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We present a substantial update to the PyFrag 2008 program,
which was originally designed to perform a fragment-based
activation strain analysis along a provided potential energy
surface. The original PyFrag 2008 workflow facilitated the char-
acterization of reaction mechanisms in terms of the intrinsic
properties, such as strain and interaction, of the reactants. The
new PyFrag 2019 program has automated and reduced the
time-consuming and laborious task of setting up, running,
analyzing, and visualizing computational data from reaction
mechanism studies to a single job. PyFrag 2019 resolves three
main challenges associated with the automated computational
exploration of reaction mechanisms: it (1) computes the

reaction path by carrying out multiple parallel calculations
using initial coordinates provided by the user; (2) monitors the
entire workflow process; and (3) tabulates and visualizes the
final data in a clear way. The activation strain and canonical
energy decomposition results that are generated relate the
characteristics of the reaction profile in terms of intrinsic prop-
erties (strain, interaction, orbital overlaps, orbital energies,
populations) of the reactant species. © 2019 The Authors. Jour-
nal of Computational Chemistry published by Wiley Periodi-
cals, Inc.

DOI: 10.1002/jcc.25871

Introduction

In recent decades, significant progress has been made in the
field of quantum chemistry,[1,2] especially toward the develop-
ment of density functional theory methods.[3–5] In combination
with the vast increase in computational resources now available
to researchers, chemical modeling has become a modern disci-
pline. Indeed, nowadays computational chemistry programs
allow not only the modeling of a large variety of chemical sys-
tems and processes with sufficient accuracy,[6–9] but they also
provide a better, more thorough understanding of chemical
phenomena, based on first principles.[10–12] The obtained insight
and understanding of a given reaction mechanism can then be
used for the systematic optimization of reaction conditions and
other parameters, thereby enhancing the efficiency of the chem-
ical reaction and reducing unwanted side products.[13,14] Com-
putational insight, thus, greatly enhances the capabilities of the
chemists and provides them with an additional and often com-
plementary perspective to tackle chemical problems with little
limitations from experimental conditions.[15,16]

A number of theoretical models have been developed to analyze
different aspects of chemical reactions and the associated changes
in the chemical bonding situation. Examples are frontier molecular
orbital (FMO) theory,[17,18] Marcus theory,[19,20] and the curve-
crossing model in valence bond (VB) theory.[21,22] An even more
extensive analysis technique is the Activation Strain Model[23]

(ASM), also known as the distortion/interaction model.[24,25] The
ASM is a fragment-based approach that characterizes reactions in
terms of simple and intuitive concepts, such as the effect of geo-
metrical deformations of the reactants and various interaction
terms due to changes in the electronic structure along the reaction
path. For instance, we have previously used the ASM to understand
how the reaction barrier varies when different bonds are activated
by palladium,[26] or how ligands can change the activating

capability of palladium,[27] or how and why other metal centers
perform differently in cross-coupling reactions compared to palla-
dium.[28] In addition, the ASM has been successfully applied to
understand the quantitative factors governing molecular reactivity
in other systems like cycloadditions,[29–35] metalorganic
catalysis,[11,36,37] and substitution reactions.[38–40]

The original version of PyFrag 2008[41] allowed for the routine
exploration and analysis of potential energy surfaces using the
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ASM. That version consisted of a driver invoking the Amsterdam
Density Functional (ADF) software,[42–44] which in turn made use
of the concept of molecular fragments for the analysis of chemical
bonds.[12] After many successful applications, we have now over-
hauled the original PyFrag 2008 code with the aim to (1) make
extensive usage of the scripting framework provided by the
Python Library for Automating Molecular Simulations (PLAMS)[45]

and QMflows;[46] thereby enabling PyFrag 2019 to (2) be compati-
ble with other quantum chemistry programs such as Gaussian,[47]

Orca,[48] and Turbomole[49] and their respective analysis tools; and
(3) completely automate the workflow of the ASM approach. In
order to monitor the computational progress at runtime, PyFrag
2019 uses Bokeh,[50] an interactive visualization Python library, to
generate an html file summarizing the computational results in
tables, figures, and videos.

PyFrag 2019 requires the user to simply supply approximate
geometries of the stationary points (reactants, transition states,
and products). PyFrag 2019 then sets up and runs the optimiza-
tions of the stationary points and also the complex workflows
associated with the ASM approach involving many calls to com-
putational chemistry programs in sequential order or, where
possible, in parallel. The computational progress and the conver-
gence of the required geometry and transition state optimizations
can be monitored at runtime. After completing the computations,
PyFrag 2019 then visualizes the results in a clear, automated, and
informative way.

The remainder of this article is organized as follows: the sub-
sequent section describes the ASM and energy decomposition
analysis (EDA) method, which are used to analyze properties
and quantities along the reaction path. Afterward, we provide
specific examples of the complete workflow as implemented in
PyFrag 2019 being employed to understand the reactivity of,
among many others tested, three widely studied reactions: the
oxidative addition of C–X bonds by iron catalyst,[28] 1,3-dipolar
cycloaddition reactions,[29] and the analysis of the nucleophilic-
ity and leaving-group ability of backside SN2 reactions.[38]

Methods

The ASM is a fragment-based approach used to understand the
character of the reaction mechanism and to gain insights into
the overall reaction energy profile. Usually, the reaction profile is
determined by the interplay between two reactants or frag-
ments. The bonding energy ΔE is decomposed along the intrin-
sic reaction coordinate (IRC)[51,52] into the strain energy ΔEstrain
that is associated with the geometrical deformation of the indi-
vidual reactants as the process takes place, plus the actual inter-
action energy ΔEint between the deformed reactants (see eq. 1).

ΔE =ΔEstrain +ΔEint ð1Þ

The interaction energy ΔEint between the deformed reactants
is further analyzed in the conceptual framework provided by the
Kohn-Sham molecular orbital (KS-MO) model, using a quantitative
EDA scheme (eq. 2).[12,53–55] While any of the aforementioned
computational chemistry programs can be used to perform the

activation strain analysis, it should be noted that the EDA pres-
ented in this article is a unique feature of ADF.[42–44]

ΔEint =ΔVelstat +ΔEPauli +ΔEoi ð2Þ

The ΔVelstat energy corresponds to the classical Coulomb
interaction between the unperturbed charge distributions of
the deformed reactants and is usually attractive. The Pauli
repulsion energy ΔEPauli comprises the destabilizing interactions
between occupied orbitals (more precisely, between same-spin
spin orbitals) on the respective reactants and is responsible for
steric repulsion. The orbital interaction energy ΔEoi accounts for
charge transfer (interaction between occupied orbitals on one
fragment with unoccupied orbitals on the other fragment,
including the HOMO–LUMO interactions) and polarization
(empty-occupied orbital mixing on one fragment due to the
presence of another fragment).

Description of the Program

An overview of the complete PyFrag 2019 workflow is shown in
Figure 1. Our new implementation consists of three parts: calcu-
lation and preparation of the whole reaction path, activation
strain analysis based on this computed reaction path, and finally
the tabulation and visualization of all results. The user only needs
to provide basic information like initial guesses for the molecular
structures and the specific parameters required for the DFT cal-
culations (see the Supporting Information for an example input
file). PyFrag 2019 then automatically submits the necessary com-
putational jobs to (eventually remote) computing nodes and
gathers the corresponding results after the completion of each

Figure 1. Schematic flowchart of the PyFrag 2019 program, including the
three steps of (i) preparations, (ii) analysis, and (iii) visualization. [Color figure
can be viewed at wileyonlinelibrary.com]
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job. The structures of the reactants and products of the reaction
are optimized first, followed by a search for the transition state
starting from a reasonable initial guess for its geometry. A fre-
quency analysis is then performed to ensure that the previously
optimized structures and the transition state are indeed station-
ary points on the potential energy surface. A deeper understand-
ing of a reaction mechanism can often be gained only by
inspecting the entire reaction path rather than the stationary
points alone.[56,57] For this reason, a reaction path between the
transition state and the initial and final structures, respectively, is
then generated by means of an IRC calculation.[51,52] The activa-
tion strain analysis is then performed to identify the main mech-
anistic characteristics of a given reaction. During the execution of
the workflow, relevant information about the current status is
collected and written into an html output file, an example of
which is depicted in Figure 2a-c. Upon completion of the
workflow, the activation strain diagram is generated (Fig. 2d).
The activation strain analysis results are also collected and stored
as a text file, which can be exported and plotted in MS
Excel either manually or automatically with the help of a supple-
mentary function in PyFrag 2019. In cases where the reaction
path is already available, PyFrag 2019 is also able to import the

coordinates and directly proceed with the activation strain analysis
workflowusing either ADF,[42] Gaussian,[47] ORCA,[48] or Turbomole.[49]

ExcelAutomat 1.3[58] (compatible with Gaussian[47] and GAMESS-
US[59–61]) and autoDIAS[62] (compatible with Gaussian,[47] ORCA,[48]

NWChem,[63] andQ-Chem[64]) have recently beenpublished andhave
been shown to be useful in automating the activation strain
analysis along a provided reaction coordinate. Note, however,
that while making advances toward an automated process,
both of these programs are incompatible with ADF and thus are
unable to perform the EDA.[12,53–55] We should also note that
the present version of PyFrag 2019 is not yet compatible with
open-shell calculations.

To facilitate the rapid evaluation of the workflow and to dis-
play the status of the entire computation, PyFrag 2019 provides
the functionality to periodically extract relevant data from the
running calculation and visualize it as an html output (see Fig. 2).
A continuously updated video can be generated to examine the
reaction path in real time. In the case of a failure of a computa-
tion, such as geometry optimization, the workflow will continue
carrying out all other computations, unless they explicitly
depend on the job that has failed. When such erratic behavior
occurs, the user can modify the input file, which in turn will be

Figure 2. Snapshots from the html page generated by PyFrag 2019 that shows (a) the current job status (Transition State); (b) corresponding movies of each
geometrical optimization process; (c) the summary of the geometries and energies of stationary points on the potential energy surface [reactant (R1),
reactant complex (RC), transition state (TS), and product (P)]; and (d) after completion of the workflow, the results of the activation strain analysis. For the
current job status, various types of information are provided, including: a plot of energy (E) against each step, convergence information like energy change
(e), constrained gradient max (c_max), their responding converge standard (e_, c_max), as well as if they are converged (e_TF, gm_TF). The user can click the
box and select other stationary points, such as the reactant or product and obtain relevant data. [Color figure can be viewed at wileyonlinelibrary.com]
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detected and accounted for by PyFrag 2019 and used to restart
any affected computational jobs automatically.

Results and Discussion

To demonstrate the ability of PyFrag 2019 to automate the steps
necessary for the mechanistic analysis summarized in Figure 1, we
proceed by presenting three application cases involving different
chemical reactions: an (1) oxidative addition to an iron catalyst, a
(2) series of 1,3-dipolar cycloadditions, and (3) bimolecular nucleo-
philic substitution (SN2) reactions. In order to perform these ana-
lyses, as mentioned above, the user must only supply approximate
geometries of the stationary points (reactants, transition state, and
products). After completion of the calculation, the user can then
plot the activation strain and EDA that were generated by PyFrag
2019 with the selected quantum chemistry program. In this sec-
tion, we limit our discussion to the final step involving the visuali-
zation step, since this step of the workflow is the most informative
for understanding the factors governing the reactivity of the
specific reactions and to check the correct performance of
PyFrag 2019.

Reaction 1: Oxidative addition by an iron catalyst

Catalytic reactions are a key transformation in modern synthetic
chemistry[65,66] and the oxidative addition step is generally the
first and rate-determining step in most catalytic cycles.[67,68] Our
first example involves the C─X bond activation via oxidative
addition of CH3X substrates (X H, Cl, CH3) to a model iron cata-
lyst Fe(CO)4 with singlet spin state.[28] The results from the

activation strain analysis carried out with PyFrag 2019 using
ADF, Gaussian, ORCA, and Turbomole as computational engines
are shown in Figure 3a-d. As expected, but still important, we
find comparable results and the same trends in reactivity for
all programs employed, which confirms these individual
implementations.

The activation barrier (ΔE) depends on two chemically intui-
tive terms, namely the strain (ΔEstrain) and interaction (ΔEint)
energies (see eq. 1). We focus the following discussion on the
results obtained with ADF as summarized in Figure 3a. The
energy barriers for the bond activation of C─H, C─Cl, and C─C
by Fe(CO)4 increase from 10.4 to 25.5 to 48.0 kcal mol−1,
respectively. A weaker catalyst–substrate interaction results in a
higher barrier for the C─Cl activation compared to the C─H
activation. The C─C bond activation exhibits the highest barrier
due to a highly destabilizing activation strain and a weakly sta-
bilizing interaction energy compared to the activation of the
C─H and the C─Cl bonds. The strength of the ΔEint for these
bond activation processes was traced back to the nature of the
σ and σ* orbitals of the C─H, C─Cl or C─C bonds. In particular,
the σC─H lacks a nodal plane and has a significant overlap with
the iron catalyst 3dσ orbital in a σ-donating manner. At vari-
ance, the σC─Cl and σC─C for C─Cl and C─C, respectively, have a
2p-nodal plane that results in the cancellation of orbital overlap
with the iron 3dσ. These orbital overlap values are easily printed
by PyFrag 2019 in the same manner as the activation stain
terms. Finally, the more destabilizing ΔEstrain for C─C activation
compared to C─Cl activation simply originates from the higher
strength of the C─C bond.[69]

Figure 3. Activation strain analysis
for the oxidative addition of CH3─X
bonds (X=H, Cl, CH3: black, blue, red,
respectively) to singlet Fe(CO)4
computed at (a) ZORA-OPBE/TZ2P
level with ADF 2017; (b) DKH-
OPBE/6–311++G(d,p) level with
Gaussian 09; (c) ZORA-OPBE/ZORA-
def2-TZVP SARC/J level with ORCA
4.0; and (d) DKH-BLYP/TZVP level
with Turbomole 6.5. Energy barriers
relative to the reactants for the
transition state are included (see
upper left corner) and the positions
of TS are marked by diamonds.
[Color figure can be viewed at
wileyonlinelibrary.com]
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Reaction 2: 1,3-dipolar cycloaddition reactions

Our second example investigates the 1,3-dipolar cycloaddition
(1,3-DCA) reactivities of a series of aza-1,3-dipoles 1 (black), 2 (blue),
3 (red) with ethylene (e) as shown in Figure 4. 1,3-DCA cycloaddi-
tions are important reactions in heterocyclic chemistry,[70] materials
chemistry,[71–73] and chemical biology.[74–76] The cycloaddition bar-
rier increases from 1 to 2 to 3 corresponding to a sharp decrease
in reactivity. Our activation strain analysis (Fig. 4a) reveals that the
differences in the barrier heights for these 1,3-DCA reactions origi-
nate from differences in ΔEint and not from ΔEstrain, as originally
proposed.[25,77,78] Despite the reaction of 1 having the most
destabilizing ΔEstrain, it goes with the lowest barrier due to a highly
stabilizing ΔEint. Decomposition of the interaction energy reveals
that the trends in the Pauli repulsion, ΔEPauli, are more or less offset
by the trends in the electrostatic interaction, ΔVelstat (Fig. 4b). The

orbital interactions, ΔEoi, on the other hand, play a dominant role
in determining the trend in interaction energy, and thus, the height
of the reaction barriers. The orbital interaction becomes weaker
from 1 to 2 to 3 due to a larger, less favorable FMO energy gaps. In
addition, as the number of nitrogen atoms in the 1,3-dipole
increases from 1 to 3 for compounds 1, 2, and 3, respectively, the
FMO overlap decreases, due to the more contracted 2p-orbitals of
nitrogen compared to those of carbon.[79] These two effects, the
larger FMO energy gaps and a decrease in FMO overlap, reinforce
each other and result in a less stabilizing orbital interaction curve,
and thus a higher and less favorable activation barrier.

Reaction 3: Bimolecular nucleophilic substitution (SN2)

Our third example involves the textbook bimolecular nucleophilic
substitution (SN2) reaction.

[80] We have analyzed the nucleophilicity

Figure 4. (a) Activation strain analyses
and (b) energy decomposition
analyses of the cycloaddition reactions
between 1,3-dipoles 1–3 and ethylene
(e), computed at the BP86/TZ2P level.
Energy barriers relative to the
reactants for the transition state are
included (see upper left corner), and
the positions of TS are marked by
diamonds. [Color figure can be viewed
at wileyonlinelibrary.com]

Figure 5. Activation strain analysis of the SN2 reactions for (a) X− + CH3Cl (X
− F−, Cl−, Br−, and I−) and (b) Cl− + CH3Y (Y F, Cl, Br, and I), computed at the

OLYP/TZ2P level. Energy barriers relative to the reactants for the transition state are also included (see upper left corner), and the positions of TS are marked
by diamonds. [Color figure can be viewed at wileyonlinelibrary.com]
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and leaving-group ability of halogens in backside SN2 reactions for
X− + CH3Cl (X

− F−, Cl−, Br−, and I−) and Cl− + CH3Y (Y F, Cl, Br,
and I), respectively.[38] In Figure 5a, we show that for a given leav-
ing group, the SN2 barrier increases as the nucleophile is varied
from F− to I−. This trend stems entirely from the ΔEint curves, as the
ΔEstrain curves are nearly identical and superimposed. The nucleo-
philicity of these halides is determined by the electron-donor capabil-
ity of the nucleophile. Specifically, the HOMO–LUMO interaction
becomes less stabilizing as the nucleophile is varied along X− F−,
Cl−, Br−, and I− and this, in turn, leads to a systematically less stabi-
lizing interaction. This can be understood in terms of the orbital
energy of the X− HOMO, which is the highest (most destabilized)
for F− and decreases (becomes stabilized) to I−, thus leading to a
larger HOMO–LUMO gap.

For a given nucleophile, the SN2 barrier decreases as the leav-
ing group is varied from F to I for the Cl− + CH3Y (Y F, Cl, Br,
and I) reactions. Interestingly, in this case, the reactivity trend is
entirely determined by the ΔEstrain curves, as the ΔEint curves are
nearly identical for the different reactions. The ΔEstrain curves
become less destabilizing as the leaving group is varied from Y

F, Cl, Br, and I. The leaving group ability is directly related to the
trend in C─Y bond strengths, with C─F being the strongest bond
(ΔHBDE = 113.7 kcal mol−1) and C─I the weakest one
(ΔHBDE = 60.7 kcal mol−1).[81,82]

Conclusions

The PyFrag 2019 program is presented, featuring significant
improvements over its predecessor,[41] with the aim to facilitate
the computational exploration and analysis of reaction mecha-
nisms in an automated fashion. In particular, PyFrag 2019 resolves
three main challenges associated with computing the potential
energy surface of a particular reaction: it now (1) computes the
reaction path by carrying out multiple parallel calculations using
initial coordinates provided by the user; (2) monitors the entire
workflow process; and (3) tabulates and visualizes the final data in
a clear way. The automated activation strain analysis in PyFrag
2019 is compatible with many quantum chemical software pack-
ages, including ADF[42], Gaussian[47], Orca,[48] and Turbomole.[49]

PyFrag 2019 requires the user to only provide approximate
geometries for the respective stationary points on the potential
energy surface (reactants, transition states, products, and inter-
mediates). The steps of the reaction path workflow involve first
running the geometry optimizations of stationary points using
the supplied coordinates followed by an IRC calculation to gen-
erate the potential energy surface. Next, an activation strain and
canonical EDA (when using ADF) is performed. The final step of
the workflow involves the visualization (plotting/tabulation) of
the results. These activation strain and energy decomposition
results generated from PyFrag 2019 allow the user to relate the
characteristics of the reaction profile in terms of intrinsic proper-
ties (strain, interaction, orbital overlaps, orbital energies,
populations) of the reactant species. PyFrag 2019 has been
tested, among many others, on three widely studied chemical
reactions, including the oxidative addition of C─X bonds by an
iron catalyst, the reactivity of 1,3-dipolar cycloaddition reactions,
and the analysis of the nucleophilicity and leaving-group ability

of SN2 reactions. The novel workflow implemented in PyFrag
2019 has been extensively parallelized to make efficient usage
of the available computational resources.

We expect PyFrag 2019 to facilitate the systematic analysis of
mechanistic features involving the screening, with detailed ana-
lyses, of large amounts of potential reaction candidates. To
improve the efficiency of such screening workflows even further,
also additional quantum chemistry codes such as DFTB[83] or
GFN-xTB[84] can be employed. The open source PyFrag 2019 code
can be retrieved online along with an introductory tutorial.[85,86]
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