas-
urements typically find that kc is of order 1 MPa m 1/2 (e.g., Atkinson, 1984; Atkinson & Meredith, 1987; Balme 
et al., 2004) but inferences of the effective kc at outcrop scale suggest that it is at least an order of magnitude 
larger (e.g., Delaney & Pollard, 1981), and in some cases may exceed 1,000 MPa m 1/2 (Scholz, 2010). Compli-
cating matters, kc is also influenced by rock tensile strength, confining pressure, temperature (e.g., DeGraff & 
Aydin, 1993; Rubin, 1993), and possibly the fracture length itself (Scholz, 2010; although see Olson, 2003; Olson 
& Schultz, 2011). Numerical approaches derive fracture toughness values of 100–1,000 MPa m 1/2 for terrestrial 
crustal rocks (Bunger & Cruden, 2011; Jin & Johnson, 2008; Rivalta & Dahm, 2006), consistent with inference 
from outcrop scales, but larger than laboratory values. Because of these uncertainties, we consistently treat the 
fracture toughness as a free parameter throughout this work.

The Weertman conception of dike propagation has faced criticism because the solutions are conceptually based 
on a stationary crack and generally neglect the fluid dynamics of the magma (Lister & Kerr, 1991). For small 
kc, the strength of the country rock and associated elastic deformation can be neglected far from the crack tip 
(Emerman et al., 1986; Spence & Sharp, 1985; Spence & Turcotte, 1985) and dike growth is instead governed by 
a balance between buoyancy and the viscous resistance of the fluid (Lister, 1990a, 1990b; Lister & Kerr, 1991; 
Roper & Lister, 2007; Spence et al., 1987; Spence & Turcotte, 1990). This second endmember, fluid dynamic 
model of dike propagation postulates a planar, two-dimensional crack filled with fluid of viscosity µ, which prop-
agates through an infinite elastic medium (again the elastic lithosphere) due to buoyancy, ∆ρg, and is fed at depth 
by a constant flux, Qd, per unit length (along strike) of dike (i.e., units of m 3 s −1 m −1, or m 2 s −1). The resulting 
fracture shape includes a rounded head and long neck of approximately uniform thickness (Roper & Lister, 2007). 
Far from the dike tip, the half-width of the dike (w∞) is given by Roper and Lister (2007) as

𝑤𝑤∞ =

(
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and the propagation rate (v) is given by
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The two models of dike emplacement (Weertman and fluid dynamics) can be reconciled by considering them 
as two endmembers (Rivalta et al., 2015; Roper & Lister, 2007), with the Weertman style analysis applicable to 
cases in which the fracture toughness is large (∼1,000 MPa m 1/2), and the fluid dynamic analysis applicable when 
the elastic parameters of the lithosphere can be neglected (e.g., kc ≤ 100 MPa m 1/2). Below, we combine these 
two endmember models with a cooling model to consider the full range of conditions under which dike propaga-
tion through Europa's lithosphere can occur. In both models, we implicitly assume that the magma is positively 
buoyant throughout the lithosphere, as would be expected for a basaltic crust (which we assume for simplicity to 
be equivalent to the cold lithosphere). Given the lack of constraints, we believe this assumption is appropriate to 
our first-order analysis.
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3. Can Dikes Penetrate Europa's Lithosphere?
Figure 1 shows the relationship between dike half-widths on Europa and both 
fracture toughness (Weertman model, panel a) and dike flux (viscous model, 
panel b). For the Weertman model and ∆ρ = 100 kg m −3, dike half-width 
varies from 0.15 mm to 1.5 m for kc of 1 MPa m 1/2 to 1,000 MPa m 1/2, respec-
tively. These rising lenses of magma are extremely long with critical lengths 
of 266 m to 26.6 km over the same range of kc, giving them an aspect ratio 
of nearly 10 4:1 (length to full width). Increasing the density contrast between 
the magma and the lithosphere decreases both the critical dike length and 
maximum dike width because the larger buoyancy forces permit the dike 
to begin propagating at smaller sizes. Dikes on Europa are ∼4x longer and 
twice as wide as terrestrial dikes, simply due to the nearly order of magnitude 
difference in gravity.

The extremely narrow dikes predicted by the Weertman model at small kc 
are expected to freeze rapidly (see below); however, in the limit of small 
fracture toughness (<100 MPa m 1/2), dike formation is more likely governed 
by the fluid dynamics of the magma (Equation 4) rather than the mechanical 
properties of the lithosphere. Dike half-widths in the fluid dynamic regime 
are ∼1 m for fluxes of ∼1 m 2 s −1 (Figure 1b). These fluxes are consistent 
with large terrestrial eruptions such as Iceland's Laki fissure eruption (3 m 2 
s −1; Thordarson & Self, 1993) and result in propagation rates of 1–10 m/s. 
Smaller fluxes, such as those inferred for Piton de la Fournaise (0.02 m 2 s −1; 
Traversa et al., 2010), result in dike widths of just 4–20 cm and propagation 
velocities of 0.1 m s −1. In the fluid dynamic regime, the dependence of dike 
width on g  −1/3 results in dikes that are roughly twice the thickness of terres-
trial dikes for the same density and viscosity.

Whether the dike can propagate through the lithosphere depends upon the 
propagation velocity and the solidification time. We use a simple symmetri-
cal model of conductive dike cooling as befits our first-order approach (e.g., 
Turcotte and Schubert (2002))

𝑡𝑡𝑐𝑐 =
𝑊𝑊 2

4𝜅𝜅𝜅𝜅2
 (6)

where tc is the solidification time, W is the half thickness, κ is the thermal 
diffusivity, and λ is found from the transcendental equation

𝐿𝐿
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𝑐𝑐Δ𝑇𝑇
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2
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where L is the latent heat of fusion, c is the heat capacity, and ΔT = Tm − Ts where Tm and Ts are the temperature of 
the melt and wall rock, respectively. This simple cooling model is for a stationary dike and neglects the complexi-
ties of wall melt back, viscous dissipation, and conduit blocking that can extend or reduce the dike lifetime (Bruce 
& Huppert, 1989; Carrigan et al., 1992). Additionally, flow in the dike may cease well before complete solidifi-
cation occurs. Dike solidification time is shown as a function of dike half-width in Figure 2. For ∆T of 100 K, the 
narrow dikes that form when fracture toughness is small (1–10 MPa m 1/2) and fluxes are very low (say 10 −3 m 2 
s −1) cool in less than an hour. At the other extreme, if the fracture toughness is very large (∼1,000 MPa m 1/2) or 
small but the flux into the dike is large (1 m 2 s −1) the dike half thickness is ∼1 m, and cooling times are on the 
order of 1 year. Increasing ∆T to 1000 K results in shorter cooling times due to the rapid conduction of heat away 
from the dike, which rapidly narrows.

In order for a dike to either erupt at Europa's seafloor or intrude into the shallow lithosphere where ocean fluids 
circulate, it must propagate vertically by at least 100 km, which we take as the minimum lithospheric thick-
ness based on the work of Bĕhounková et al. (2021). Combining the dike width, propagation velocity, and the 

Figure 1. The relationship between Europan dike half-width and (a) fracture 
toughness (the Weertman model from Equations 1–3) and (b) dike flux (the 
viscous model from Equation 4). In (a) blue, green, and orange curves are 
for ∆ρ of 100 kg m −3, 200 kg m −3, and 300 kg m −3, respectively. In (b) blue, 
green, and orange curves are for μ of 1, 10, and 100 Pa s, respectively.
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cooling timescale (Equations 6 and 7 and Figure 2) we calculate the propa-
gation distance as a function of the input flux (Figure 3). For the Weertman 
model, cooling times (dike widths) and propagation velocities are sufficient 
to propagate through the lithosphere only when kc ≥ 500 MPa m 1/2. The more 
moderate case of kc = 100 MPa m 1/2 results in dikes widths of <10 cm and 
solidification times of hours to days. These dikes would require v ≥ 1 m s −1 
to penetrate the entire lithosphere: much larger than our estimated velocity of 
0.01 m s −1. More likely, dikes in this size range would propagate ∼1 km and 
intrude the deep lithosphere. Such intrusions are still much too deep to enable 
hydrothermal activity, as ocean fluids are unlikely to circulate to depths of 
more than 25 km (S. Vance, et al., 2007, S. D. Vance et al., 2016). When kc 
is small (1–10  MPa  m 1/2), dike propagation occurs in the viscous regime. 
We find that dikes fed by Qd ≥ 1 m 2 s −1 can penetrate a 100 km thick litho-
sphere for many combinations of viscosity, density contrast, and temperature 
contrast. Dikes fed by Qd of 0.1 m 2 s −1 can penetrate the lithosphere as long 
as ∆T ≤ 100 K. The smaller ∆T results in longer cooling times; however, 
this condition may be difficult to meet as ∆T is expected to increase as the 
dike rises into the colder part of the lithosphere. If dike fluxes are similar 
to those at Piton de la Fournaise (Qd ∼ 0.02 m 2 s −1), dikes will only propa-
gate at most a few kilometers before freezing. Higher magma viscosity also 
increases propagation distance. The wider dikes and longer cooling times 
associated with the higher viscosity magma more than compensate for the 
lower propagation velocity.

The flux into the dike, Qd, is a critical unknown parameter. Elder and 
Bland  (2018) find that for an asthenospheric tidal heating rate of 10 13  W 
(consistent with “hot state” equilibrium values of Moore and Huss-
mann  (2009)) melt forms and propagates upward by Darcy-like flow at a 
globally averaged rate of 0.05 m/yr. The total volumetric flux to the base of 
the lithosphere is simply given by Qv = u A, where u is the upward migra-
tion velocity and A is surface area. Assuming an asthenospheric radius of 
1,360 km (200 km deeper than Europa's surface), the global volumetric flux 
to the base of the lithosphere is 4 × 10 4 m 3 s −1. This flux is quite large, similar 
to Io's current inferred global surface effusion rate of 2 × 10 4 m 3 s −1 (Blaney 
et al., 1995; although the flux to the base of Io's lithosphere is likely an order 
of magnitude higher assuming terrestrial-like intrusion/extrusion ratios), and 
likely only relevant during past periods of high eccentricity (e.g., Hussmann 
& Spohn, 2004). In contrast, Bĕhounková et  al.  (2021) predict an average 
global flux more than an order of magnitude smaller: 2.5 × 10 3 m 3 s −1 assum-
ing continuous eruption. Bĕhounková et al. (2021) also calculated local melt 
volumes of ∼10 7 km 3 in 250 Myrs for regions 270–380 km in radius, imply-
ing time averaged Qv of 4 m 3 s −1 from these regions of focused heating (tidal 
dissipation and magma generation are not uniformly distributed globally). 
Applying the flow rate derived by Elder and Bland (2018) to the same-sized 
region results in a flux of 360–610 m 3 s −1. It is plausible that these highly 
localized fluxes would feed a single dike-fed volcanic eruption. For compari-
son, Kīlauea's Puʻuʻōʻō sustained an effusion rate of 2.4–4.5 m 3 s −1 for many 
years (Kauahikaua et al., 1996; Sutton et al., 2001) and the 1984 Mauna Loa 
eruption saw magma production rates of 400  m 3  s −1 or more (Lipman & 
Banks, 1987).

Despite the similarity between the estimates of local magma flux to the base 
of Europa's silicate lithosphere and terrestrial eruption rates, it is unlikely 
that the magma flux into a dike is in steady state with asthenospheric melt 
production. In such a scenario, seafloor volcanism on Europa is in any case, 

Figure 2. Cooling time as a function of dike thickness (Equations 6 
and 7). The corresponding fracture toughness is indicated on the upper 
axis (Weertman model) and the corresponding magma fluxes (viscous 
model) of 0.1 and 1 m 2 s −1 are indicated by black brackets (maximums 
correspond to Δρ = 100 kg m −3 and μ = 100 Pa s; minimums correspond to 
Δρ = 300 kg m −3 and μ = 1 Pa s). Green and blue curves are for different 
∆T, as indicated. Solid lines use κ = 10 −6 m 2 s −1, c = 1,200 kJ kg −1 K −1, 
and L = 320 kJ kg −1. Dotted lines use κ = 0.5 × 10 −6 m 2 s −1, 
c = 1,200 kJ kg −1 K −1, and L = 400 kJ kg −1. Dashed lines use 
κ = 0.5 × 10 −6 m 2 s −1, c = 1,000 kJ kg −1 K −1, and L = 400 kJ kg −1.

Figure 3. Propagation distance for dikes on Europa. Lines show propagation 
distances for the viscous model and corresponds to the fluxes indicated on the 
horizontal axis (orange, green, and blue lines correspond to viscosities, μ, of 
100, 10, and 1 Pa s, respectively; dashed, solid, and dotted lines correspond to 
temperature differences, ∆T, of 100 K, 600 K, and 1000 K, respectively). The 
pink and purple shaded regions correspond to propagation distance derived 
for the Weertman model, with kc as indicated and assumed propagation 
velocities of 0.1, 0.02, and 0.01 m s −1 for kc of 1,000, 500, and 100 MPa 
m 1/2, respectively. The upper bound of each assumes ∆ρ = 100 kg m −3 
and ∆T = 100 K (both maximizing the distance), whereas the lower bound 
assumes ∆ρ = 300 kg m −3 and ∆T = 1000 K.
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implausible. Given the upward magma migration rate of 0.05 m yr −1 of Elder and Bland (2018), and that a given 
dike requires Qd ∼ 1 m 2 s −1 to reach the seafloor, a dike with an along-strike length of 100 km (similar to the 
vertical scale) would require a total flux of 10 5 m 3 s −1 (i.e., 1 m 2 s −1 times 10 5 m of along-strike length), which 
exceeds the estimated global magma flux to the base of the lithosphere described above. The implication is that 
for seafloor volcanism to occur, magma must accumulate to significant volumes at the base of the impermeable 
lithosphere, and then erupt rapidly (see, e.g., Havlin et al. (2013)). For example, if the eruption itself lasts one 
year, then to achieve the necessary total flux of 10 5 m 3 s −1 (for the 100 km long dike) the total magma volume 
required is 3 × 10 12 m 3, which requires just 2000 years to accumulate in a disk-shaped region 100 km in radius 
assuming continual magma production and the migration velocity of Elder and Bland (2018). If the eruption time 
is extended, the accumulation time must also be increased to offset the required additional melt volume and main-
tain a flux of 10 5 m 3 s −1. Thus, although seafloor volcanism on Europa cannot be continual even during periods 
of high tidal heating, the minimum time required to accumulate sufficient melt is short relative to typical geologic 
timescales. Seafloor volcanism might therefore provide new reactants to Europa's ocean with recharge cycles of 
several thousand years. Of utmost importance, however, is the coupling between magma accumulating at the 
base of the lithosphere and the initiation of diking (e.g., Havlin et al., 2013), which controls both the frequency 
at which dikes form and the total number of dikes. If dikes form too often, or if dikes are too numerous, the flux 
into each will be insufficient for dikes to propagate to the seafloor and will instead intrude deep in the lithosphere. 
Unless the fracture toughness of Europa's lithosphere is large (permitting Weertman-style dikes), seafloor erup-
tions on Europa must either be relatively voluminous (>3,000 km 3 yr −1) or not occur at all. Such coupled models 
will be informed by new measurements of Europa's gravity field made by NASA's Europa Clipper mission that 
may constrain the structure of and heat flow from the silicate interior (Dombard & Sessa, 2019).

Data Availability Statement
No data, code, or software was used for this study.
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