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Abstract

Sequential antimicrobial de-escalation aims to minimize resistance to high-value broad-

spectrum empiric antimicrobials by switching to alternative drugs when testing confirms sus-

ceptibility. Though widely practiced, the effects de-escalation are not well understood. Defi-

nitions of interventions and outcomes differ among studies. We use mathematical models of

the transmission and evolution of Pseudomonas aeruginosa in an intensive care unit to

assess the effect of de-escalation on a broad range of outcomes, and clarify expectations.

In these models, de-escalation reduces the use of high-value drugs and preserves the effec-

tiveness of empiric therapy, while also selecting for multidrug-resistant strains and leaving

patients vulnerable to colonization and superinfection. The net effect of de-escalation in our

models is to increase infection prevalence while also increasing the probability of effective

treatment. Changes in mortality are small, and can be either positive or negative. The clinical

significance of small changes in outcomes such as infection prevalence and death may

exceed more easily detectable changes in drug use and resistance. Integrating harms and

benefits into ranked outcomes for each patient may provide a way forward in the analysis of

these tradeoffs. Our models provide a conceptual framework for the collection and interpre-

tation of evidence needed to inform antimicrobial stewardship.

Introduction

Strategies that reduce the costs associated with antimicrobial use while maintaining the bene-

fits are urgently needed. Antimicrobial de-escalation aims to reduce costs by switching from

antimicrobials that provide good empiric coverage to alternatives based on laboratory
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susceptibility results, stopping unecessary or redundant treatment, and switching from IV to

oral therapy [1, 2]. Here, we consider the implications of sequential switching from empiric to

alternative drugs, hereafter referred to as de-escalation. Though commonly practiced, the

effects of de-escalation are not well understood [1, 3, 4]. De-escalation is associated with lower

mortality in observational studies, but this relationship may be confounded by other determi-

nants of improvement [3]. Non-inferiority trials have not found a change in mortality [5, 6],

and have not been designed to assess effects of de-escalation on resistance [3]. Unintended

increases in the emergence of multidrug-resistant (MDR) organisms [6] and superinfections

[5] have been observed following antimicrobial de-escalation. Definitions of interventions and

outcomes differ among studies, making comparison difficult [3].

To inform the design of future studies we develop a mathematical model of the ecological

and evolutionary consequences of antimicrobial de-escalation in an intensive care unit (ICU).

Existing models have informed our understanding of other stewardship and infection control

interventions [7–14] but this is the first theoretical examination of de-escalation. We initially

focus on the evolution and transmission of Pseudomonas aeruginosa in the ICU, then consider

the wider implications of our results. In general, de-escalation differs among pathogens, infec-

tion types, patient groups, and treatment contexts, and the details matter. P. aeruginosa is pri-

marily a nosocomial pathogen [15], and is particularly adept at developing resistance [16–18].

Thus, the potential benefits of antimicrobial stewardship are high for this organism.

Materials and methods

Modeling the effects of antimicrobial de-escalation

We model the effects of antimicrobial de-escalation on P. aeruginosa transmission, infection,

and evolutionary dynamics in an intensive care unit, and consequences for patients. Specifi-

cally, we consider the effects of three therapy adjustment strategies on the evolution of P. aeru-
ginosa resistance to piperacillin-tazobactam, which is often used for empiric therapy of severe

infections in the ICU because it provides good coverage of common pathogens [19–21], and

ciprofloxacin which is often used for definitive treatment of susceptible P. aeruginosa infec-

tions [22–27]. Ciprofloxacin is the preferred alternative because it provides poorer empiric

coverage of common Gram-positive pathogens such as Staphylococcus aureus [21], and can be

given orally. We focus on the effects of drug switching, and do not consider drug

combinations.

Infected patients are treated empirically with piperacillin-tazobactam until testing confirms

the identity and susceptibilities of the infecting pathogen (row 1 of Fig 1). In the non-pseudo-

monal de-escalation scenario, patients confirmed to have a non-pseudomonal infection are

switched to a non-pseudomonal drug, while patients with susceptible P. aeruginosa infections

are switched to ciprofloxacin (row 3 of Fig 1). In the continuation scenario, alternative drugs

are only given when testing confirms resistance to piperacillin-tazobactam (row 2 of Fig 1). In

the ciprofloxacin de-escalation scenario, ciprofloxacin is used to treat all confirmed susceptible

infections (row 4 row of Fig 1). The ciprofloxacin scenario is unrealistic, but provides insight

into model behaviour. Infections resistant to both piperacillin-tazobactam and ciprofloxacin are

treated with a last-resort drug such as a carbapenem or aminoglycoside (5th column of Fig 1).

Both de-escalation strategies (rows 3 and 4 of Fig 1) reduce the use of piperacillin-tazobac-

tam. This should reduce selection for resistance to piperacillin-tazobactam, thus preserving the

effectiveness of empiric therapy. The use of ciprofloxacin and alternative drugs will increase

with de-escalation, but resistance to definitive drugs is less problematic than resistance to

empiric therapy because definitive therapy is informed by laboratory susceptibility testing. De-

escalation also leaves patients vulnerable to colonization and subsequent infection by P.
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aeruginosa strains that are susceptible to piperacillin-tazobactam but unaffected by ciprofloxa-

cin (rows 3 and 4 of Fig 1) or non-pseudomonal alternatives (row 3 of Fig 1). We use mathe-

matical models to better understand the implications of these tradeoffs.

Mathematical models always represent a compromise between realism and simplicity. To

minimize complexity, we focus on the evolution of P. aeruginosa resistance to piperacillin-

tazobactam and ciprofloxacin, ignoring resistance to alternative non-pseudomonal and last-

resort drugs. Thus, we have not included all the possible costs of antimicrobial de-escalation.

Fig 1. Direct effects of antimicrobial de-escalation. Infections can be caused by resistant or susceptible P.

aeruginosa strains, or non-pseudomonal pathogens (circles and squares inside people, columns). Strains that

are treated (pills inside people) effectively can be replaced by resistant strains (circles and squares outside

people). All infections are treated empirically with piperacillin-tazobactam (row 1). In the continuation

scenario, susceptible patients are also treated definitively with piperacillin-tazobactam (row 2). In the non-

pseudomonal de-escalation scenario, patients with non-pseudomonal infections are treated definitively with

non-pseudomonal drugs, while susceptible P. aeruginosa infections are treated with ciprofloxacin (row 3). In

the ciprofloxacin scenario, both non-pseudomonal and susceptible P. aeruginosa infections are treated

definitively with ciprofloxacin (row 4).

doi:10.1371/journal.pone.0171218.g001
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We have omitted MDR resistance mechanisms such as efflux pumps [28–32], so the models

represent a best-case scenario for the preservation of empiric therapy. Finally, we have omitted

Clostridium difficile infection dynamics [33–36]. Thus, our models are sufficiently complex to

demonstrate some possible tradeoffs, but not to determine whether, and in what contexts, de-

escalation is good policy.

Patient categorization and notation. Patients are first categorized by their infection sta-

tus: (U) uninfected; (E) infected, receiving empiric therapy, and expecting an accurate diagno-

sis; (F) infected, receiving empiric therapy, and expecting an inaccurate diagnosis because they

have developed resistance during therapy; (D) infected and receiving definitive therapy; or (S)

superinfected by P. aeruginosa. Infections can be caused by P. aeruginosa or other pathogens

that cause similar symptoms (Fig 1).

A subscript denotes the P.aeruginosa strain carried by a patient, if any (Fig 1): (X) is a non-

pseudomonal pathogen, (1) is a P.aeruginosa strain resistant to ciprofloxacin, (2) is strain resis-

tant to piperacillin-tazobactam, (12) is a strain resistant to both drugs, and (0) is a strain suscep-

tible to both drugs. Patients initially infected by species X and subsequently colonized by P.
aeruginosa can develop superinfections; we mark these patients as (X! i) with i = 0, 1, 2, 12

referring to different P.aeruginosa strains (Fig 2).

Finally, the treatment status of patients is noted in a superscript (Fig 1): (1) ciprofloxacin

indicates ciprofloxacin treatment, (2), indicates pipercillin-tazobactam treatment, (L) indicates

treatment with an alternative drug for non-pseudomonal infections, and (3) indicates treat-

ment for dual-resistant infections, (A) indicates prior drug exposure, and (N) indicates no prior

drug exposure.

Fig 2 summarizes model dynamics in non-pseudomonal de-escalation scenario. Complete

descriptions of the three treatment scenarios, with equations, can be found in S1 Appendix.

Model parameters are summarized in Table 1. We assume large ranges for uncertain parame-

ters, giving confidence that the full range of possible outcomes has been explored at the cost of

oversampling unlikely outcomes.

Colonization, infection, and the emergence of resistance. We distinguish infected

patients and patients that are colonized by P. aeruginosa but do not have symptoms of a P. aer-
uginosa infection [9, 13]. Patients remain P. aeruginosa carriers for 12-25 days [43], which is

longer than the normal stay in the ICU [5, 44–46], so we assume that patients remain colo-

nized for the duration of their stay [43].

Patients with a history of antimicrobial exposure are at higher risk of P. aeruginosa coloniza-

tion [15, 47, 48]. For simplicity, we assume only exposed patients are colonized [13]. Patients

with previous antimicrobial exposure can be colonized by resistant or susceptible P. aeruginosa
strains, and patients receiving treatment can only be colonized by a strain that is resistant to that

treatment. Transmission of P.aeruginosa strains among exposed patients is modeled by mass

action with a transmission rate β [7, 49], without distinguishing among trasmission pathways

[47, 50] or bacterial loads [51]. We examine sensitivity to a broad range of β (0.01 to 1 per day).

Colonized patients develop P. aeruginosa infections at a rate σc 2 [0.05, 0.14] [13, 15]. Unco-

lonized patients develop infections with similar symptoms caused by other pathogens at a

lower rate σx 2 [0.013, 0.0203] [37]. See S1 Appendix for σc and σx estimation methods.

Patients that become colonized while being treated for a non-pseudomonal infection develop

P. aeruginosa superinfections with a probability η, which varies broadly between 0 and 100%.

The models allow resistant strains to replace dominant sensitive strains given antimicrobial

selection pressure [7]. Resistance to ciprofloxacin and piperacillin can emerge within a patient

at rates �1 and �2. We assume a broad range of emergence rates (0 to 3% per day).

Treatment and recovery. On average, we assume phenotypic resistance testing takes 3

days (τ = 1/3) [5], failed treatment is corrected after 3 to 5 days (τ1 2 [1/5, 1/3]), and 7 days of
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Fig 2. Simplified flow diagram of non-pseudomonal de-escalation. Subscripts denote the infecting or

colonizing strain and superscripts denote the treatment status. See “Patient categorization and notation” for

details. Orange text indicates inadequate treatment. Patients experiencing strain conversions during empiric

therapy, discharge processes and death processes are not included in the simplified flow diagram. See S1–

S3 Figs for complete dynamics.

doi:10.1371/journal.pone.0171218.g002
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treatment is sufficient to cure infection (τ2 = 1/4). Superinfection delays recovery by 0 to 11

days (τ3 2 [1/4, 1/15]). Pandrug-resistance is not modelled, so we penalize dual resistance by

assuming infected patients recover more slowly at a rate ϑτ2, where ϑ is a hazard ratio that var-

ies broadly between 0 and 1.

Death, discharge and admission. Uninfected patients die at rate ν 2 [0.005, 0.05] per day

and are discharged at rate μ 2 [0.025, 0.5] per day [52]. Infected patients recieving adequate

treatment die at rate κνν, and are discharged at rate κμμ. In general, nosocomial infections are

associated with higher death rates and longer durations of stay, but the association varies

among infection types (κν 2 [1, 2.3], κμ 2 [0.49, 1]) [39, 40, 53]. The impact of inadequate

empiric therapy on the probability of dying (δ) within ten days varies between 4 and 40% [41,

42]. Given δ and other rates we calculate the hazard ratio of death for inadequately treated

patients κδ (S1 Appendix).

60% of admitted patients have prior exposure to antimicrobials (a = 0.6), and 0 to 10% of

these are colonized with P. aeruginosa (m 2 [0, 0.1]) [13]. Up to 70% of incoming P. aeruginosa
strains are resistant to ciprofloxacin (r1 2 [0, 0.7]), and fewer are resistant to piperacillin-tazo-

bactam (r2/r1 2 [0, 1]), while no MDR strains are admitted for simplicity.

The number of patients in the ICU denoted by N remains constant over time because that

is generally the case in our ICU. To maintain a constant population we model the admission

rate as a time-dependent variable λ(t) which is equal to the sum of death and discharge rates at

time t.

Table 1. De-escalation model parameters.

Symbol Value Definition

Parameters with fixed values

N 16 Number of patients in ICU

a 0.6 Fraction of patients admitted with prior exposure to antimicrobials [13]

τ 1/3 day−1 Rate of finishing empiric therapy

τ1 1/5 * 1/3 day−1 Rate of correcting failed definitive treatment

τ2 1/4 day−1 Rate of finishing an effective definitive treatment

Parameters with clear ranges

m 0 * 0.1 Fraction of patients admitted colonized [13]

σx 0.013 * 0.0203 day−1 Infection rate of patients colonized by other species [37]

σc 0.05 * 0.14 day−1 Infection rate of patients colonized by P.aeruginosa [13, 15]

τ3
1

15
� 1

4
day−1 Rate of finishing an effective treatment to superinfection [38]

κμ 0.49 * 1.0 Hazard ratio of discharge with nosocomial infection [39, 40]

κν 1.0 * 2.3 Hazard ratio of death with nosocomial infection [39, 40]

δ 4%*40% Difference in probability of death between effective and ineffective empiric therapy after 10 days [41, 42]

Uncertain parameters with large ranges

β 0.01 * 1 day−1 Transmission rate

r1 0 * 0.7 Fraction of patients admitted colonized with strain 1

r2 0 * r1 Fraction of patients admitted colonized with strain 2

ε1 0 * 0.03 day−1 Rate of emergence of ciprofloxacin resistance

ε2 0 * 0.03 day−1 Rate of emergence of piperacillin-tazobactam resistance

μ 0.025 * 0.5 day−1 Discharge rate of patients without nosocomial infection

ν 0.005 * 0.05 day−1 Death rate of patients without nosocomial infection

η 0 * 100% Probability of emergence of superinfection

W 0 * 100% Hazard ratio of finishing an effective treatment to multi-drug resistant strain infection

doi:10.1371/journal.pone.0171218.t001
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Outcomes and analysis

Nearly all relevant studies measure the impact of de-escalation on all-cause mortality [3], so

we report probability of death (pDeath), measured as the percentage of patients who die in the

ICU over a 100 day period. However, effects of resistance and stewardship interventions on

mortality can be small and difficult to detect [3, 5, 6, 54, 55]. Infection prevalence (pInfected)

and the percentage of treatment that is ineffective (pMismatch) may be more sensitive mea-

sures of the effect of de-escalation on patients.

We include several additional outcome measures to yield insight into the causes of changes

in death, infection prevalence and treatment failure. A primary goal of de-escalation is to pre-

serve empiric therapy, so we measure the percentage of empiric therapy that covers the initial

infection (pEmpiric). There are concerns about emergence of superinfections and MDR bacte-

ria and superinfections [3], so we measure the percentage of patients that have non-pseudomo-

nal infections and P. aeruginosa superinfections (pSuperinf), and the prevalence of resistant to

both pseudomonal drugs (pRBoth). We also measure P. aeruginosa colonization prevalence

(pColonized).

Antimicrobial resistance is often measured as the percentage of resistant first clinical iso-

lates [56], but we measure prevalence (pRCipro, pRPipTazo, and pRBoth) because it more

accurately reflects the burden of resistance [57]. Drug use studies are common [54, 58], so we

measure the use of ciprofloxacin (UseCipro), piperacillin-tazobactam (UsePipTazo), and

drugs used to treat dual-resistant P. aeruginosa infections (UseAlt) as the percentage of

patients receiving each drug. See S1 Appendix for mathematical definitions of outcomes.

To assess sensitivity we use Jansen’s estimator of the contribution of each parameter to out-

come variance [59, 60]. Bootstrapped 95% confidence bounds for the total sensitivity indices

indicated that a base random sample of 5000 and a total of 95,000 parameter combinations are

adequate. Sampling was done using quasi-random numbers and a radial design as recom-

mended by Saltelli et al. [59]. Parameters are assumed to be uniformly distributed over the pro-

posed intervals because we lack information about the distributions (Table 1). This sampling

scheme gives confidence that the full range of possible outcomes has been explored, at the cost

of oversampling unlikely outcomes.

Two parameter sets were randomly generated for the non-pseudomonal and ciprofloxacin

scenarios. For each combination of parameters, the effect of non-pseudomonal de-escalation is

the difference between outcomes of the non-pseudomonal de-escalation and continuation sce-

narios. The ciprofloxacin de-escalation scenario is similarly compared to the continuation sce-

nario. Outcomes are averaged over the final 100 days of a 2000-day simulation. For each

combination of parameter values we numerically confirmed that the model reached a steady

state.

To understand when de-escalation increases or decreases the probability of death we also

analyzed a Latin-Hypercube sample of 100,000 parameter combinations using classification

and regression trees [61–64]. We require a minimum of 2% of cases at a classification tree

node in order to attempt a split, and pruned according to the “1-SE” rule [61]. Again, uniform

distributions are assumed, and two parameter sets were randomly generated.

In our three academic ICUs over the past 14 years P. aeruginosa resistance to ciprofloxacin

(oRCipro) and piperacillin-tazobactam (oRPipTazo) has not exceeded 70% and 50%, respec-

tively. P. aeruginosa colonization prevalence ranges from 6% to 32% [65]. Outcomes outside of

these ranges are considered unrealistic, and excluded from results unless otherwise specified.

34798/100000 and 33152/100000 parameter combinations meet the calibration criteria in the

de-escalation and ciprofloxacin scenarios, respectively.
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Results

In our models de-escalation preserves the effectiveness of empiric therapy (pEmpiric in Fig 3)

by decreasing the use of and resistance to piperacillin-tazobactam (UsePipTazo and pRPip-

Tazo in Fig 3), at the cost of greater ciprofloxacin use and resistance (UseCipro and pRCipro

in Fig 3). For most parameter combinations, this leads to an overall reduction in the percent-

age of patients that receive inadequate treatment (pMismatch in Fig 3).

In the non-pseudomonal de-escalation scenario, the benefits of de-escalation are further

offset by increases in P. aeruginosa colonization and superinfection (pColonized and pSuperinf

in Fig 3a), which in turn leads to an increase the percentage of patients suffering from an infec-

tion (pInfected in Fig 3a). Effects of de-escalation on the probability of death are small (<1%),

and can be either positive or negative depending on the parameter values (pDeath in Fig 3a).

In sum, de-escalation increases the probability of infection while also increasing the effective-

ness of treatment (pInfected and pMismatch in Fig 3a). This tradeoff is robust to parameter

uncertainty, as it occurs in nearly all cases, over a very broad range of parameter values.

In the ciprofloxacin scenario de-escalated patients remain partially protected against pseu-

domonal infections, so de-escalation does not consistently lead to more colonization or super-

infection (pColonized and pSuperinf in Fig 3b). Instead, the benefits of de-escalation are offset

by increases in dual resistance and the use of alternative pseudomonal drugs (pRBoth and

UseAlt in Fig 3b). Again, these tradeoffs are robust to parameter uncertainty. For 80% of

parameter combinations de-escalation still increases the percentage of infected patients (pIn-

fected in Fig 3b). Effects of de-escalation on the probability of death remain small (<1.2%),

but are more consistently beneficial (pDeath in Fig 3b).

For many of our outcomes, de-escalation is consistently beneficial or harmful, regardless of

the parameter values. The probability of death is a notable exception. De-escalation is most

likely to have a substantial effect on death when discharge rate is low, transmission rate is mod-

erate, and the impact of empiric therapy is high (Fig 4). However, other model parameters

determine whether this effect is positive or negative (Fig 5).

In the non-pseudomonal scenario, determinants of whether de-escalation decreases or

increases the probability of death include transmission rate (β), discharge rate (μ), superinfec-

tion rate (η), the rate of emergence of resistance to piperacillin-tazobactam (�2), incoming

resistance rates (r1 and r2), and death rate (ν) (Fig 5a and S6a Fig). If transmission rate (β) is

high and discharge rate (μ) is low then de-escalation is likely to be beneficial (right-most

branch of Fig 5a). Conversely, de-escalation is likely to be detrimental when transmission rate

(β) is low, discharge rate (μ) is high, and superinfection rate (η) is high (left-most branch of Fig

5a). Otherwise, a complex interaction among parameters determines whether de-escalation is

good or bad (Fig 5a).

In the ciprofloxacin scenario the superinfection rate (η) is not an important parameter and

model behaviour is simpler (Fig 5b and S6b Fig). De-escalation is likely to decrease the proba-

bility of death when relatively many patients are admitted colonized by piperacillin-tazobac-

tam resistant P. aeruginosa (high r2/r1) (right-most branch of S6b Fig), or when admission of

resistance (r1) is low and emergence of piperacillin-tazobactam resistance (�2) is high (S6b

Fig).

Discussion

We introduce novel population-level compartmental models for antimicrobial de-escalation

in the ICU that distinguish between asymptomatic carriers and symptomatic patients, allow

adjustment of empiric therapy, and allow the evolution of resistance to empiric and alternative

drugs. A few models have allowed for adjustment of failed therapy [9–12], but none de-
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Fig 3. Benefits and unintended consequences of antimicrobial de-escalation. Pale green indicates a

benefit of de-escalation, and dark red indicates an unintended consequence. Numbers are the percentage of

cases in which de-escalation is beneficial or detrimental. Continuation outcomes (c) are shown to put

observed differences in context. pDeath is the probability (%) of death, pInfected is the infection prevalence,

pMismatch is the % of inadequate treatment, and pEmpiric is the % of effective empiric therapy.

pColonized and pSuperinf are P. aeruginosa colonization and superinfection prevalence, respectively.

pRCipro/PipTazo/Both is the prevalence of resistance, and UseCipro/PipTazo/Alt is drug use.

doi:10.1371/journal.pone.0171218.g003
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Fig 4. Influence of important parameters on the effect of de-escalation on the probability of death.

Parameter importance was determined by sensitivity analysis (S5 Fig). Parameter values have been

discretized to show variation in the distribution of outcomes—each point includes 10% of parameter

combinations. Boxes show the median and interquartile range (IQR), whiskers include values within 150% of

the IQR, and dashes show outliers.

doi:10.1371/journal.pone.0171218.g004

Fig 5. Classification trees distinguishing whether de-escalation decreases (blue) or increases (green) the probability of death. The first number at

each node is the probability that de-escalation decreases the probability of death, followed by the percentage of simulations included at that node. 10-fold

cross validation classification error was 25% and 11% in the (a) non-pseudomonal and (b) ciprofloxacin scenarios, respectively. Important parameters include

transmission rate (β), discharge rate (μ), superinfection rate (η), the rate of emergence of resistance to piperacillin-tazobactam (�2), incoming resistance rates

(r1 and r2), and death rate (ν).

doi:10.1371/journal.pone.0171218.g005
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escalated successful empiric therapy. Our models provide insight into the potential tradeoffs

associated with antimicrobial de-escalation, with implications for the design and interpreta-

tion of clinical studies.

In our models, de-escalation reduces resistance to piperacillin-tazobactam and preserves

empiric therapy, as intended [1, 2, 66], at the cost of increasing resistance to ciprofloxacin.

However, de-escalation to non-pseudomonal drugs also leaves patients vulnerable to P. aerugi-
nosa colonization and superinfection, while de-escalation to ciprofloxacin selects for MDR.

Overall, non-pseudomonal de-escalation increases the probability of adequate treatment while

also increasing the probability of infection. These tradeoffs occur in nearly all the cases we

investigated, across a broad range of parameter values.

Effects of de-escalation on mortality are small (<1.2%) in our models, consistent with

observations [3, 5, 6]. In part this can be explained by dilution. If adequate empiric therapy

can reduce 10-day mortality by up to 40%, and 17% more patients receive adequate empiric

therapy, we expect a maximum impact of 6.8% which de-escalation trials have not so far been

powered to detect [5, 6] (S1 Appendix). In our model, unintended consequences of de-escala-

tion further temper the benefits of preserving empiric therapy; a 17% improvement in empiric

coverage does not lead to a 6.8% reduction in the probability of death.

Increasing the probability of infection is bad for patients, while increasing the probability of

adequate treatment is good for patients. To evaluate de-escalation policies it will be necessary

to weigh these benefits and unintended consequences against one another. The Desirability of

Outcome Ranking (DOOR) and Response Adjusted for Duration of Antibiotic Risk (RADAR)

method was designed to handle competing risks, increase statistical power, and integrate

harms and benefits at the patient level [58]. Integrating harms and benefits into a ranked out-

come for each patient may provide a way forward in the analysis of de-escalation tradeoffs.

To date, there has been little consistency and some notable gaps in the selection of out-

comes in de-escalation trials and observational studies [3, 4]. As an example, Leone et al. [5]

did not measure the effectiveness of empiric therapy or MDR emergence, while Kim et al. [6]

did not measure superinfections or C. difficile risk. No studies have adequately assessed

impacts on resistance or the effectiveness of empiric therapy [3]. Proxy measures such as drug

use and resistance are common in the antimicrobial stewardship literature [54, 58], but small

changes in important clinical outcomes can outweigh more easily detected changes in proxy

measures. We hope this study increases awareness of possible tradeoffs, and motivates more

careful selection and comparison of outcomes.

In our models, the effects of de-escalation on mortality can be beneficial or detrimental.

De-escalation is most likely to have a substantial effect when discharge rate is low, transmission

rate is moderate, and the impact of inadequate empiric therapy is high. Superinfection rate,

the rate of emergence of piperacillin-tazobactam resistance and the admission of resistant P.
aeruginosa strains are also important. Intuitively, it makes sense that de-escalation has little

effect when patient turnover is very high, when transmission is rare, when empiric therapy has

little impact, or when there is little risk of resistance to empiric therapy.

Tradeoffs and parameter dependence in our results lead to a general expectation that effects

of de-escalation will vary among species, contexts and patient groups. For example, most

patients remain P. aeruginosa carriers for only 12-25 days [43], and the chance of re-infection

is low. These patients may not suffer from MDR carriage after their initial infection is identi-

fied and appropriately treated. However, an important minority of immune-compromised

and cystic fibrosis patients are persistent carriers of P. aeruginosa at high risk of reinfection,

and the difficulties associated with MDR carriage are likely much higher for this group [31].

Future work might consider covering these patients with broad-spectrum antimicrobials in

the high-risk ICU environment, while de-escalating lower risk patients.
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Important drawbacks of ciprofloxacin de-escalation are not included in our single-species

models. Ciprofloxacin is used for P. aeruginosa infections [5, 22–27], and it may prevent P. aer-
uginosa colonization [50]. However it can also cause complications [67] and select for resistant

strains [28–30, 50]. De-escalating to a single drug would reduce prescribing heterogeneity and

promote resistance among other pathogens. Ciprofloxacin and piperacillin-tazobactam are

both associated with a high risk of Clostridium difficile infection [33–36]. De-escalation to low

risk alternatives [33–36] may reduce C. difficile infections in patients without pseudomonal

infections. Accounting for C. difficile risk would require a more complex model, and could tilt

the balance in favour of non-pseudomonal de-escalation. The ciprofloxacin scenario clarifies

model behaviour, but we do not recommend it.

The evolution of resistance is more complicated than our models. We assumed class-spe-

cific resistance mechanisms (e.g. beta-lactamases or DNA gyrase mutations) but MDR mecha-

nisms (e.g. efflux pumps) are also common in patients with substantial antimicrobial exposure

[28–32]. Including these mechanisms would reduce the impact of de-escalation on the effec-

tiveness of empiric therapy, and thus reduce the benefits of de-escalation. Empiric therapy can

include alternatives to piperacillin-tazobactam and multiple drugs [19, 20]. Stress, variation in

treatment timing, drug combinations, and treatment history can alter the rate of emergence of

resistance [51, 68–74]. P. aeruginosa persists in environmental reservoirs, and transmission

dynamics are not well understood [47, 50].

It would not be difficult to build, on the basis of our compartment models, a complex indi-

vidual-based model [8] that includes more drugs, more species, more infection types, more

variation among patients, more transmission pathways, and more detailed evolutionary and

in-host dynamics. The primary obstacle to such a model is lack of reliable parameter estimates.

Even so, an individual-based model might yield some insight into C. difficile risk and treatment

of vulnerable patients. It might also help guide the design and interpretation of studies of

patient-level outcomes [58]. Our compartment models could easily be adapted for other hospi-

tal-acquired pathogens such as Acinetobacter baumannii. Consideration of dynamics outside

the ICU will be required for species such as E. coli that belong to the normal human flora [75].

More complexity and realism is unlikely to alter our most important results; we expect both

benefits and unintended consequences from antimicrobial de-escalation.

Supporting information

S1 Appendix. Model assumptions, equations, outcome measurements, and sample size cal-

culation.

(PDF)

S1 Fig. Flow diagram of non-pseudomonal de-escalation. Compartments of patients under

inadequate drug treatment are colored in orange. Discharge and death processes are not

included in the diagram. See S1 Appendix for notation and equations.

(TIF)

S2 Fig. Flow diagram of the continuation scenario. Compartments of patients under inade-

quate drug treatment are colored in orange. Discharge and death processes are not included in

the diagram. See S1 Appendix for notation and equations.

(TIF)

S3 Fig. Flow diagram of ciprofloxacin de-escalation. Compartments of patients under inade-

quate drug treatment are colored in orange. Discharge and death processes are not included in

the diagram. See S1 Appendix for notation and equations.

(TIF)
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S4 Fig. Spearman’s rank correlations among effects of de-escalation in the (a) non-pseudo-

monal scenario and the (b) ciprofloxacin scenario.

(TIF)

S5 Fig. Total sensitivity indices [59] for the effect of de-escalation on the probability of

death in the (a) non-pseudomonal and (b) ciprofloxacin scenarios. Results include parame-

ter values that do not meet the calibration criteria.

(TIF)

S6 Fig. Random Forest importance of each model parameter as a determinant of whether

de-escalation decreases or increases the probability of death in the (a) non-pseudomonal

and (b) ciprofloxacin scenario. 500 trees gave OOB classification error rates of 13% and 7.5%

for the non-pseudomonal and ciprofloxacin scenarios, respectively.

(TIF)
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