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ABSTRACT
Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is 
known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression 
profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential 
biomarkers and therapeutic drugs for IDD were analyzed by weighted gene co-expression net-
work analysis (WGCNA), R software package Limma, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG). We identified 1455 differentially expressed genes and 423 
differentially expressed lncRNAs. Twenty-six co-expression modules were obtained, among 
them, the tan, brown, and turquoise modules were most closely related to IDD. The turquoise 
module contained a large number of differential expressed lncRNAs and genes, these genes were 
mainly enriched in the MAPK signaling pathway, TGF-beta signaling pathway. Furthermore, we 
obtained 11,857 LmiRM-Degenerated, these lncRNAs and genes showed higher differential 
expression multiples and higher expression correlation. After constructing a disease-gene inter-
action network, 25 disease-specific genes and 9 disease-specific lncRNAs were identified. 
Combined with the drug-target gene interaction network, three drugs, namely, Calcium citrate, 
Calcium Phosphate, and Calcium phosphate dihydrate, which may have curative effects on IDD, 
were determined. Finally, a genetic diagnosis model and lncRNA diagnosis model with 100% 
diagnostic performance in both the training data set and the validation data set were established 
based on these genes and lncRNA. This study provided new diagnostic features for IDD and could 
help design personalized treatment of IDD.
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Introduction

Low back pain (LBP) accounts for 10.7% of the 
total disabled population and is the most common 
cause of disability in developed countries [1]. In 
the United States, the three-month prevalence rate 
is as high as 40%, and 20–33% of patients are 
incapacitated [1]. Intervertebral disc degeneration 
(IDD) is a chronic disease that slowly degrades the 
content of intervertebral disc (IVD), which could 
lead to unstable IVD, thereby limiting the mobility 
of the spinal cord [2]. Numerous studies have 
shown that many cellular events take place in the 
IDD process from matrix synthesis to cytokine 
expression [3]. The basis of these changes is the 
dysregulation of gene expression of specific mole-
cules. Large-scale gene expression studies have 
shown that many coding genes are differentially 
expressed in IDD, and some of them have been 
proven to play an important role in IDD [4,5]. The 
development of genetic and proteomics tools has 
greatly expanded our understanding of gene dis-
orders in IDD. Several therapeutic strategies for 
targeted gene disorders have been presented with 
encouraging results in IDD animal models [6,7]. 
As dysregulation of gene expression is a very com-
plicated process, previous studies have also shown 
that changes in several different levels of regula-
tory factors could ultimately result in gene dysre-
gulation [8]. Among these factors, abnormally 
expressed regulatory non-coding RNAs have 
attracted considerable research attention in recent 
years.

Long non-coding RNAs (lncRNAs), defined as 
RNA transcripts of more than 200 base pairs in 
length, are a major class of ncRNAs [9]. Abnormal 
expression of lncRNA is closely related to human 
complex diseases. Dysfunction of lncRNAs contri-
butes to the occurrence, development and metastasis 
of cancers [10]. For example, LncRNA UCA1 pro-
motes the proliferation of HNSCC and cisplatin 
resistance through inhibiting the expression of 
miR-184 [11]; lncRNA EGFR-AS1 mediates epider-
mal growth factor receptor to regulate therapeutic 
response of HNSCC [12]; STAT3/HOTAIR signal 
regulates the growth of HNSCC in an EZH2- 
dependent manner [13]. Up-regulated RP11- 
296A18.3 may induce overexpression of FAF1, and 
ultimately promote abnormal apoptosis of 

intervertebral disc cells [14]. The expression profile 
showed that the expression of lncRNA in IDD is 
highly abnormal, indicating that lncRNA may be 
used as a biomarker for predicting clinical outcome.

The purpose of this study was to use the RNA 
expression profiles derived from IDD patients to 
study the potential functions of lncRNA and 
mRNA expression in IDD. We systematically ana-
lyzed the lncRNA and miRNA expression profiles 
between IDD and healthy patients. In addition, we 
proposed a new algorithm to identify dysregulated 
competitive endogenous lncRNA-miRNA-mRNA 
triads (LmiRM-Degenerated) during IDD progres-
sion so as to detect lncRNAs for IDD diagnosis 
and prognosis biomarkers and identify potentially 
effective therapeutic drugs.

Methods

The workflow is shown in Figure 1. In the work-
flow, the potential functions of lncRNA and 
mRNA in IDD were studied from the RNA expres-
sion profiles of IDD patients in GSE56081 dataset 
(DNA microarray datasets), and the expression 
profiles of lncRNA and miRNA between IDD 
and healthy patients were systematically analyzed.

RNA expression profile

LncRNA expression profile of human IDD 
(GSE56081) was downloaded from the Gene 
Expression Omnibus (GEO) database (http:// 
www.ncbi.nlm.nih.gov/geo/) [14] on the platform 
of Arraystar Human LncRNA microarray V2.0 
(Agilent_033010 Probe Name version). The data 
set GSE56081 had 10 samples, including 5 IDD 
patients and 5 normal controls. In addition, 
GSE124272 [15] with 8 IDD samples and 8 control 
samples were used as validation dataset (the plat-
form was Agilent-072363 SurePrint G3 Human GE 
v3 8x60K Microarray 039494). The GSE150408 
[16] dataset from the Agilent-072363 SurePrint 
G3 Human GE v3 8x60K Microarray 039494 plat-
form was also incorporated as an additional exter-
nal validation set. The expression profile data of 17 
IDD samples and 17 control samples were 
extracted. The sample information of each dataset 
is shown in Table 1.
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The probe sequence of the GSE56081 dataset was 
aligned to the genome by chip reannotation to obtain 
the transcript ID of the probe mapping, and each 
transcript cluster was assigned to the Ensembl gene 
ID. For the transcription clusters with Ensembl gene 
IDs, clusters with annotation types of ‘lncRNA’, 
‘sense_intronic’, ‘sense_overlapping’, ‘antisense’, 
‘processed_transcript’, 
‘3prime_overlapping_ncRNA’ were considered as 
lncRNAs [17]. A total of 3501 lncRNAs were finally 

identified after removing repeated transcripts. In 
addition, the cluster with the annotation type ‘pro-
tein_coding’ were regarded as coding genes, and 
finally 6991 coding genes were identified. The same 
pipeline was used to re-annotate the probe sequence 
of the GSE124272 dataset, and finally 11,733 
lncRNAs and 11,520 coding genes were retained.

For mRNA and lncRNA expression profiles, 
when multiple probes were mapped to the same 
gene, the median value was taken as the expression 
value of the gene.

Differential expression analysis and weight 
co-expression network

R software package limma [18] was used to screen 
the differential genes and lncRNAs between normal 

Figure 1. Work flow chart.

Table 1. Sample information for each dataset.
Accession platform IDD control

GSE56081 Agilent_033010 Probe Name version 5 5
GSE124272 Agilent-072363 SurePrint G3 Human GE 

v3 8x60K Microarray 039494
8 8

GSE150408 Agilent-072363 SurePrint G3 Human GE 
v3 8x60K Microarray 039494

17 17
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samples and IDD samples. To obtain biologically 
different genes, FDR <0.01 and a two-fold difference 
served as the threshold to detect differentially 
expressed genes (DEG) and lncRNA (DEL) in 
GSE56081 dataset. In addition, the expression pro-
files of lncRNA and genes were combined to con-
struct WGCNA for a better identification of disease- 
related genes and lncRNA. RNA Expression data 
profile of genes/lncRNAs was tested to examine the 
quality of samples and genes/lncRNAs. Then, the 
WGCNA [19] package in R was used to construct 
scale-free co-expression network for the genes/ 
lncRNAs. Pearson’s correlation matrices and average 
linkage method were both performed for all pair- 
wise s. Then, a weighted adjacency matrix was con-
structed using a power function (= Pearson’s corre-
lation between gene/lncRNA m and gene/lncRNA 
n; = adjacency between gene/lncRNA m and gene/ 
lncRNA n). β was a soft-thresholding parameter to 
address strong correlations between gene/lncRNAs 
and penalize weak correlations. After choosing the 
power of β, the adjacency was transformed into 
a topological overlap matrix (TOM), which could 
measure the network connectivity of a gene/ 
lncRNA that was defined as the sum of its adjacency 
with all other gene/lncRNAs for network gene/ 
lncRNA ration. In this way, corresponding dissim-
ilarity (1-TOM) was calculated. To classify gene/ 
lncRNAs with similar expression profiles into gene/ 
lncRNA modules, average linkage hierarchical clus-
tering was conducted according to the TOM-based 
dissimilarity measure with a minimum size (gene/ 
lncRNA group) of 30 for the gene/lncRNAs dendro-
gram. The dissimilarity of module eigen gene/ 
lncRNAs was calculated for further analysis of the 
module, and a cut line was chosen for module den-
drogram to merge some modules.

Identification of disease-related 
co-expression modules

The module related to the occurrence of IDD was 
defined as the Co-DGL Module. The genes and 
lncRNA in the Co-DGL Module were differentially 
co-expressed genes/lncRNA. Two methods were 
employed to identify the modules related to the 
occurrence of IDD. The significance of Gene/ 
lncRNA (CS) was defined as the log10 conversion 
of the P value (CS = lgP). In addition, module 

significance (MS) was the average CS of all Gene/ 
lncRNA in the module. Generally, a module with an 
absolute MS ranked the first or the second among all 
selected modules is regarded as a module related to 
clinical traits. Module eigengenes (MEs) are consid-
ered to be the main component in the principal 
component analysis of each Co-DGL Module, and 
the expression patterns of all Gene/lncRNA could be 
summarized as a single characteristic RNA expres-
sion profile within a given module. In addition, we 
also calculated the correlation between ME and clin-
ical features to determine relevant modules. The 
module with the largest absolute MS among all 
selected modules was generally related to clinical 
characteristics.

Functional enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway 
enrichment analysis was performed using the 
R software package clusterProfiler [20] for 
genes associated with modules, which were sig-
nificantly related to the disease, to identify 
over-represented GO terms in three categories 
(biological processes, molecular function and 
cellular component) and KEGG pathway. For 
both analyses, a P-value of <0.05 denoted sta-
tistical significance.

Regulatory interaction between 
miRNA-mRNA and miRNA-lncRNA duplex

The miRNA-mRNA regulatory relationships 
were collected from miRanda [21], miRTarBase 
[22], TargetScan [23] and starBase [24] data-
bases, and 416,312 non-redundant miRNA– 
mRNAs interaction were obtained. The 
miRNA–lncRNA interaction was retrieved 
from the starBase [25] and miRcode [26] data-
bases, and 295,601 non-redundant miRNA– 
lncRNA relationships were retained.

Disease disorder lncRNA-mRNA pairs 
(LmiRM-Degenerated)

Based on the ceRNA hypothesis [27,28], 
a candidate LmiRM-Degenerated is defined if it 
meets all the following conditions: (1) The 
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presence of miRNA shared by mRNA and 
lncRNA is significantly enriched (determined 
by hypergeometric test, p < 0.01); (2) mRNA- 
lncRNA in the same disease-related co- 
expression module.

Disease genes and LmiRM-Degenerated 
network construction

We screened the gene set related to IDD from 
the DisGeNET v6.0 [29] database, which con-
tained 343 genes in total. Genes and the genes 
in LmiRM-Degenerated were mapped to string 
v11.0 [30] dataset to obtain the protein inter-
action network. The shortest path from each 
LmiRM-Degenerated gene to the IDD-related 
gene was further counted, and the shortest 
path between the IDD-related genes was also 
compared. The shortest median path between 
IDD genes was the threshold to determine the 
relationship between LmiRM-degenerated genes 
and IDD as a gene specific. We further 
screened the lncRNAs interacting with IDD- 
specific genes, and counted interaction fre-
quency between lncRNAs and IDD-specific 
gene. LncRNAs interacting with more than 
50% of IDD-specific genes were determined as 
IDD-specific lncRNAs.

Disease-specific gene and construction of 
drug target network

To determine the potential drug effects of these 
IDD-specific genes and lncRNAs, we obtained 
the relationship between drugs and drug target 
genes from the drugbank v5.1.7 [31] database, 
and collected 16,196 drug-gene interaction data. 
Drug target genes and IDD-specific genes were 
mapped to the string v11.0 database and 
obtained 40,919 pieces of gene interaction 
information, and finally a drug-gene-IDD- 
specific gene network was constructed. The 
shortest path from each drug to IDD-specific 
gene in the network was calculated, and the 
drug with the average shortest path to IDD- 
specific gene was determined as the candidate 
treatment drug.

Construction of IDD diagnostic prediction 
model and evaluation of model prediction 
ability

IDD-specific genes and ID-specific lncRNAs were 
used to construct a diagnostic prediction model 
based on support vector machine (SVM) [32] clas-
sification to predict IDD. In machine learning 
algorithms, SVM is a supervised learning model 
that analyzes data and recognizes patterns. SVM, 
which create a hyperplane in high or infinite 
dimensional space, can be used for classification, 
regression. Given a set of training samples, and 
each tag belongs to two categories, a SVM training 
algorithm establishes a model and assigns new 
instances to one category or another so that non- 
probabilistic binary linear classification was 
achieved. The model was constructed in the train-
ing data set, and the model classification perfor-
mance was verified by the ten-fold cross-validation 
method. The established model was then used to 
predict the samples in the validated data set. The 
predictive ability of the model was evaluated by 
area under ROC curve (AUC), moreover, the pre-
dictive sensitivity and specificity of the model to 
IDD were analyzed.

Results

The purpose of this study was to use the RNA 
expression profiles from IDD patients to study 
the potential functions of lncRNA and mRNA 
expression in IDD. We systematically analyzed 
the lncRNA and miRNA expression profiles 
between IDD and healthy patients. Finally, 
a genetic diagnosis model and lncRNA diagnosis 
model, which were established based on these 
genes and lncRNAs, showed 100% diagnostic per-
formance in both the training data set and the 
validation data set.

Identification of DEGs/DELncRNAs

Updated gene and lncRNA signatures could be 
obtained by reannotating the microarray using 
the latest genomic information. After data stan-
dardization and chip re-annotation, the expression 
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profiles of 6991 genes and 3501 lncRNAs were 
finally screened from the GSE56081 dataset 
(Figure 2(a, b), FDR<0.01), and the expression 
levels of lncRNAs and protein-coding genes in 
each sample were similar. The expression profiles 
of 11,733 lncRNAs and 11,520 coding genes were 
also screened from the GSE124272 dataset 
(Figure 2(c, d), FDR<0.01), and the median 
expression level of lncRNA was found to be sig-
nificantly lower than that of coding genes. 
Therefore, GSE56081 was used as the training 
set, and GSE124272 was used as the verification 
data set. In the training set, we identified a total of 
1455 differentially expressed genes and 423 differ-
entially expressed lncRNAs (Figure 2(e, f), 
P < 0.05).

Construction weighted co-expression 
network and identification of disease-related 
module

In a biological system, specific functional regula-
tion is often co-participated by one or more genes, 
and these genes have certain similarities in 

expression. Therefore, gene sets involved in certain 
functions could be identified through co- 
expression analysis. In this study, the power of 
β = 5 (no scale = 0.94) was the soft threshold to 
ensure a scale-free network (Figure 3(a, b)). A total 
of 26 modules were identified (Figure 3(c)). To 
determine correlation of the disease and module, 
the Spearman correlation coefficient was calcu-
lated between gene/lncRNA and disease occur-
rence in each module (Figure 3(d)), and module 
with the median value of correlation coefficient 
greater than 0.7 were selected. In disease and 
health groups, the differences in the distribution 
of feature vectors across modules showed that the 
distribution of feature vectors in the disease group 
was significantly higher in the tan, blue, and 
brown modules than in the health group 
(Figure 3(e)). Based on these two methods, the 
tan, brown, and turquoise modules closely related 
to the occurrence of the disease were identified as 
the key modules of IDD. Where the tan module 
contains 80 lncRNAs and 150 genes, the brown 
module contains 291 lncRNAs and 552 genes, and 
turquoise contains 1263 lncRNAs and 2939 genes, 

Figure 2. Identification of differentially expressed genes. A: the expression distribution of protein coding genes in each sample in the 
GSE56081 dataset; B: the expression distribution of lncRNAs in each sample in the GSE56081 dataset; C: the protein coding genes in 
each sample in the GSE124272 dataset D: the expression distribution of lncRNAs in each sample in the GSE124272 data set; where 
red represents disease samples and blue represents healthy samples; E: GSE56081 data set protein coding gene difference volcano 
map, F: GSE56081 data set lncRNA Difference volcano map.
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Figure 3. Weighted co-expression network construction and disease-related module identification, (AB) Determination of soft- 
thresholding power in the weighted gene co-expression network analysis (WGCNA). (a) Analysis of the scale-free fit index for various 
soft- thresholding powers (β). (b) Analysis of the mean connectivity for various soft-thresholding powers. (c) Dendrogram of all 
differentially expressed genes/lncRNAs clustered based on a dissimilarity measure (1-TOM). (d) Distribution of average gene 
significance and errors in the modules associated with the Degenerated. (e) The distribution of the feature vector of each module 
in the Degenerated and healthy control samples.

BIOENGINEERED 5075



with no intersection of genes and lncRNAs in the 
three modules, where the turquoise module was 
negatively correlated with brown and tan modules, 
and a weak positive correlation was shown 
between tan and brown modules (Figure S1A).

Functional implications of 
degeneration-related module

Functional enrichment analysis of gene sets effec-
tively identifies dysfunctional pathways. To better 
understand the functional implications of the three 
disease-related modules, GO and KEGG functional 
enrichment analysis was performed on the genes 
in the three modules. We observed that these three 
modules were enriched in a large number of GO 
terms and KEGG pathways (Figure 4(a)), and that 
the generation tan module was mainly enriched in 
a large number of biological processes. The brown 
module was found to be more enriched in KEGG 
Pathway, and turquoise module was enriched in 
a variety of biological processes, molecules 

function, and signaling pathways. We also counted 
the intersection of genes and lncRNAs in these 
three modules with differentially expressed genes 
and differential expressed lncRNAs (Figure 4(b)). 
It was also found that the turquoise module con-
tained a large number of differentially expressed 
genes and differentially expressed lncRNAs, which 
were hardly identified in the tan module, more-
over, brown contained a small amount of differ-
ential expressed genes and differential expressed 
lncRNAs. Further analysis of KEGG pathways 
enriched by Turquoise and Brown modules 
showed that the brown module was primarily 
enriched with phosphoolipase D signaling 
Pathway, Cholinergic synapse, other factor- 
regulated calcium reabsorption pathways, and 
some other pathways (Figure 4(c)), and that the 
turquoise module was mainly enriched in MAPK 
signaling pathway, TGF-beta signaling pathway, 
AGE-RAGE signaling pathway in diabetic compli-
cations and other signaling pathways (Figure 4(d)). 
Interestingly, TGF-beta signaling pathway the 

Figure 4. Functional enrichment analysis of disease-related modules. A: GO Term and KEGG Pathway statistics enriched by the three 
modules; B: Venn diagram of the intersection between enriched genes and lncRNAs of the three modules and differential genes and 
lncRNAs; C: the most significant enrichment of the brown module Top 10 KEGG Pathway. D: The most significant top 10 KEGG 
Pathway enriched by the turquoise module. Different colors indicate the significance of enrichment, and the size of the dot indicates 
the number of enriched genes.
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most significant signaling pathway has activation 
effect against Wnt signaling pathway, and its 
abnormality will lose the antagonistic effect against 
Wnt signaling pathway, resulting in difficulties in 
IDD repair and accelerating degeneration.

Identification of LmiRM-Degenerated

The ceRNA(competing endogenous RNAs) 
hypothesis reveals a new mechanism of interac-
tion between RNAs, which represents a new 
regulation mode of gene expression. Here, we 
developed a new calculation method to identify 
LmiRM-Degenerated in IDD. Gene/lncRNA 
matching expression profiles from disease- 
related co-expression modules were integrated 
into the Gene Expression Omnibus (GEO) data 
set based on the regulatory interactions among 
mRNAs, lncRNAs and miRNAs. Here, 11,857 
LmiRM-Degenerated containing 352 mRNAs 
and 245 lncRNAs were obtained. The role of 
these LmiRM-Degenerated in IDD was exam-
ined from multiple perspectives. Firstly, the cor-
relation distribution of mRNA-lncRNA in 
LmiRM-Degenerated was significantly higher 
than that of random differentially expressed 
RNAs of the same module (Figure 5(a)), which 
suggested that these mRNA-lncRNA interacted 
more closely and actively. After analyzing the 
multiple distribution expression of mRNAs and 
lncRNAs in Lmirm-degenerated, we observed 
that these lncRNAs and mRNAs had a higher 
expression differential multiples when com-
pared with the differentially expressed mRNAs 
and lncRNAs (Figure 5(b)), indicating that 
mRNAs and lncRNAs in LmiRM-degenerated 
showed more obvious changes in disease sam-
ples. Furthermore, we analyzed the distribution 
of these lncRNAs and mRNAs in the genome 
(Figure 5(c)), and the data showed that 
lncRNAs tended to concentrate on chr1, chr2, 
chr3, while mRNA tended to concentrate on 
chr17, chr19, and chr20. In addition, from 
KEGG Pathway enrichment analysis, it could 
be found that these LmiRM-Degenerated were 
related with colorectal cancer, pancreatic can-
cer, TGF-beta signaling Pathway, Th17 cell dif-
ferentiation, cellular senescence, influenza A, 
measles, human T-cell leukemia virus 1 

infection (Figure 5(d)). As ceRNA analysis is 
still an evolving field. The latest study of 
ncRNAs associated with IDD through accurate 
transcriptional spectrogram analysis may con-
tribute to the discovery of clinical significance 
of other LmiRM-Degenerated.

LmiRM-Degenerated analysis revealed 
biomarkers for the diagnosis and treatment 
of IDD

To determine the potential diagnostic and prog-
nostic markers of IDD, we used linear discrimi-
nant analysis to classify and predict each LmiRM- 
Degenerated. We observed that 11,092 (93.5%) 
lmiRM-degenerateds could predict patients with 
100% accuracy, suggesting that these LmiRM- 
Degenerateds were potential diagnostic markers 
of disc degeneration. Furthermore, gene set 
related to IDD were screened from the 
DisGeNET v6.0 [29] database. After mapping 
these genes set and the coding genes in LmiRM- 
Degenerateds to the string database, a total of 
2258 interactions were obtained. A network of 
LmiRM-Degenerateds and disease gene regula-
tion interactions was established. The shortest 
path between each LmiRM-Degenerated and dis-
ease gene in the network and between two disease 
genes in the network were separately calculated. 
By comparing the shortest path distribution of 
the two, it was observed that there were signifi-
cant differences in the average shortest path 
between the two, and a shortest path between 
disease genes was identified (Figure 6(a)), which 
indicated that the regulation of disease genes was 
closer, and the shortest path between disease 
genes was more related to IDD. Based on this, 
we determined the mean shortest path between 
Lmirm LmiRM-Degenerated and disease genes 
shorter than the median of the shortest path 
between disease genes and disease genes as the 
threshold to identify new potential disease-related 
genes. Under such a condition, we obtained 
a total of 25 genes, of which 6 have been reported 
to be related to IDD. Further, LmiRM- 
degenerateds of these 25 genes were screened, 
and it was observed that most lncRNAs had 
a low frequency, while a few lncRNAs had 
a high frequency, moreover, lncRNAs with 
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a high frequency were more closely related to the 
interactions of these 25 genes (Figure 6(b)). 
Finally, we selected a total of 9 lncRNAs with 
occurrence frequency was greater than 12. 
Among the 25 genes, 5 genes were down- 
regulated and 20 genes were up-regulated 
(Figure 6(c), p < 0.05); 6 lncRNAs were down- 

regulated, 3 lncRNAs were up-regulated (Figure 6 
(d), p < 0.05). In addition, we analyzed the short-
est path distribution of 25 diseases specific genes 
from drugs in the network. The average shortest 
path of most drugs was 9.44, and the average 
shortest path of three drugs (Calcium citrate, 
Calcium phosphate, Calcium phosphate 

Figure 5. Identification of LmiRM-Degenerated and its role in intervertebral disc degeneration. A: Comparison of the correlation 
between lncRNA-mRNA in LmiRM-Degenerated and the correlation distribution of non-LmiRM-Degenerated lncRNA-mRNA; B: 
LmiRM-Degenerated Comparison of the fold of expression difference between the RNA and non-LmiRM-Degenerated differential 
RNA and non-differential RNA; C: the distribution of lncRNA and mRNA in LmiRM-Degenerated on the genome, the color of the inner 
circle heat map gradually changes from blue to red Represents the expression difference multiples from low to high; D: LmiRM- 
Degenerated enriched KEGG Pathway and gene relationship circle diagram, the right side is the pathway, different colors indicate 
different pathways, the left is the gene, and different colors indicate expression difference multiple.
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dihydrate) was only 3.44 (Figure 6(e)), suggesting 
that the three drugs might have therapeutic 
effects on IDD.

Advantages of diagnostic models

Considering that genes detected by different chip 
platforms are different from lncRNAs, we selected 
19 genes and 7 lncRNAs detected both in the train-
ing set and the validation set as features to con-
struct a diagnostic model. In the training data set, 
19 genes were used as features to construct the 
SVM classification model, and the model test was 

carried out using the ten-fold cross-validation 
method, with 100% classification accuracy. The 
sensitivity and specificity of the model to IDD 
were all 100%, and the area under ROC curve 
(AUC) was 1.0 (Figure 7(a)). The GSE124272 data 
set was further used for verification. Among the 16 
samples, 16 were all correctly classified, with 
a classification accuracy of 100%, the sensitivity 
and specificity of the model to IDD of 100%, and 
the area under the ROC curve of 1.0 (Figure 7(b)). 
In addition, the classification accuracy of 7 
lncRNAs in the training set was 100%, the sensitiv-
ity and specificity of the model to IDD were 100%, 

Figure 6. LmiRM-Degenerated analysis revealed biomarkers for the diagnosis and treatment of intervertebral disc degeneration. A: 
Disease genes in the interaction network between disease genes and LmiRM-Degenerateds genes-the shortest path distribution of 
disease genes and disease genes -LmiRM- The shortest path distribution between Degenerateds genes. B: Frequency statistics of 
lncRNAs that interact with disease-specific genes. The x-axis is the number of disease-specific genes corresponding to the lncRNA, 
and the y-axis is the frequency of lncRNA. C: The differential expression distribution of 25 disease-specific genes. D: The differential 
expression distribution of 9 disease-specific lncRNAs. E: The average shortest path distribution from the drug to the IDD-specific 
gene.
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and the area under ROC curve (AUC) was 1.0 
(Figure 7(c)). Among the 16 samples in the valida-
tion set, 16 samples were correctly classified, with 
a classification accuracy of 100%, model sensitivity 
to IDD of 100%, specificity of 100%, and area under 
ROC curve of 1.0 (Figure 7(d)). Nineteen genes 

were used as features in the GSE150408 dataset, 
their corresponding expression profiles were 
obtained, and the classification accuracy was 
observed to be 100%, and 33 out of 34 samples 
were correctly classified. The sensitivity and speci-
ficity of the model for IDD were both 100%, and the 

Figure 7. Advantages of diagnostic models. A: The classification results and ROC curve of the samples of the genetic diagnosis model 
in the training dataset; B: The classification results and ROC curve of the samples of the genetic diagnosis model in the validation 
dataset; C: The classification results and ROC curve of the lncRNA diagnosis model in the training dataset; D: The classification results 
and ROC curve classified by the lncRNA diagnosis model in the validation dataset. E: The classification results and ROC curve of the 
samples of the genetic diagnosis diagnosis model in the GSE150408 dataset. F: The classification results and ROC curve of the 
samples of the lncRNA diagnosis model in the GSE150408 dataset.
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area under ROC curve (AUC) was 1.0 (Figure 7(e)). 
In addition, 7 lncRNAs were acted as features, and 
the classification accuracy in the training set was 
100%, and 32 out of 34 samples were correctly 
classified. The sensitivity and specificity of the 
model for IDD were both 100%, and the area 
under the ROC curve (AUC) was 1.0 (figure 7(f)). 
These results indicated that the diagnostic predic-
tion model constructed in this study can effectively 
distinguish IDD patients from healthy controls. 
These genes and lncRNA can be used as reliable 
biomarkers for IDD-specific diagnosis.

Discussion

Cervical spondylosis, lumbar disc herniation and 
other spinal degenerative diseases caused by IDD 
are chronic diseases that affect the quality of life 
of middle-aged and elderly people [24,33]. The 
intervertebral disc tissue is composed of outer 
fibrous annulus, central nucleus pulposus, and 
upper and lower cartilage endplates. Under nor-
mal circumstances, nucleus pulposus bears axial 
load and converts it into peripheral tension load. 
The annulus fibrosus absorbs these stresses and 
maintains the stability of intervertebral disc [34]. 
The difference in the structure and function of 
annulus fibrosus and nucleus pulposus deter-
mines the pathological changes of the two dur-
ing IDD, but the genes and lncRNA 
backgrounds underlying such difference are still 
unclear. In this study, the differences in gene 
expression and lncRNA expression between 
IDD and healthy samples were systematically 
analyzed, and the lncRNAs and genes were 
reconfirmed through the weighted co- 
expression method. The results showed that 
these genes were mainly enriched in MAPK sig-
naling pathway, TGF – among various signaling 
pathways such as beta signaling pathway and 
AGE-RAGE signaling pathway in diabetic com-
plications. TGF-beta signaling pathway as the 
most significant pathway has the effect of antag-
onizing the activation of Wnt signaling pathway, 
and its abnormality will lose antagonism to Wnt 
signaling pathway, resulting in difficulties in 
repairing IDD and accelerating degeneration.

In addition, this study systematically analyzed 
IDD-related gene and lncRNA expression data 
through using a new calculation method that 
integrates sample-matched mRNA and lncRNA 
expression profiles, and discovered dysregulated 
ceRNA triad. Dynamic expression analysis was 
performed through microarray re-annotation, 
and lncRNA and mRNA expression profile data 
were obtained. There is evidence that about 10% 
to 30% of the microarray probes designed for 
protein-coding genes are actually mapped to 
non-coding RNAs [35], which can be collected 
by re-annotation. The expression information of 
lncRNA is a commonly used method in tran-
scription studies [36,37]. According to the pre-
viously described pipeline [38], we 2directly 
extracted the expression data of lncRNA from 
the existing expression profile to reduce errors. 
After differential expression and co-expression 
analysis, the dysregulated lncRNAs and mRNAs 
in IDD were determined, and then the dysregu-
lated LmiRM-Degenerateds were obtained. We 
also observed that the correlation distribution 
of mRNA-lncRNA in LmiRM-Degenerated was 
significantly higher than that of the same ran-
dom modules. These results indicated that 
mRNA-lncRNA in LmiRM-Degenerated had 
stronger expression correlation and expression 
changes. In addition, the KEGG Pathway enrich-
ment analysis of LmiRM-Degenerated showed 
that these LmiRM-Degenerateds were related to 
TGF-Beta signaling pathway, Th17 cell differen-
tiation, and Human T-cell leukemia virus 1 
infection, indicating that the occurrence of IDD 
was a complicated process associated with TGF- 
beta and immune processes.

We constructed an interaction network 
between disease genes and LmiRM-Degenerated 
with the reported IDD-related gene sets, ana-
lyzed the shortest path distribution of each 
LmiRM-Degenerated gene and known IDD- 
related genes. In this way, 25 new IDD-specific 
expression gene sets were determined, and 6 of 
these 25 genes, such as ACTB, HMOX1, JUN, 
MAPK1, SMAD3, TGFB1, have been reported to 
be associated with IDD, and there were 9 IDD- 
specific lncRNAs (GRAMD1B, PRKY, GRM2, 
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DLEU1, TRIM69, ARMCX4, AC019205.1, 
DGCR5, AP002026.1). We downloaded the 
drug and gene interaction data from the 
Drugbank database to construct a drug-target 
gene-disease-specific gene interaction network. 
The method with the shortest path determined 
that the three drugs Calcium citrate, Calcium 
phosphate, and Calcium phosphate dihydrate 
may have curative effects on IDD. SVM was 
employed to construct and verify the expression 
profiles of these disease-specific lncRNA and 
mRNA classifiers, and the AUC reached 1 in 
both the training set and the validation set, 
showing that these genes and lncRNAs had 
a high classification effect on IDD. We also 
examined the expressions of those lncRNAs on 
IDD tissues using RT-qPCR, and the results 
showed that GRAMD1B expression was upregu-
lated, while the levels of DLEU1, ARMCX4, 
AC019205.1, DGCR5 were downregulated in 
IDD tissues (Figure S2).

Although we have systematically analyzed the 
abnormal expression and function of mRNAs 
and lncRNAs in IDD through bioinformatics 
techniques, attention should also be paid to 
some limitations of this research. Firstly, the 
sample lacked some clinical follow-up informa-
tion, therefore, we did not consider factors such 
as the presence of other health status of the 
patient when distinguishing these biomarkers. 
Secondly, the results obtained through only 
bioinformatics analysis were not fully convin-
cing, and experimental verification was needed 
to confirm the present results. Therefore, further 
genetic and experimental research with larger 
sample size and experimental verification is 
needed.

Conclusion

In conclusion, in this study, we systematically 
analyzed the expression changes of lncRNAs and 
genes in IDD, and conducted a large-scale gen-
ome-wide study on RNA expression profiles. 
Based on the characteristics of 25 genes and 9 
lncRNAs in IDD, we found that these dysregulated 
lncRNAs and genes were involved in a variety of 
important biological pathways of IDD. At the 

same time, we also observed that three drugs, 
Calcium citrate, Calcium Phosphate, and Calcium 
phosphate dihydrate, may be effective in IDD 
treatment, providing useful targets and references 
for future studies.

Highlights

1. We identified 1455 differentially expressed genes and 423 
differentially expressed lncRNAs.

2. Twenty-six co-expression modules were obtained, 
among them, the tan, brown, and turquoise modules are 
most related to IDD.

3. By constructing a disease–gene interaction network, 25 
disease-specific genes and 9 disease-specific lncRNAs were 
identified.
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