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ThisOpinion article outlines the relative paucity and emphasizes the need to enhance our knowledge
of how subsets of natural killer T (NKT) cells mediate immune mechanisms of elimination of
microbial pathogens at sites of inflammation or infection. To date, most studies of how NKT
cell subsets migrate upon antigen stimulation have focused on NKT cell activation in the spleen,
lymph nodes (LN) and liver (1). Thus, there currently exists an unmet need to determine the
patterns of recirculation and tissuemigration of NKT cell subsets and interacting antigen-presenting
cells (APCs) that occur at relevant mucosal surfaces in several other organs, including the lung,
intestine, and colon. This article proposes and highlights the benefit of intravital cellular imaging
in vivo of type I and type II NKT cell subsets as an important methodology that may enable the
visualization of NKT–APC cellular interactions at mucosal surfaces and enhance the application of
this methodology to clinical therapy of antimicrobial immunity.

T Cell Recirculation and Migration into Tissues

During an immune response, T cells and B cells traffic to and recirculate between blood and
peripheral lymphoid tissues prior to activation by antigen (1). Chemokines attract T cells to various
sites of interaction with antigen-presenting dendritic cells (DCs) in the spleen and LN. After further
encounter with antigen, T cells divide and differentiate into effector T cells (Teff) that migrate to
different sites of infection to combat and destroy microbial pathogens (2). Cytokines secreted by
Teff also help to clear infectious pathogens from these sites. Interactions between T cells and DCs at
various sites of inflammation in LN are crucial for promoting subsequent immunity to microbes
(2). These observations underscore the importance of understanding how T cell recirculation,
localization, and interaction in vivo in target tissues mediate effective immune responses that either
trigger or prevent inflammation and antimicrobial immunity.

Type I and Type II NKT Cell Subsets

Little is known about the various factors thatmediate the recirculation, localization, and interactions
of subsets of NKT cells in vivo in target tissues and lead to antimicrobial immunity. NKT cells display
surface T-cell antigen receptors (TCR) expressed by both conventional T cells and NK cells, such
as CD56/161 (humans) and NK1.1 (mice) (3–5). NKT cells recognize lipid antigens presented by
CD1d MHC class I like molecules (2–15) on various APCs, including DCs, macrophages (Mϕ),
B cells, thymocytes, adipocytes, and hepatocytes. While the CD1a, CD1b, CD1c, CD1e, and MR1
MHC class I like molecules are also expressed on APCs and can activate various T cell subsets, only
analyses of CD1d-mediated responses of type I and type II NKT cell subsets will be presented here.
The development of type I NKT cells occurs in the thymus and depends on the activity of several
transcription factors including promyelocytic leukemia zinc finger (PLZF), T box transcription
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factor (T-bet), retinoic acid receptor-related orphan receptor-γt
(ROR-γt), and GATA-binding protein 3 (GATA-3) (2, 5).

Type I NKT cells respond to α- and β-linked glycolipids.
For example, stimulation of type I NKT cells by the α-
galactosylceramide (αGalCer) glycolipid agonist induces the
secretion of many cytokines that elicit both Th1 [interferon-γ
(IFN-γ)] andTh2 [interleukin-4 (IL-4) and IL-13] responses (2, 7–
17). Type I NKT cells are more prevalent than type II NKT cells in
mice than in humans (18–20), and comprise about 50% of murine
intra-hepatic lymphocytes (21–23). The type I NKT cell invariant
TCR is encoded mainly by a germline Vα gene (Vα14/Jα18 in
mice and Vα24/JαQ in humans), and more diverse non-germline
Vβ chain genes (Vβ8.2/7/2 in mice and Vβ11 in humans) (1–20,
24–26). The semi-invariant TCRon type INKT cells preferentially
binds to CD1d via its α-chain (3, 6, 15, 25).

Type II NKT cells constitute a minor subset in mice, but are
more predominant in humans (18, 27). Most type II NKT cells
do not recognize α-linked glycolipids, but rather respond to sul-
phatide, a self-antigen that occurs naturally on cell membranes
in the central nervous system (myelin sheath), pancreas, kid-
ney, and liver. Sulphatide-reactive type II NKT cells may protect
from autoimmune diseases by down-regulation of inflammatory
responses elicited by type I NKT cells (28, 29). In contrast, non-
sulphatide-reactive type II NKT cells may be pathogenic in other
diseases, such as ulcerative colitis (UC) (30). Sulphatide-reactive
type II NKT cells express oligoclonal TCRs and express a lim-
ited number of Vα and Vβ chains. The antigen specificity of
type II NKT cells appears to be conferred by their surface TCR
Vβ-chain (31).

CD1d and NKT Cell-Mediated Antimicrobial
Immunity

Antimicrobial defense may be mediated by extensive cross-
regulation between CD1d, NKT cells, and microbes that func-
tion predominantly at mucosal surfaces (32–34). The display
of microbes at mucosal surfaces, mainly during early postnatal
development, controls NKT cell trafficking and function in the
intestine, lung, and intestine. Microbial recognition at these sites
determines the susceptibility to NKT cell-mediated inflammatory
disorders. Conversely, CD1d expression controls the composition
of the intestinal microbiota. Whereas microbiota reduce the num-
ber and activity of type I NKT cells at mucosal sites, an elevated
number and function of type I NKT cells may be stimulated by
microbiota in peripheral tissues (32). Thus, crosstalk between
microbiota and type I NKT cells influences mucosal homeostasis
and its dysregulation in a bidirectional manner in inflammatory
disorders.

In human inflammatory bowel disease (IBD) and infectious
hepatitis, type II NKT cells are causal to inflammation (10).
In contrast, intestinal inflammation in oxazolone-induced col-
itis, a mouse model of human UC, is dependent on CD1d
and type I NKT cells that express IL-17 and secrete IL-13 (10,
35). Thus, intestinal microbiota influence pathogenic responses
in NKT cell-mediated intestinal inflammation. The outcome of
these responses depends on the time of microbial exposure,
NKT cell subset(s) involved, nature of microbial lipid antigens

recognized, and type of APC that presents CD1d-restricted anti-
gens to NKT cells. CD1d-restricted interactions of type I NKT
cells with intestinal epithelial cells (IECs) promote IL-10 secre-
tion and mucosal homeostasis, while CD1d-dependent interac-
tions with bone marrow-derived APCs contribute to intestinal
inflammation (36). Further experimentation may reveal whether
these various responses result from the expression of differ-
ent costimulatory molecules by IECs and professional APCs or
whether cell-type-specific differences in CD1d trafficking and
lipid acquisition contribute to this outcome. The central questions
that need to be addressed are: (1) how do specific microbes
control mucosal NKT cell abundance and function and deter-
mine health vs. disease, (2) what are the pathways of antigen-
dependent and cytokine-dependent activation in NKT cells, and
(3) do specific alterations in intestinal microbiota (e.g., in patients
with IBD) (37) contribute to intestinal inflammation by the
differential homing, proliferation, and activation of NKT cell
subsets.

Like the intestine, the lung is a site of interaction between com-
mensal microbiota and mucosal NKT cells. Insufficient microbial
colonization during neonatal life leads to increased quantities
and environmental sensitivity of type I NKT cells in lungs lead-
ing to susceptibility to asthma. This notion is supported by the
result that exposure to antibiotics during early life but not late
life enhances susceptibility to asthma in mice (38). In addition,
elevated numbers of type I NKT cells are found in the lungs of
germ-free mice. The latter finding requires the hypermethylation
of the Cxcl16 chemokine gene and increased expression of the
CXCL16 chemokine protein, which binds to the CXCR6 cognate
chemokine receptor found on NKT cells (39). These alterations
are associated with increased airway resistance, eosinophil infil-
tration, and proinflammatory cytokine production during ovalbu-
min (OVA)-induced asthma in mice (39). Thus, the development,
migration, and function of type I NKT cells at mucosal surfaces
may be influenced by commensal microbiota (6).

Tracking of T Cells In vivo by Intravital
Cellular Imaging

Studies of NKT cell-mediated inflammation at different mucosal
surfaces (e.g., intestine, lung, colon) illustrate that increased
understanding of the mechanisms of differential recirculation,
migration, proliferation, and activation of NKT cells during
pathological responses requires the use of a technology that
enables the visualization of these NKT cell events in real-time
in vivo. The technique of two-photon (2P) microscopy coupled
with intravital imaging enables one to track the location, move-
ment, and interactions of cells (40–44). As such, 2P microscopy
has improved our knowledge of T cell–DC and T cell–B cell
interactions by recording how such cells function in resting tissue
and undergo interaction, information exchange, and response
to pathogens (40–43, 45). This methodology has also provided
much new information about cellular pathways that arise during
disease progression by illustrating the outcome of specific events
in real-time (40–44). Intravital imaging and quantification of cell
dynamics in vivo requires the use of fluorescently tagged proteins
that are expressed transgenically in a cell-type-specific fashion to
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monitor the migration of single cells from blood vessels to tissues
at a maximum tissue depth of 300–400 µm.

Initial studies on T cell–APC interactions during the establish-
ment of peripheral tolerance were conducted with conventional
CD4+ T cells and APCs in the LN and spleen, and showed
that the time of contact between CD4+ T cells and APCs may
vary from long-lived (days) to short-lived (a few hours) (40, 43).
This difference in time of T cell–APC contact may influence the
relative capacity of an agent administered in vivo to treat a given
disease and induce (pre-disease) or restore (post-disease) immune
tolerance. For example, CTLA-4 and PD-1 inhibitory receptors on
Teff or regulatory T (Treg) cells can suppress immune responses by
limiting the times of effective interactions of T cells with DCs (44,
46, 47). During chronic inflammation, cytokine delivery requires
long-term T cell–APC contacts. However, only a relatively small
number of cytokine molecules may be secreted at a low antigen
concentration (43, 44, 46, 47). At a high concentration of antigen,
the duration of T cell–APC contacts may be sufficiently long to
elicit a chronic inflammatory response. Protection against inflam-
mation is more likely to occur at a significantly lower antigen con-
centration (43). Further experimentation is required to analyze
the effects of antigen concentration, time of cytokine production
by CD4+ T cells in high vs. low antigen concentration tissue
environments, andwhether effector cytokines function locally at a
particular site or are transported to other distal sites. Nonetheless,
the results reported for the tracking and function of conventional
CD4+ T cells in vivo have facilitated analyses of themigration and
function of NKT cells in vivo.

Imaging of NKT Cell Recirculation,
Migration, and Activation

T cell receptor signal strength may determine the cytokine secre-
tion profiles of T cells in a reciprocal manner. That is, the binding
of TCRs of type I NKT cells to their antigen ligands can regulate
the activity of TCRs on type II NKT cells. In turn, the binding of
TCRs of type II NKT cells to their antigen ligands can regulate the
activity of TCRs on type I NKT cells. Understanding the basis of
how this cross-regulation of NKT cell activation occurs is crucial
to develop better strategies to preventmicrobial infection (2, 8–12,
48–52).

Such studies require a suitable animal model in which to track
NKT cell recirculation and migration in vivo. For this reason,
heterozygous mice were generated in which the green fluores-
cent protein (GFP) gene was knocked into a lineage-specific
gene enabling certain leukocytes to be fluorescently labeled (53).
In mice that express GFP integrated into the Cxcr6 chemokine
receptor gene (Cxcr6gfp/+ mice), type I NKT cells traffic to, and
become quite abundant in the liver (20–30% of lymphocytes).
However, NKT cell migration within the liver is arrested following

interaction with Kupffer cells. The latter interaction occurs within
minutes following lipid antigen injection (54–58). In addition,
both IL-12 and IL-18 proinflammatory cytokines induced follow-
ing bacterial infection that suppresses type I NKT cell motility
in liver sinusoids of Cxcr6gfp/+ mice via a CD1d-independent
mechanism. This block in NKT cell movement is evident within
1 h after exposure to the cytokines and precedes NKT cell acti-
vation. Further antigen ligation stabilizes an immune synapse
formed between NKT cells and interacting APCs. This synapse
potentiates LFA-1/ICAM-1 interactions that enable activated type
I NKT cells to remain in the liver. Thus, activated type I NKT cells
recirculate less than activated conventional CD4+ T cells (59).
Identification of the patterns and kinetics of recirculation of type
I and type II mouse NKT cells as well as the patterns and kinetics
of human type I and type II NKT cells await further study.

Future Challenges

A future goal of studies of human NKT cells is to identify their
functional roles in health and disease (1). Determination of how
subsets of human NKT cells migrate and recirculate in vivo may
advance our understanding of the biology and mechanisms of
cellular interaction of different human NKT cells with APCs.
Current investigations are being performed in two animalmodels.
First, Cxcr6gfp/+ mice are being used to monitor human NKT
cell trafficking, localization, and activation in vivo (56). Second,
the kinetics and dynamics of human CD1d (hCD1d)-restricted
NKT cell interactions are being analyzed in hCD1d knock-inmice
that express hCD1d in place of mCD1d (59). Subpopulations of
mouse type I NKT cells that are similar to human type I NKT cells
in phenotype (mouse Vβ8+, human Vβ11 homolog+, CD4low),
tissue distribution, and function (anti-tumor activity) are present
in hCD1d knock-in mice. The latter mice serve to model how
a lipid antigen induces the migration and function of hCD1d-
restricted type I NKT cells and type II NKT cells in vivo (59–
62). If type I and type II human NKT cells can be differentially
activated or inhibited in vivo, this may facilitate the design of new
immunotherapeutic protocols in the treatment and prevention of
infectious diseases.

Additional imaging studies are required to delineate whether,
in addition to NKT cells regulation at mucosal surfaces, commen-
sal bacteria also regulate NKT cells at other sites, e.g., the skin
where microbiota are in close contact with NKT cells and CD1a-
restricted, lipid-reactive T cells (63–65). Future work may also
establish potential species-specific and antigen-specific effects of
microbiota on NKT cells and the roles of viruses and fungi in
this process. Finally, it is of major clinical interest to develop
therapeutic strategies that may induce changes in the function
of type I NKT cells at mucosal surfaces that will promote and/or
preserve mucosal homeostasis and antimicrobial immunity.
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