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Abstract

Motivation: In the past years, the long read (LR) sequencing technologies, such as Pacific

Biosciences and Oxford Nanopore Technologies, have been demonstrated to substantially improve

the quality of genome assembly and transcriptome characterization. Compared to the high cost of

genome assembly by LR sequencing, it is more affordable to generate LRs for transcriptome char-

acterization. That is, when informative transcriptome LR data are available without a high-quality

genome, a method for de novo transcriptome assembly and annotation is of high demand.

Results: Without a reference genome, IDP-denovo performs de novo transcriptome assembly, iso-

form annotation and quantification by integrating the strengths of LRs and short reads. Using the

GM12878 human data as a gold standard, we demonstrated that IDP-denovo had superior sensitiv-

ity of transcript assembly and high accuracy of isoform annotation. In addition, IDP-denovo outputs

two abundance indices to provide a comprehensive expression profile of genes/isoforms. IDP-

denovo represents a robust approach for transcriptome assembly, isoform annotation and quantifi-

cation for non-model organism studies. Applying IDP-denovo to a non-model organism,

Dendrobium officinale, we discovered a number of novel genes and novel isoforms that were not

reported by the existing annotation library. These results reveal the high diversity of gene isoforms

in D.officinale, which was not reported in the existing annotation library.

Availability and implementation: The dataset of Dendrobium officinale used/analyzed during the

current study has been deposited in SRA, with accession code SRP094520. IDP-denovo is available

for download at www.healthcare.uiowa.edu/labs/au/IDP-denovo/.

Contact: kinfai-au@uiowa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the new generation sequencing technologies bring substantial ad-

vances in exploring transcriptomes, a wealth of relevant bioinformatics

methods, such as splice detection and transcript reconstruction, have

been developed and used widely in various species (Grabherr et al.,

2011; Pertea et al., 2015; Schulz et al., 2012; Trapnell et al., 2010). In

particular, transcriptome analysis of model organisms has achieved

tremendous progress (Darmanis et al., 2015; Gonzalez-Porta et al.,

2013; Su et al., 2002; Tang et al., 2009), because their well-established

reference genomes considerably reduce the problem complexity and

thus improve the accuracy of sequencing data analysis (Au et al., 2013;

Oliver et al., 2016). In contrast to the limited number of model organ-

isms, there are hundreds of thousands of non-model organisms that

are crucial to broad research areas, such as ecology, microbiology,
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evolutionary biology and agricultural sciences (da Fonseca et al., 2016;

Ekblom and Galindo, 2011). For example, a traditional Chinese medi-

cine plant, Dendrobium officinale, shows drought resistance and thera-

peutic effects (Yan et al., 2015). Research on venom gland

transcriptomes of painted saw-scale viper, Echis coloratus, paved the

way for antivenom manufacture (Hargreaves and Mulley, 2015).

However, de novo genome assembly of non-model organisms is par-

ticularly expensive and computationally intense (Meyer et al., 2015;

Rokas and Abbot, 2009). Moreover, the assembled genomes are not as

accurate and complete as those of model organisms, which have been

polished over the years. As the cost of transcriptome sequencing of

non-model organisms is affordable by all-size laboratories (Wang

et al., 2009), plenty of bioinformatics efforts have been made to per-

form de novo transcriptome assembly (Grabherr et al., 2011;

Robertson et al., 2010; Schulz et al., 2012).

de novo transcriptome assembly based on Second Generation

Sequencing (SGS) short reads (SRs) is a general approach to investi-

gate non-model organisms (Chen et al., 2011; Surget-Groba and

Montoya-Burgos, 2010), albeit current progress is still far from sat-

isfying. Most SGS-based methods build de Bruijn graph of k-mers

extracted from SRs and search for paths representing transcripts

with heuristics or customized criteria (e.g. coverage) (Chang et al.,

2015; Fu et al., 2014; Grabherr et al., 2011; Luo et al., 2015;

Pevzner et al., 2001; Simpson et al., 2009; Zerbino and Birney,

2008). These methods are limited by the SR length of SGS data in a

few ways: (i) transcript assembly contains numerous ambiguities or

even fails in homologous or repetitive regions; (ii) accuracy of tran-

script assembly is called into question when a gene exhibits complex

isoform expression; (iii) transcripts with low expression levels are

challenging to be reconstructed, especially when certain k-mers are

missing due to low abundance; (iv) long k-mers require high com-

puting intensity whereas short k-mers yield high false-positive

assemblies (Miller et al., 2010).

In contrast to the 50–300 bp read length generated from SGS

platforms, Third Generation Sequencing (TGS), including Pacific

Biosciences (PacBio) (English et al., 2012; Rhoads and Au, 2015;

Tilgner et al., 2015) and Oxford Nanopore Technologies (ONT)

(Laver et al., 2015; Oikonomopoulos et al., 2016), produces much

longer reads (1–100 kb). TGS long reads (LRs) have been exploited

successfully to identify gene isoforms from human by genome-

alignment-based methods, as they can cover long stretches of se-

quences, up to full-length transcripts (Au et al., 2013; Sharon et al.,

2013; Tilgner et al., 2014; Weirather et al., 2015). Owing to the

lack of reference genomes for non-model organisms, a novel assem-

bly method is required to utilize TGS LRs that merely cover frag-

ments of extremely long transcripts. In addition, the high error rate

of TGS limits the accuracy of assembly, and the low throughput and

sequencing bias of TGS render it inadequate for statistical estima-

tion of isoform abundance.

Hybrid sequencing (‘Hybrid-Seq’) has emerged as a novel ap-

proach to integrate TGS and SGS data, in order to address the limi-

tations of SGS-alone and TGS-alone data analyses. It can improve

the overall performance and accuracy of the output data. Indeed, a

series of bioinformatics tools for Hybrid-Seq transcriptome data,

including LSC, IDP, IDP-fusion and IDP-ASE, have been demon-

strated to elucidate transcriptomes of model organisms at the iso-

form level with high precision and sensitivity (Au et al., 2012, 2013;

Deonovic et al., 2016; Weirather et al., 2015). The high-quality

transcript assembly by Hybrid-Seq will guarantee the accuracy of

annotation and quantification of isoforms.

Here we present IDP-denovo (www.healthcare.uiowa.edu/labs/

au/IDP-denovo/), a novel method to perform de novo transcriptome

assembly by Hybrid-Seq data, and further annotate gene isoform

structures and alternative splice sites without requiring a reference

genome, followed by isoform abundance estimation from sequenc-

ing coverage. Using the human Hybrid-Seq transcriptome data from

a lymphoblastoid cell line [GM12878 (Tilgner et al., 2014)] as a

gold standard, we show the superior performance of full-length

transcript assembly by IDP-denovo, demonstrating the advantages

of LR inclusion in comparison to existing SR-alone methods, and

the advantages of its conceptual design in comparison to existing

Hybrid-Seq methods (Grabherr et al., 2011; Roulin et al., 2014).

After assembly, isoforms are clustered and annotated to show high

accuracy of identifying alternative exon usage. In addition, isoform

abundance is estimated by SRs and LRs. To demonstrate the utility

of IDP-denovo to non-model organisms, we apply it to D.officinale

as a proof-of-concept study and compare the results with the exist-

ing annotation library. IDP-denovo discovers 7831 novel genes that

are missed by the existing annotation library, which is likely due to

the complexity of gene sequences or the poor quality of genome as-

sembly in the previous studies.

2 Materials and methods

2.1 Overview of IDP-denovo
To characterize transcriptomes that lack a reference genome, IDP-

denovo was designed with three stages: (i) assembly, (ii) annotation

and (iii) quantification (Fig. 1). In the ‘assembly’ stage, SRs are

assembled by an existing SR-alone method to generate SR-

assembled scaffolds (denote as SR-scaffolds) (Fig. 1, step a1). Next,

the LRs that are aligned to SR-scaffolds (Fig. 1, step a2), are used to

extend the SR-scaffolds and grouped with SR-scaffolds according to

locus information provided by the SR-assembly method (Fig. 1, step

a3). The unaligned LRs are clustered together based on k-mers

(Fig. 1, step a4). Using all exonic regions of transcript sequences in

each cluster obtained in the ‘assembly’ stage, the ‘annotation’ stage

generates longer consensus sequences with higher accuracy, named

as pseudo-reference sequences (Fig. 1, step b1). Next, the transcript

sequences are aligned to the pseudo-reference sequences to annotate

isoform structures, including identification of alternative usage of

exons and splice sites (Fig. 1, step b2). Finally, the ‘quantification’

stage estimates isoform abundance using two indices: (i) SR cover-

age deconvolved by the existing annotation-based statistical ap-

proach (Au et al., 2013), and (ii) the number of supporting LRs

(Fig. 1, step c1).

Fig. 1. Flowchart of IDP-denovo. There are three stages in IDP-denovo: assem-

bly, annotation and quantification. (a) Assembly: SRs are assembled into

SR-scaffolds, followed by extension and clustering with aligned LRs. The un-

aligned LRs are clustered on k-mers. (b) Annotation: pseudo-references con-

taining all expressed exonic regions are generated, and assembled transcript

sequences are aligned to the pseudo-reference sequences to annotate iso-

form structures and identify alternative exon usage. (c) Quantification: the

transcript abundance is estimated by LR and SR coverage based on the anno-

tation identified in the ‘annotation’ stage
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2.2 Transcript assembly by Hybrid-Seq data
2.2.1 SR-scaffold assembly and SR-scaffold extension

Firstly, SRs are assembled into SR-scaffolds by a de novo assembly

algorithm [e.g. VelvetþOases (Schulz et al., 2012; Zerbino and

Birney, 2008)] (Fig. 1, step a1). However, a number of SR-scaffolds

are still not long enough to cover the full length of very long tran-

scripts (Fig. 2). The missing regions can be covered by LRs, so SR-

scaffold extension by LRs is subsequently performed to get longer

transcript sequences. Following error correction using SRs [e.g. by

LSC (Au et al., 2012)], LRs are aligned to SR-scaffolds by GMAP

(Wu and Watanabe, 2005) (Fig. 1, step a2). If the alignment of a LR

covers one end of the SR-scaffold and also contains an overhang re-

gion, the overhang region from the LR is used in SR-scaffold exten-

sion (Fig. 2). When more than one LR contributes to extension of

the same end of a SR-scaffold, a consensus sequence of these over-

hang fragments will be generated by an existing consensus

generation algorithm, CAP3 (Huang and Madan, 1999) to extend

the SR-scaffolds.

2.2.2 Clustering of SR-scaffolds and LRs

After extension, SR-scaffolds and LRs are grouped according to the

locus information provided by the SR-assembly method. Some LRs

are not aligned to SR-scaffolds, as they are from genes that are not

covered by SR data, missed by SR assembly, or due to misassembly

by SRs, in addition to the high error rates of LRs. To rescue the im-

portant splicing information and isoforms, the unaligned LRs are

clustered by a k-mer-based clustering approach (Fig. 1, step a4 and

Fig. 3). Each cluster represents a gene, although gene families or

pairs of expressed parent and pseudogenes may be represented in a

single cluster. LR sequences are processed with homopolymer com-

pression before clustering, in order to increase sensitivity and reduce

computing intensity (Au et al., 2012). Next, similar to CD-HIT (Li

et al., 2001), LRs are clustered sequentially according to the des-

cending order of their lengths. Initially, the longest LR is assigned to

the first cluster and it is set as the representative LR of this cluster.

While CD-HIT computes similarity between two sequences by align-

ment, our k-mer clustering method computes their similarity by the

percentage of shared k-mers. When considering the next LR, we

examine the percentages of shared k-mers between this LR and the

representative LRs of all existing clusters. If no existing cluster has

the shared percentage of k-mers above a customized threshold, a

new cluster is generated with this LR as the representative LR.

Otherwise, this LR is assigned to the cluster with the highest per-

centage of shared k-mers. The time complexity of the clustering step

is O N2l
� �

, where N is the number of unaligned LRs and l is the

average length of those LRs (see details in Supplementary Material:

Note 1). To accelerate the clustering process, bloom filters are used

to store and query k-mers (Melsted and Pritchard, 2011). A bloom

filter is a space-efficient data structure with constant time of data

addition or query at the expense of a low false positive rate (Kirsch

and Mitzenmacher, 2006). The consensus sequences of SR-scaffolds

and LRs in each cluster will be generated in the ‘Annotation of gene

isoform structures’ stage.

2.3 Annotation of gene isoform structures
2.3.1 Generation of pseudo-references of exonic regions

To annotate isoform structures from transcript sequences, we need to

generate a pseudo-reference for each cluster, which is supposed to

contain all expressed exons, via multiple sequence alignment (Fig. 1,

step b1 and Fig. 4). In each cluster, IDP-denovo sorts the assembled

transcript sequences by descending order of lengths. In the initial

round, multiple sequence alignment is performed on the longest three

sequences by Clustal Omega (Sievers et al., 2011). Transcript se-

quences with<30% identities to the longest sequence are ignored. If

multiple sequences remain, then the consensus sequence is generated

from the alignment. In the next round, two following shorter tran-

script sequences will be added with the consensus sequence for mul-

tiple sequence alignment to generate the next consensus sequence.

The loop continues until no more input sequence exists. The final con-

sensus sequence will be denoted as the pseudo-reference (See the

pseudocodes and details in Supplementary Material: Note 2).

Fig. 2. Schematic illustration of SR-scaffold extension by LRs. SR-scaffolds

are generated by de novo assembly from SRs. Next, LRs are aligned to SR-

scaffolds and then the SR-scaffolds are extended by LRs

(a) (b)

(d) (c)

Fig. 3. Illustration of k-mer-based clustering method. (a) Sort LRs by descend-

ing lengths. (b) Generate the first cluster with the longest LR (LR1) and take it

as the representative LR. Then, compute the percentages of shared k-mers

between the representative LRs from existing clusters and the following LRs

sequentially. If the highest percentage is below the customized threshold

Cthreshold, a new cluster is formed with the LR as its representative, such as

LR2 (c). If the percentages are above the customized threshold Cthreshold, then

assign the LR to the cluster with the highest percentage, such as LR3 (d)

Transcript T1

Transcript T2

SRs X 10 

10X coverage

SRs X 10 

10X coverage

SR 
alignment

Pseudo-reference
of exonic regions

Fig. 4. Schematic illustration of the pseudo-reference generation and SR-

alignment confirmation. The pseudo-reference of the exonic regions is gener-

ated via mulitple sequence alignment with transcripts T1 and T2 to include all

expressed exons. Next, the transcripts T1 and T2 are aligned to the pseudo-

reference to identify the alternative usage of exons and splice sites. The pre-

dicted splices are confirmed by at least 10 SRs aligned to the splices and 10�
SR coverage of the skipped exons
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2.3.2 LR alignment to pseudo-references and SR alignment

confirmation

In each cluster, the assembled transcript sequences are aligned to the

pseudo-references by GMAP. If a gap with significant length (�43bp

by default, see details in Supplementary Material: Note 3) is reported

in the best alignment, IDP-denovo considers it as a possible alternative

exon usage event. The gap is further confirmed as an alternative exon

usage event with SR alignment to the pseudo-reference [e.g. by

HISAT (Kim et al., 2015)] (Fig. 1, step b2 and Fig. 4). Two criteria

are applied: 1) at least 10 splice-aligned SRs support the gap, and 2)

the gapped region contains at least 10� SR coverage. By identifying

the alternative exon usage events, IDP-denovo annotates the corres-

ponding isoform structures of each transcript.

2.4 Isoform abundance estimation
As transcript annotation is completed in the stage above, we use our

previously published tool, IDP, to estimate transcript abundance by

deconvolution of SR coverage (Au et al., 2013), which is termed as

‘SR abundance index’. In addition, the number of supporting LRs

for each transcript is termed as ‘LR abundance index’ (Fig. 1,

step c1).

Overall, IDP-denovo outputs the assembled transcript sequences,

splice sites of alternative exon usage events and two transcript abun-

dance indices.

3 Results

3.1 Full-length gene isoform assembly and accuracy of

assembled transcript sequences
We evaluated the performance of IDP-denovo using the human

GM12878 dataset (See Supplementary Material: Note 4), since the

high-quality human genome and gene annotation library can be

used as a gold standard in performance evaluation. The first step of

IDP-denovo is to assemble SR-scaffolds (Fig. 1, step a1). In order to

obtain the best SR-scaffolds, we evaluated the performance of five

existing SR-alone methods, including Trinity (Grabherr et al.,

2011), SOAPdenovo-Trans (Xie et al., 2014), Bridger (Chang et al.,

2015), Trans-ABySS (Robertson et al., 2010) and VelvetþOases

(Schulz et al., 2012; Zerbino and Birney, 2008). Using the

GM12878 dataset, we measured precision-recall statistics as estab-

lished by Li et al (Li et al., 2014) (See Supplementary Material: Note

5 for the detailed parameter settings for each software and an ex-

panded description of the statistics). Among the SR-alone methods,

Trans-ABySS achieved the highest precision (0.87), while the corres-

ponding recall was only 0.14 (Table 1). VelvetþOases produced the

highest recall (0.29). Using the F1 score to evaluate the overall per-

formance of both precision and recall, VelvetþOases had the best

performance (F1 score¼0.42) among the five SR-alone methods.

Therefore, we used VelvetþOases to assemble SR-scaffolds in IDP-

denovo.

Next, we sought to improve transcript detection by adding LRs

into SR-scaffolds. LRs covered 36 821 transcripts, including 20 690

transcripts that were missed by SR-scaffolds (Fig. 5a). It may be

attributed to misassembly of SR-scaffolds in repetitive regions or

problematic reconstruction of lowly expressed transcripts as well as

no coverage in SR data. Remarkably, the transcripts missed by SR-

scaffolds but covered by LRs show significantly lower abundance

than those covered by SR-scaffolds (P-value<2.2e-16, see details in

Supplementary Material: Note 6). SR-scaffolds covered a total of

21 410 transcripts, with 5279 transcripts that were not found by

LRs. This is likely due to the sequencing bias of TGS. Therefore,

pooling LRs with SR-scaffolds by IDP-denovo recovers the tran-

scripts missed by either SR-alone or LR-alone method, and thus im-

proves sensitivity.

In addition, 16 131 transcripts, including 10 453 full-length iso-

forms, were detected by either SR-scaffolds or LRs (Fig. 5b). While

the vast majority of full-length isoforms were detected by both SR-

scaffolds and LRs (6529 transcripts), 1983 transcripts were detected

only by SR-scaffolds and 1941 were detected only by LRs (Fig. 5b).

These data demonstrate the importance of integrating LRs and SR-

scaffolds in order to maximize the number of recovered full-length

transcripts.

However, a number of transcripts were not detected as full-

length isoforms by either SR-scaffolds or LRs. To assemble full-

length transcripts, IDP-denovo performed SR-scaffold extension

using LRs (Fig. 1, step a3). This approach recovered 702 full-length

isoforms. An example from the GM12878 dataset is shown in

Figure 6: the extended SR-scaffold, but not either SR-scaffold or

LRs alone, recovered all annotated splice sites of the isoform

ENST00000371998.6 of AIB1, an oncogene that is associated with

drug resistance and a significant decrease in mortality (Tikkanen

et al., 2000).

Table 1. Comparison of IDP-denovo with existing methods

Evaluation metrics SR-alone assembly methods Hybrid assembly methods

Trinity SOAPdenovo-Trans Bridger Trans-ABySS VelvetþOases Trinity Roulin’s pipeline IDP-denovo

Precision 0.76 0.78 0.65 0.87 0.77 0.77 0.77 0.92

Recall 0.17 0.16 0.21 0.14 0.29 0.17 0.24 0.40

F1 score 0.28 0.27 0.32 0.24 0.42 0.28 0.37 0.56

Note: The best performance of SR-alone assembly methods is underlined. The best performance among all methods is bold, underlined and italic.

5,279       16,131         20,690

By SR-scaffolds  21,410

By LRs  36,821

By SR-scaffolds   8,512

By LRs 8,470

1,983        6,529         1,941

Total  10,453Total  42,100

Total number of transcripts Number of full-length isoforms 
in 16,131 transcripts

(a) (b)

Fig. 5. The Ensembl-annotated gene isoform identification by SR-scaffolds

and/or LRs. (a) 16 131 gene isoforms are covered by both SR-scaffolds and

LRs, while 5279 are only covered by SR-scaffolds and 20 690 only covered by

LRs. (b) The distribution of 10 453 Ensembl-annotated full-length gene iso-

forms identified among 16 131 gene isoforms (shown in a) detected by both

SR-scaffolds and LRs
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We also evaluated the performance of IDP-denovo relative to the

SR-alone methods. As compared to the results with VelvetþOases

(the superior SR-alone method), adding LRs with IDP-denovo sig-

nificantly improved the precision, recall and F1 score (Table 1).

High SR coverage aids in assembly of accurate SR-scaffolds (step a1

in Fig. 1), while low SR coverage can lead to low-accuracy assembly

that further prevents LRs from being aligned correctly to extend SR-

scaffolds. In the regions uncovered by SR-scaffolds but extended

by LRs, high LR coverage is helpful to generate accurate consen-

sus from error-prone LRs (step a3 in Fig. 1). (See details in

Supplementary Material: Note 7).

Therefore, integration of SR-scaffolds and LRs by IDP-denovo

not only increased the total number of transcripts assembled as well

as the number of full-length transcripts, but also had superior preci-

sion, recall and F1 score as compared to SR-alone methods. While a

caveat of LRs is a high error rate, these errors are corrected by IDP-

denovo because SR-scaffolds cover the errors. In the example with

AIB1 (Fig. 6), the transcript assembled by IDP-denovo using

Hybrid-Seq data contained far fewer errors than LRs alone. Thus,

using Hybrid-Seq data by IDP-denovo also greatly improves the ac-

curacy of transcript sequences assembled by correcting errors

in LRs.

3.2 Comparison of IDP-denovo to the existing assembly

methods with Hybrid-Seq data
Currently two methods have been reported for de novo assembly

with Hybrid-Seq data: 1) a new version of Trinity (Grabherr et al.,

2011); and 2) a pipeline proposed by the Roulin group (Roulin

et al., 2014) (referred to herein as ‘Roulin’s pipeline’). We compared

IDP-denovo to these two methods using parameter settings

described in Supplementary Material: Note 8. Both Trinity and

Roulin’s pipeline achieved a precision of 0.77, while Roulin’s pipe-

line gave a higher recall (0.24) and a higher F1 score (0.37) than

Trinity (Table 1). By contrast, IDP-denovo demonstrated better per-

formance in terms of precision, recall and F1 score (Table 1), as well

as higher sensitivity [defined as the number of full-length recon-

structed transcripts by Chang et al. (2015); Table 2; see also

Supplementary Material: Note 8]. IDP-denovo reconstructed 32 393

annotated transcripts, with 16 597 as full-length transcripts, while

Trinity and Roulin’s pipeline reconstructed fewer annotated tran-

scripts (31 358 and 20 316, respectively) and full-length reference

transcripts (12 698 and 8908, respectively). Trinity employs LRs to

refine assembly of isoforms with complex structures by SRs, but

does not use LRs to recover transcripts or transcript fragments

missed by SRs. Roulin’s pipeline was designed to assemble Roche

454 LRs and Illumina SRs separately, followed by clustering and

removing redundant contigs. LRs from PacBio platform (as well as

ONT) are more error-prone than 454 data, so Roulin’s pipeline

underperformed when PacBio data were used. Thus, IDP-denovo

has enhanced performance over other existing Hybrid-Seq assembly

methods.

3.3 Optimization of k-mer clustering
Our next goal is to perform annotation of transcripts. First, how-

ever, it is necessary to group together (referred to as ‘clustering’)

transcripts that arise from the same gene, where each cluster con-

tains multiple isoforms of one gene. Whereas the SR-scaffold exten-

sion process (Fig. 1, step a3) clustered the aligned LRs, a number of

LRs remained unaligned. To address this, we developed a k-mer-

based clustering approach to group unaligned LRs (Fig. 1, step a4).

Two parameters influence our k-mer clustering method: length of

k-mer (k) and percentage threshold (Cthreshold) of shared k-mers be-

tween each LR and the representative LR (see details in ‘Clustering

of SR-scaffolds and LRs’ in Materials and methods section) in a clus-

ter. To find the optimal combination of k and Cthreshold, we con-

ducted a proof-of-concept study using 94 506 LRs from Chr19

(chromosome 19 from human genome) in GM12878 dataset as the

training data. Chr19 has the highest gene density among all human

chromosomes and a reasonable chromosome size (Grimwood et al.,

2004). We set k as 13, 15 and 17 and Cthreshold as 0.04, 0.05 and

0.06, according to the previous studies (Aflitos et al., 2015; Ghodsi

et al., 2011; Ondov et al., 2016). Four typical measures of clustering

performance were used: the Jaccard index, precision, recall and F-

measure (See details in Supplementary Material: Note 9). As shown

in Table 3, the optimal values of these measures were obtained

when k¼15 and Cthreshold ¼0.05. We also got the same optimal

parameter setting when clustering unaligned LRs from Chr19 (See

details in Supplementary Material: Note 9). Therefore, this param-

eter setting was subsequently used to cluster unaligned LRs.

3.4 Completeness of exonic regions in

pseudo-references
After clustering, IDP-denovo generates a longer consensus sequence

termed ‘pseudo-reference of exonic regions’, which ideally covers all

expressed exonic regions of a gene (Fig. 1, step b1). This step is ne-

cessary in order to perform gene isoform annotation when a refer-

ence genome is not available. Correct annotation of gene isoforms

therefore requires complete exonic regions in the pseudo-references.

For example, an annotated exon of isoform ENST00000549838.4

from the gene NUBPL on Chr14, was only found in one LR (LR4)

and missed in the SR-scaffold and the longest LR of the gene (LR3)

in GM12878 dataset (Fig. 7). That is, using the longest sequence in

a cluster, including the longest SR-scaffold, cannot guarantee the

completeness of exonic regions. However, the pseudo-reference of

Fig. 6. Full-length isoform of gene AIB1 is rescued by SR-scaffold extension

using LRs. Neither SR-scaffold (purple track) nor LRs (LR1 and LR2 in green

tracks) can cover all splices of the isoform ENST00000371998.6 of AIB1.

However, extended SR-scaffold with LRs covers all splices of the isoform.

The zoomed-in region shows the sequencing errors (mismatches and indels)

in LR2, which are corrected by the SR-scaffold by generating the consensus

sequence

Table 2. Comparison of IDP-denovo with existing hybrid methods

Trinity

(Hybrid-Seq)

Roulin’s

pipeline

IDP-denovo

Reference transcripts 31 358 20 316 32 393

Full-length reference

transcripts (sensitivity)a

12 698 8908 16 597

aThe number of full-length reconstructed transcripts, defined by Chang

et al. (2015); see ‘Supplementary Material: Note 8’.
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exonic regions generated by IDP-denovo covered all expressed

exonic regions, including the ‘missing’ exon from the SR-scaffold or

LR3. When IDP-denovo was applied to the whole GM12878 data-

set, pseudo-references covered 158 967 out of 173 719 exons

(91.51%) that were contained by the SR-scaffolds and the LRs. The

uncovered exons may be partially due to error in clustering. It is pos-

sible that some transcripts were not grouped into the correct clusters

and thus their specific exons were lost in the pseudo-references.

Uncorrected errors in LRs could also affect the completeness of the

exonic regions.

3.5 Accuracy of identifying alternative exon usage
After pseudo-references of exonic regions are generated, IDP-

denovo detects alternative exon usage by aligning SR-scaffolds and

LRs to the pseudo-references. When RNA sequencing data were

analyzed without a reference genome, we designed a step to perform

isoform annotation to identify alternative exon usage and confirm

with SR alignment (Fig. 1, step b2). Errors in identifying alternative

exon usage can introduce frame-shift in protein coding regions.

Using the GM12878 data, we evaluated the errors by examining the

difference between annotation of alternative exon usage by IDP-

denovo and by aligning transcripts to the reference genome (See de-

tails in Supplementary Material: Note 10). Because of misalignment,

sequencing errors or incompleteness of the reference genome, some

events are difficult to be confirmed by transcript alignment to the

reference genome. IDP-denovo reported 4140 alternative exon usage

events, out of which 3763 (90.89%) were confirmed. As compared

to the transcript alignment with the reference genome, most of the

errors were 0 bp (58.99%) and a majority (85.01%) of annotations

had<5 bp errors. (Fig. 8; See Supplementary Material: Note 10 for

the definition of error). This suggests that IDP-denovo can identify

alternative exon usage with high accuracy, which is further helpful

in detecting alternative peptides. Very few outliers (155) with

errors>50 bp were observed, which were likely caused by misalign-

ments of transcripts to the pseudo-references.

3.6 Performance of transcript abundance estimation
A fundamental goal of transcriptome characterization is to estimate

the abundance of various isoforms of a given gene. We therefore

investigated the performance of IDP-denovo to quantify isoform

abundance using SR or LR coverage. The SR abundance index is cal-

culated as the RPKM, which is estimated using a Poisson model of

SR coverage and maximum likelihood estimation (Au et al., 2013;

Jiang and Wong, 2009). The LR abundance index is calculated as

the number of supporting LRs for each transcript (Fig. 1, step c1).

Since some transcripts are covered by either SRs only or LRs only

(Fig. 5a), the abundance estimation will fail to cover all transcripts if

only one type of data is used. IDP-denovo outputs two abundance

indices estimated by SR and LR data respectively, so that the abun-

dance of all 42 100 transcripts (in Fig. 5a) can be estimated.

The reliability of two abundance indices estimated by SR and LR

data can be evaluated in two ways: (i) accuracy of abundance esti-

mation and (ii) accuracy of lowly-expressed isoform abundance esti-

mation. To evaluate these two accuracies, we used a reference

genome–based method for abundance estimation by SR coverage

named StringTie (Pertea et al., 2015) as the gold standard (see de-

tails in Supplementary Material: Note 11). The Spearman and

Pearson correlation coefficients between SR abundance index and

FPKM estimated by StringTie are 0.51 and 0.49, respectively, while

those between LR abundance index and FPKM by StringTie are

0.35 and 0.35, respectively. Therefore, SR abundance index by IDP-

denovo has a closer estimation of the widely-used abundance index

by StringTie (Fig. 9). The incompleteness of assembly and annota-

tion, and uncorrected sequencing errors can cause abundance esti-

mation biases in the de novo transcriptome analysis. Moreover,

because LR abundance index merely reports the numbers of sup-

porting LRs, which are discrete values, it poorly estimates low abun-

dance level. In particular, relatively low throughput and sequencing

bias (e.g. size selection protocol in PacBio library preparation) in the

TGS platforms further result in inaccuracy of the LR abundance

index on lowly-expressed isoforms. In addition, as a LR can usually

Fig. 7. The pseudo-reference generated by IDP-denovo covers all expressed

exons of the isoform of gene NUBPL. None of the single LRs can cover all ex-

pressed exons. An exon from the isoform ENST00000549838.4 that is high-

lighted in the dashed box is only covered by LR4 but not found in other LRs

or the SR-scaffold. It is covered by the pseudo-reference generated by IDP-

denovo

Fig. 8. Distribution of errors of 3763 exon lengths predicted by IDP-denovo.

The median is 0 bp and the mean is 6.06 bp. A small number of outliers with

large errors likely result from incorrect alignments

Table 3. Performance of k-mer clustering with different combin-

ations of lengths of k-mer and percentage cutoff Cthreshold

Percentage

cutoff

Cthreshold

Length of k-mer

13 15 17

Jaccard index 0.04 0.955 0.955 0.965

0.05 0.959 0.967 0.967

0.06 0.959 0.967 0.964

Precision 0.04 0.993 0.995 0.994

0.05 0.995 0.995 0.995

0.06 0.995 0.995 0.996

Recall 0.04 0.961 0.960 0.970

0.05 0.963 0.972 0.971

0.06 0.964 0.971 0.968

F-measure 0.04 0.977 0.977 0.982

0.05 0.979 0.983 0.983

0.06 0.979 0.983 0.982

Note: Results with the best performance for each performance measure are

bold, underlined and italic.
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support multiple transcripts, a simple counting of supporting LRs by

LR abundance index would overestimate the transcript abundance.

Taken together, SR abundance index is recommended to estimate

isoform abundance, while LR abundance index can be used for the

isoforms that are covered only by LRs.

3.7 Application of IDP-denovo to a non-model

organism, D.officinale
We further performed a proof-of-concept demonstration of IDP-

denovo, with its application to a non-model organism, D.officinale,

which is of a broad range of therapeutic effects as a Chinese medicine

plant (Yan et al., 2015). A draft assembly of the genome and a poor-

quality annotation library of D.officinale were previously published

(Yan et al., 2015). In total, 972 412 PacBio LRs (median length is

716 bp and up to 6445bp) and 45 013 277 paired-end Illumina SRs

(2� 138 bp) were used; 321 433 LRs have been corrected with SRs.

We applied IDP-denovo to the Hybrid-Seq data from

D.officinale (See details in Supplementary Material: Note 12).

We found 7831 genes that were not reported in the existing

annotation library, including 6834 aligned to the draft genome and

997 unaligned (Fig. 10a). Some annotated genes are not identified

by IDP-denovo, which is probably due to (i) tissue-specific gene ex-

pression, or (ii) low gene expression, or (iii) uncorrected errors from

LRs or (iv) the poor quality of the existing annotation library.

Moreover, IDP-denovo discovered the high diversity of isoform ex-

pression for D.officinale. The genes reported in the existing annota-

tion library are mostly annotated with single isoforms, while

multiple isoform expressions were found in 17 989 genes by IDP-

denovo (Fig. 10b). For example, a locus

‘Dendrobium_GLEAN_10123378’ is annotated with only a single

isoform containing three exons, which is supported by a LR (LR1).

However, alignment of the SR-scaffold and the other LR (LR2) to

the locus shows that there are two novel isoforms with two unanno-

tated exons (Fig. 10c). This suggests that IDP-denovo identifies

more splice sites, even without a reference genome. Therefore, IDP-

denovo with Hybrid-Seq data provides a comprehensive approach

for characterizing the transcriptomes of non-model organisms.

4 Discussion

Although studies of non-model organisms play important roles in

many investigations (Ekblom and Galindo, 2011), the lack of well

annotated genomes enormously limits our capability of deeper

understanding of their genomes, transcriptomes and gene structures.

The annotated reference genome from a closely related species can

aid in understanding of the non-model organism of interest, in the

studies of sequence assembly (Surget-Groba and Montoya-Burgos,

2010), phylogenetic surveys (Shin et al., 2012) and prediction of

homologous proteins (Quistad et al., 2016) etc.

In the past years, the LR sequencing technologies, such as PacBio

and ONT, have been demonstrated to considerably improve the

quality of genome assembly and transcriptome characterization (Au

et al., 2013; Bolisetty et al., 2015). Compared to the high cost of

genome assembly by LR sequencing, it is more affordable to gener-

ate LRs for transcriptome characterization. That is, when inform-

ative transcriptome LR data are available without a high-quality

genome, a method for de novo transcript assembly and annotation is

of high demand. IDP-denovo solves this problem with the assistance

of SRs that can complement the weakness of LRs and thus improve

the accuracy of assembled transcript sequences as well as the quanti-

tative analysis. Without the requirement of a reference genome,

IDP-denovo performs de novo transcript assembly with LR and SR

data, and further annotates isoform structures and alternative usage

of exons, followed by abundance estimation from sequencing

coverage.

We examined the performance of IDP-denovo using the

GM12878 data, since the high-quality human genome plus the refer-

ence genome-based methods can provide a reliable gold standard.

IDP-denovo showed superior sensitivity and reconstructed a large

number of full-length gene isoforms that were missed by the SR-

alone or LR-alone approach. However, in a small number of cases

that SR-scaffolds only covered fragments and no LR was generated

from the gene due to low throughput or sequencing bias, IDP-

denovo may not be able to assemble full-length isoforms. In addition

to full-length isoform identification, IDP-denovo can produce high-

quality transcript sequences through error correction of LRs and

consensus sequence generation during assembly process. When we

compared IDP-denovo to the existing methods using SR-alone data

or the same Hybrid-Seq data, IDP-denovo had the highest precision,

recall and sensitivity, and thus showed the best overall transcript

-5 0 5 10

-5
0

5
1

0

log(FPKM by StringTie)lo
g

(S
R

 a
b

u
n

d
a

n
c

e
 i

n
d

e
x

 b
y

 I
D

P
-d

e
n

o
v

o
)

-5 0 5 10

-5
0

5
1

0

log(FPKM by StringTie)lo
g

(L
R

 a
b

u
n

d
a

n
c

e
 i

n
d

e
x

 b
y

 I
D

P
-d

e
n

o
v

o
)

(a) (b)

Fig. 9. Correlation of abundance indices output by IDP-denovo and FPKM re-

ported by StringTie (5967 isoforms). (a) It is a scatter plot of SR abundance

index and FPKM reported by StringTie. (b) It is a scatter plot of LR abundance

index and FPKM reported by StringTie
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Fig. 10. IDP-denovo reports comprehensive transcriptome characterization of

D.officinale. (a) Gene identification from D.officinale by IDP-denovo, com-

pared to the reference annotation library (Wu et al., 2016; Yan et al., 2015).

IDP-denovo covers>43% (24 065) expressed genes that are reported in the

reference annotation library. IDP-denovo also assembles transcripts from

7831 genes missed by the reference annotation library. (b) Distribution of the

numbers of isoforms of annotated and novel genes reported by IDP-denovo.

The high sensitivity of IDP-denovo uncovers large diversity of isoform struc-

tures. It improves the annotation library of D.officinale, the existing version

of which mostly reports one isoform for each gene. (c) An example of

comprehensive transcriptome characterization by IDP-denovo. Locus

‘Dendrobium_GLEAN_10123378’ is annotated with an isoform containing all

splice sites found in LR1. However, the alignments of the SR-scaffold and LR2

to the locus show the expression of two other isoforms with two unannotated

exons
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assembly performance. With the assembled transcripts, IDP-denovo

identifies alternative usage of exons, splice sites and gene isoforms.

In order to annotate alternative splicing and gene isoforms, we

applied a k-mer clustering approach to cluster assembled transcripts

of the same gene into a single group. Although the other clustering

tool ToFU is available (Gordon et al., 2015), it clusters LRs from

the same gene isoform, and thus is not applicable for our aim of iso-

form annotation. As only RNA sequencing data are used, it is not

possible to identify the introns in the genome and splice sites that

exist in all expressed transcripts, because no gaps corresponding to

these introns and splice sites could be detected in multiple sequence

alignment of transcripts. Once a reference genome is available, they

can be easily identified. In the previous studies of annotating gene

structure, splicing graphs have been applied to high-accuracy tran-

script sequences (Heber et al., 2002; Santhanam and Krithivasan,

2006), while its application to error-prone LRs may introduce nu-

merous ambiguities in splicing site prediction. Our approach works

well for the vast majority of alternative exon usage events, but it is

problematic for very small alternative exon usage events (<43 bp),

given the difficulty of recognizing these in low-quality TGS data.

IDP-denovo estimates transcript abundance based on coverage of

SRs or LRs. IDP-denovo outputs two abundance indices that to-

gether cover all assembled transcripts including those missed by ei-

ther abundance estimation. Abundance estimation by SR coverage

may overestimate the expression level of assembled transcripts in

some cases when not all transcripts are recovered. Abundance esti-

mation with LRs may also not be sensitive and reliable for the lowly

expressed transcripts.

The proof-of-concept application of IDP-denovo to D.officinale

showed that it can provide a comprehensive transcriptome assembly

and an annotation library of non-model organisms. IDP-denovo res-

cued a number of novel genes and transcripts that were missed by

the existing annotation library, and also discovered high diversity of

alternative splice sites and isoforms in D.officinale, which were not

reported previously. With the improvement of LR sequencing tech-

nologies on sequencing errors, read length and throughput, IDP-

denovo, taking advantage of strengths of LRs and SRs, will provide

a powerful yet affordable approach to comprehensively characterize

transcriptomes, and thus will facilitate studies of non-model organ-

isms in the near future.
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