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Obesity is a disease with a rapidly increasing prevalence all over the world in recent years. Genetic and environmental 
factors are involved in the etiology of obesity, and the effect of microbiota on obesity is becoming increasingly clear. 
Obesity treatment has various treatment modalities such as behavior modification, medical nutrition therapy, physical 
activity enhancement, and surgical intervention. When other treatment methods are not successful, bariatric surgery is 
usually resorted to as the treatment method. Some changes such as food choices, the level of hormones and enzymes due to 
anatomical changes, pH of the stomach, and microbiota are observed after bariatric surgery. Alteration in the microbiota 
composition after bariatric surgery has also been reported to be important in achieving body weight loss and preserving 
body weight loss.
Key words: obesity, bariatric surgery, microbiota

INTRODUCTION

Obesity is defined by the World Health Organization (WHO) 
as an accumulation of excess fat in the body to the extent 
that it can impair health [1]. Although excessive food intake 
and physical inactivity are usually thought of as the cause of 
obesity, the etiology of obesity is quite complex. There are 
many factors in the etiology of obesity, such as environmental, 
genetic, and lifestyle [2]. Besides, the microbiota has recently 
been reported as an important component in obesity etiology 
[3–6]. There are various treatment modalities such as medical 
nutrition therapy, medical treatment, and physical activity 
enhancement for obesity [2]. Besides these treatments, if 
the appropriate indications are present, bariatric surgery as a 
surgical intervention would be another treatment [7]. After the 
application of bariatric surgery, body weight loss occurs with 
changes in the metabolism of bile acids (BAs), in gastric pH, 
in the metabolism of hormones, and in microbiota [8].

OBESITY

Obesity is defined as a condition of abnormal or excessive 
fat accumulation in adipose tissue, to the extent that health 
is impaired [1]. This is considered a risk factor for a number 
of chronic diseases including cardiovascular diseases, 
hypertension, type 2 diabetes, nonalcoholic fatty liver disease, 
and colon cancer. Over the past 20 to 30 years, the prevalence of 
obesity has also been increasing rapidly in not only developed 

countries but also in developing countries. This is related to 
lifestyle changes, which include decreased physical activity 
and a Western-type diet with a high energy content [9]. In 
addition to physiological regulatory mechanisms, numerous 
complex factors that affect each other, such as environmental 
and genetic factors and psychological and cultural conditions, 
are among the causes of obesity [10]. Obesity is one of the 
most easily diagnosed but difficult to treat diseases. However, 
it should be treated to prevent various health problems. Obesity 
management should be planned specifically for each individual 
[11]. Nowadays, treatment methods for obesity as follows; diet 
therapy, behavior modification therapy, medical treatment, and 
surgical treatment [12].

BARIATRIC SURGERY

Bariatric surgery is one of the treatment methods that are 
effective in the treatment of obesity and complications [13]. 
Thanks to bariatric surgery, long-term permanent body weight 
loss is achieved, metabolic effects of obesity are reduced, many 
diseases are prevented, and quality of life is increased [14]. 
Body weight loss with bariatric surgery is achieved through 
reduction of nutrient digestion, alteration of food preferences, 
acceleration of gastric emptying, regulation of hormonal 
changes (e.g. glucagon-like peptide 1 [GLP-1] and peptide 
YY [PYY]) and alterations in the metabolism of BAs. Although 
bariatric surgery is suitable for obesity treatment, some 
complications such as gastric outlet obstruction, mesh erosion, 
slippage, gastroesophageal reflux, nutritional deficiencies, 
internal herniation, and marginal ulcerations can occur rarely 
[15]. Indications for bariatric surgery were established by the 
US National Institutes of Health in 1991 (Table 1) [16]. There 
are various bariatric surgical methods according to their effect 
mechanisms (Table 2) [17].
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BARIATRIC SURGICAL METHODS

Roux-en-Y gastric bypass (RYGB) is the gold standard and 
the most commonly practiced bariatric surgery in the world 
[18]. This method consists of two steps. In the first step, the 
stomach capacity is left to be about 30 cm3. Roux sputum can 
then be pulled up from the stomach, the front of the colon 
and back of the stomach, or behind the colon and stomach for 
gastrojejunostomy [19]. Intake of food and energy decreases 
due to the reduction in stomach volume. A small amount of 
fat malabsorption also occurs [20].

Laparoscopic sleeve gastrectomy (LSG) is the removal of 
the remaining long, 80% of lateral aspect of the stomach in 
a vertical fashion, leaving a long, tubuler gastric tube [21]. 
LSG is preferred for patients who have super obesity and a 
BMI <50 kg/m2 [22]. Due to the reduction of gastric volume, 
nutrient intake and energy intake are restricted. However, there 
is a reduction in plasma levels of ghrelin [23].

Laparoscopic adjustable gastric banding (LAGB) involves 
the placement of an adjustable silicone band around the 
upper part of the stomach, thus forming a small gastric space 
over the gastric band. The size of the gap between the upper 
stomach space and the back of the stomach can be adjusted 
by filling it with sterile saline injected through the abdominal 
wall. Adjustment of the band can be done gradually over time 
during postoperative follow-up [24]. This method provides 
body weight loss by reducing nutrient uptake by a completely 
restrictive effect [17].

Biliopancreatic diversion (BPD) consists of three main 
components: a tube stomach with preserved pylorus, distal 
ileoanal anastomosis, and anastomosis of the proximal 
duodenal bile duct. Body weight loss is provided by the 
reduction of gastric volume and decrease of ghrelin hormone, 
increasing peptide-YY. In this technique, hormonal changes 
with anatomical changes are thought to lead to body weight 
loss [25]. Common bariatric surgical procedures are shown 
in Fig. 1 [19].

Hormones known to generate hunger, and reduce satiation 
and satiety, adapt to weight loss in a manner encouraging 
hunger and weight gain. There are sustained reductions in 
leptin, insulin, and peptide YY while levels of ghrelin and 
pancreatic polypeptide increase with intentional weight loss. 

The hormonal changes after the different techniques of the 
bariatric surgeon are summarized in Table 3 [26]. Surgery 
induces changes in both environmental and systemic factors, as 
well as anatomical changes in the digestive tract (Table 4) [27].

GUT MICROBIOTA

The microbiota is defined as a community of microorganisms 
located in a prominent ecological environment or place. 
It comprises commensal, symbiotic, and pathogenic 
microorganisms living in the human body. Microbiome is 
defined as the genetic pool of microbiota living in a specific place 
and their relation with the environment [28]. It is estimated that 
there are about 1,014 microorganisms in the human body, more 
than seventy percent of which are in the colon, and more than 
35,000 bacterial strains in the gastrointestinal tract [29]. The 
microbiota is influenced by many factors such as delivery type, 
breastfeeding time, transition time to complementary feeding, 
diet, and use of antibiotics from birth to death [30]. The intestinal 
microbiota, composed mainly of anaerobic bacteria in which 
Bacteroides and Firmicutes are involved, has physiological, 
metabolic, immunological, and neural functions in the body 
[31]. It has been reported that the human intestinal microbiota 
is composed of more than 1,000 species. It can be classified 
into 6 bacterial clusters in healthy individuals. These include 
Firmicutes (including gram-positive strains of Clostridium, 
Eubacterium, Ruminococcus, Butyrivibrio, Anaerostipes, 
Roseburia, Faecalibacterium, etc.), Bacteroidetes (including 
gram-negative strains of Bacteroides, Porphyromonas, 
Prevotella, etc.), Proteobacteria (including gram-negative 
strains such as Enterobacteriaceae), Actinobacteria (including 
the gram-positive Bifidobacterium genus), Fusobacteria, 
and Verrucomicrobia (including Akkermansia, etc.) [32]. 
Bacteroidetes and Firmicutes constitute more than 90% of total 
intestinal microbiota. The most important components of the 
human intestinal microbiota are the obligate anaerobes of the 
genus Bacteroides, Eubacterium, Clostridium, Ruminococcus, 
Peptococcus, Peptostreptococcus, Bifidobacterium, and 
Fusobacterium and facultative anaerobes such as Escherichia, 
Enterobacter, Enterococcus, Klebsiella, Lactobacillus, and 
Proteus. Methanogenic archaea have also been reported 

Table 1.	 Indications for surgical operation [16]

• BMI=40 kg/m2 or additional disease (type 2 diabetes, 
hypertension, sleep apnea, hyperlipidemia) together with BMI 
>35 kg/m2

• Acceptance of surgical risk
• Failure of nonsurgical treatments
• Psychiatric stability, no alcohol and drug dependence
• Patients is well-motivated, knowing the operation and sequelae
• No medical problems that will harm the surgeon
• No uncontrolled psychotic and depressive disorder
• Complete family and social support

Table 2.	 Methods of surgical intervention [17]

Restrictive
Laparoscopic adjustable gastric banding (LAGB)
Sleeve gastrektomy (SG)
Vertical banded gastroplasty (VBG)

Malabsorptive
Biliopancreatic diversion (BPD)
Jejunoileal bypass (JIB)

Combined restrictive and Malabsorptive
Roux-en-Y gastric bypass (RYGB)
Duodenal switch (DS) with BPD
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Fig. 1.	 Common bariatric surgical procedures [19].
a: Roux-en-Y gastric bypass; b: adjustable gastric banding; c: sleeve gastrectomy; d: biliopancreatic diversion with duodenal switch.

Table 3.	 A summary of the changes in key hormones related to energy balance and weight loss for each of 
the established surgical procedures and for intentional dietary behavioral weight loss [26]

RYGB LSG LAGB BPD Behavioral weight loss
Leptin ▼ ▼ ▼ ▼ ▼
Insulin ▼ ▼ ▼ ▼ ▼
Adiponectin ▲ ▲ ▲ ▲ ▲
Glucagon ▲ ? ▬ ? ▼
Ghrelin ▲, ▼, ▬ ▼ ▲, ▬ ▲, ▬ ▲
GLP-1 ▲ ▲ ▬ ? ▬
PYY ▲ ▲ ? ▲ ▬

▲: a substantial number of studies indicate an increase;▼: a substantial number of studies indicate a decrease; 
▬: a substantial number of studies found no change; ?: too few data. 
RYGB: Roux-en-Y gastric bypass; LSG: Laparoscopic sleeve gastrectomy; LAGB: Laparoscopic adjustable 
gastric banding; BPD: Biliopancreatic diversion.
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extensively [33]. The most important Methanogenic archaeon 
in the human gut is Methanobrevibacter smithii.

Changes in microbiota content affect human health at a 
significant level. It is reported that many noncommunicable 
diseases such as obesity, type 2 diabetes, asthma, allergies, 
and atopic diseases, inflammatory bowel disease, metabolic 
syndrome, necrotizing enterocolitis, and atherosclerosis are 
closely associated with the intestinal microbiota [34].

GUT MICROBIOTA IN PATIENTS WITH OBESITY

It is reported that genetic and environmental factors 
influence the etiology of obesity. Researchers have also 
reported that intestinal microbiosis contributes to the regulation 
of energy and fat metabolism and that it affects obesity and 
its complications [35]. It has been reported that patients with 
obesity have less variability in the intestinal microbiota than 
thin individuals [36]. The important function that separates 
microbial strains from obese and thin individuals is the inability 
to produce fermentation. Another difference is that short-chain 
fatty acids cannot be produced from indigestable food items 
[37].

Intestinal microbiota studies in both humans and animal 
models have helped clarify the role of microbial activity in the 
etiology of obesity. It is reported that patients with obesity have 
fewer Bacteroides and more Firmicutes in their microbiota 
than normal-weight people. It has been stated that diets rich 
in saturated fatty acids lead to the development of hepatic 
steatosis and obesity, increasing the amounts of Firmicutes/
Bacteroidetes ratio in the intestinal microbiota [38]. Fat and 
carbohydrate-restricted diets and body weight loss cause the 
amount of Bacteroidetes to increase [39]. On the other hand, 
some studies show that there is no relationship between body 
mass index and Firmicutes/Bacteroidetes [40, 41]. However 
other studies show an increase in Firmicutes/Bacteroidetes ratio 
in obesity and insulin resistance. Reduction of carbohydrate 
intake in patients with obesity decreases the butyrate levels 
in feces and level of Roseburia spp. and Eubacterium rectale 
[42]. The microbiota is affected by the loss of body weight 
caused by diet and exercise. It has been reported that the 
amounts of Bacteroides and Lactobacillus increase as a result 
of energy restriction and exercise in patients with obesity. 

However, no changes were seen in overweight adolescents 
who lost less than 2 kg in body weight [43]. In view of such 
information, intestinal microbiota modification may be a 
potential therapeutic treatment for prevention or reversal of 
obesity.

GUT MICROBIOTA AFTER BARIATRIC SURGERY

Significant changes are reported in the intestinal microbiota 
after bariatric surgery. Possible mechanisms for the changes in 
the intestinal microbiota include food choices and preferences, 
reduction of food consumption, and nutrient malabsorption 
[44]. Short-term dietary changes may cause rapid changes in 
the intestinal microbiota composition. Prevotella enterotypes 
have been reported to be associated with both complex 
carbohydrate-rich and simple carbohydrate-rich diets, while the 
Bacteroides enterotype is associated with a typical “Western 
diet” rich in animal protein and saturated fat [45]. In particular, 
low-fat, high-carbohydrate diets and high-carbohydrate, low-
glycemic-indexed diets affect the amounts of specific strains 
differently in the intestinal microbiota [46]. Diet therapy after 
bariatric surgery also causes changes in microbiota due to these 
reasons.

A second factor affecting the change in microbiota after 
bariatric surgery has been reported to be BAs [8]. BAs can 
autoregulate their synthesis and intestinal reabsorption through 
modulation of the nuclear-located farnesoid X receptor (FXR). 
Another pathway of autoregulation is the G-linked protein 
TGR5, but this pathway is not yet fully understood [47]. 
Recently, the physiological role of BAs has been linked to the 
control of glucose homeostasis, beta-cell function, and energy 
consumption. These roles of BAs are associated with FXR and 
TGR5 [8]. Biliopancreatic extract biliary fluid and nutrients are 
separated from each other in RYGB. BAs come together with 
nutrients in the lower parts of the intestine. The distal jejunum 
and proximal ileum are excesseively exposed to the nutrients. 
Dietary lipids are surrounded by the Bas, while BAs cycling 
in the upper intestine becomes blunted. As a result, increased 
plasma BAs and FGF15/19 levels normalize the postprandial 
BAs response after surgery [48]. The mechanism underlying 
the beneficial effects of bariatric surgery has been reported to 
be alterations in BAs metabolism [43]. The change in BAs 

Table 4.	 Dietary and digestive changes induced by different types of bariatric surgery [27]

Changes LAGB LSG RYGB
Time spent chewing Increased Increased Increased
Food intake Decreased Decreased Decreased
Food transit time Decreased No change Increased
Food choices and preferences Preference for pureed food and 

fewer fibre-containing foods
No change Reduced preference for high-fat 

or high-sugar foods
Acid production No change No change Disrupted
Ghrelin levels No change Decreased No change
GLP1 and PYY levels No change No change Increased

LAGB: Laparoscopic adjustable gastric banding; LSG: Laparoscopic sleeve gastrectomy; RYGB: Roux-en-Y gastric bypass.
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flow has a definite effect on the changes in microbiota after 
bariatric surgery, too. In the proximal jejunum, the absence 
of nutrient transit and decreased mobility lead to an increase 
in the number of bacteria [27]. The changes in BA flow 
also alter the 7α-dehydroxylation capacity of the intestinal 
microbiota, which is involved in the synthesis of the secondary 
(intermediate) BAs. Administration of a diet supplemented 
with the primary BAs colic acid to rats increase the presence 
of Firmicutes, which contains the enzyme 7α-hydroxylase such 
as Clostridium spp. [49].

Hormones such as leptin and ghrelin may change after 
bariatric surgery. The change in hormones is related to 
both energy metabolism and microbiota [50]. Although the 
relationship between the intestinal microbiota and ghrelin is 
not fully understood, it is reported that prebiotics modulates 
the intestinal microbiota and prebiotics decrease circulating 
levels of ghrelin [51].

Serum leptin levels in circulation have been reported to 
be positively correlated with Mucispirillum, Lactococcus, 
and the high amount of Lachnospiraceae which cannot be 
classified. Another study reported that leptin has a negative 
correlation with Bacteroides, Clostridium, and Prevotella, and 
a positive correlation with Bifidobacterium and Lactobacillus 
[52]. Studies have emphasized that further research is needed, 
although hormones have been reported to affect the intestinal 
microbiota [38, 53–55].

Another factor affecting microbiota is reported to be changes 
in pH. After surgery, pH increases as the volume of the stomach 
shrinks. The changing pH affects every part of the digestive 
system after the stomach. Increased pH can affect microbiota 
at a significant level. It has been reported that Bacteroidetes 
decrease due to pH changes after bariatric surgery, while 
Firmicutes and Actinobacteria increase [56].

After bariatric surgery, microbiota diversity changes due 
to the reasons mentioned above. Table 5 summarizes the way 
in which the numbers of microorganisms are affected after 
bariatric surgery [8].

CONCLUSION

Bariatric surgery is an important method in the treatment 
of obesity. It is quite effective in achieving and protecting 
weight loss. This effectiveness of obesity treatment after 
bariatric surgery is not only related to food consumption. The 
altered microbiota after bariatric surgery als have an impact on 
its effectiveness. Malabsorption status after bariatric surgery, 
changes in the metabolism of bile acids, changes in gastric 
pH, and changes in the metabolism of hormones lead to gut 
microbiota changes. Changes in microbiota also affect energy 
homeostasis. Because of these reasons, body weight loss is 
achieved after bariatric surgery.
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