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Abstract: In the past years, it has become increasingly clear that the protein cargo of the different
lipoprotein classes is largely responsible for carrying out their various functions, also in relation to
pathological conditions, including atherosclerosis. Accordingly, detailed information about their
apolipoprotein composition and structure may contribute to the revelation of their role in athero-
genesis and the understanding of the mechanisms that lead to atherosclerotic degeneration and
toward vulnerable plaque formation. With this aim, shotgun proteomics was applied to identify
the apolipoprotein signatures of both high-density and low-density lipoproteins (HDL and LDL)
plasma fractions purified from healthy volunteers and atherosclerotic patients with different plaque
typologies who underwent carotid endarterectomy. By this approach, two proteins with potential
implications in inflammatory, immune, and hemostatic pathways, namely, integrin beta-2 (P05107)
and secretoglobin family 3A member 2 (Q96PL1), have been confirmed to belong to the HDL pro-
teome. Similarly, the list of LDL-associated proteins has been enriched with 21 proteins involved
in complement and coagulation cascades and the acute-phase response, which potentially double
the protein species of LDL cargo. Moreover, differential expression analysis has shown protein
signatures specific for patients with “hard” or “soft” plaques.

Keywords: lipoproteomics; atherosclerosis; plaque instability

1. Introduction

Plaque rupture/erosion leading to atherothrombosis is the underlying pathology
responsible for major acute events in cardiovascular disease, such as stroke, acute coronary
syndrome, and peripheral artery occlusion [1,2]. To date, many efforts have been dedicated
to elucidating the determinants of carotid plaque vulnerability and identifying reliable
and specific markers for the susceptibility of plaques to rupture and erosion [3], includ-
ing vascular imaging [4]. In the past twenty years, with the improvement of proteomic
tools, large-scale technologies have been applied to elucidate pathways of atherosclerotic
degeneration and identify new circulating markers to be utilized either as early diagnostic
traits or as targets for new drug therapies [5]. To address these issues, several proteomic
approaches, such as 1D- and 2D-electrophoresis, followed by mass spectrometry (MS)
analyses, protein arrays, and gel-free MS-based proteomics, have been applied to different
matrices such as vascular cell/tissues, looking at both proteomes and secretomes [6,7],
plasma/serum [8], urine [9], and purified plasma lipoprotein fractions [10,11]. As far as
our research group is concerned, we have been focusing on understanding the mechanisms
that lead to atherosclerotic degeneration and toward stable or unstable advanced lesions,
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looking for a proteomic signature of vulnerable plaque [12,13], including in relation to
post-translational oxidative modifications [14,15].

Lipoproteins, especially low-density and high-density lipoproteins (LDL and HDL),
have attracted a great deal of interest because of their implication in atherogenesis. LDL,
the main carrier of cholesterol to the peripheral tissues, is a well-established major risk factor
for atherosclerosis and cardiovascular disease [2]. In fact, the selective retention of LDL
into the subendothelial space by means of specific interactions with extracellular matrix
proteoglycans is thought to be the initiating event during atherogenesis [16]. HDL has major
vascular protective effects, being responsible for the removal of cholesterol excess from cells
and its transport to the liver (reverse cholesterol transport) [17], as well as for its antioxi-
dant, anti-inflammatory, and anti-thrombotic properties [18]. Furthermore, Vaisar T et al.,
by applying Shotgun proteomics, revealed that HDL is enriched in several proteins involved
in the complement cascade, suggesting a role in innate immunity [19]. Indeed, it is becoming
increasingly clear that the HDL protein cargo, rather than HDL-cholesterol levels, is crucial
for its vascular function, even turning HDL from anti-atherogenic to pro-atherogenic in cardio-
vascular disease [19–22]. In this respect, we have evidence of increased levels of acute-phase
serum amyloid A protein in HDL as well as VLDL and LDL plasma fractions purified from
patients undergoing carotid endarterectomy [23]. Interestingly, it was shown that coronary
artery disease (CAD) risk-lowering therapy with statin/niacin partially reverts the changes
in HDL proteome observed in CAD subjects [24].

Since the protein cargo of these particles is largely responsible for carrying out their
various functions, detailed information about the apolipoprotein composition and struc-
ture may contribute to revealing their role in atherogenesis and developing new ther-
apeutic strategies for the treatment of lipoprotein-associated disorders. Accordingly,
in the last seventeen years, a plethora of proteomic studies have been performed on
purified lipoprotein fractions in both physiological [19,25] and pathological conditions,
including CAD [26,27], acute myocardial infarction [28], chronic kidney disease [29,30],
end-stage renal disease [31], type 1 and 2 diabetes mellitus [32–34], and experimental
atherosclerosis [35,36] (see Supplementary Material 1). An updated list of all identified
HDL and LDL proteins, ranked according to the frequency of identification in MS studies,
can be found at the “The Davidson/Shah lab” website www.DavidsonLab.com (last update
24 April 2019).

The aim of this study is to identify an apolipoprotein signature of both HDL and LDL
plasma fractions from atherosclerotic patients who underwent carotid endarterectomy
in relation to plaque typology, to be compared with data obtained from a normolipidemic
control group. To our knowledge, this is the first shotgun proteomic study on the associa-
tion between plasma apolipoprotein composition and carotid plaque echogenicity.

2. Materials and Methods
2.1. Sample Collection

HDL and LDL fractions were purified from pooled plasma samples from 75 patients
undergoing carotid endarterectomy at Centro Cardiologico Monzino, IRCCS (Milano)
and 50 healthy normolipidemic volunteers matched for age and sex with the patients,
enrolled in previous published studies [13,23]. All patients underwent surgery according
to NASCET guidelines for carotid stenosis [37]. Carotid atherosclerosis was assessed by ul-
trasonography using a Mylab 70 X Vision Echocolor Doppler instrument equipped with
an LA332 AppleProbe 11–3 MHz (Esaote, Genova, Italy). All patients selected for surgery
had either high-grade stenosis (>70%) or an ulcerated lesion of a medium grade based on
Echo-Doppler analysis. Plaques were classified according to Gray-Weale classification [38]
into five types: uniformly echolucent plaque (type 1), predominantly echolucent plaque
with <50% echogenic areas (type 2), predominantly echogenic plaque with <50% echolucent
areas (type 3), uniformly echogenic plaque (type 4), and plaque with heavy calcification
and acoustic shadows (type 5). This method represents an effective and non-invasive way
to detect and characterize atherosclerotic plaque in peripheral arteries and provides a rapid
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risk stratification of the patient through the Gray-Weale standardization [39–42]. Patients
were sorted, according to the plaque typology, into “soft” (n = 44), having a carotid plaque
with hypoechoic features (types 1 and 2), and “hard” (n = 31), having a carotid plaque
with hyperechoic features (types 3, 4, and 5). In this respect, there is plenty of evidence
that carotid plaque echolucency provides predictive information in asymptomatic carotid
artery stenosis, as reviewed in the meta-analysis study by Gupta et al. [43]. The main
clinical parameters of the two groups of patients are summarized in Table 1. Before surgery,
fasting blood samples were collected into Vacutainer tubes containing EDTA, immediately
centrifuged at 2000× g for 10 min at 4 ◦C, and stored at −80 ◦C until analysis. Informed
consent was obtained before enrolment. Institutional Review Board approval was ob-
tained. The study was conducted in accordance with the ethical principles of the current
Declaration of Helsinki.

Table 1. Main clinical parameters of patients sorted according to the plaque typology (hyperechoic
or “hard” plaques and hypoechoic or “soft” plaques).

Parameters “Hard” (n = 31) “Soft” (n = 44)

Age (years) * 67.1 ± 6.9 72.6 ± 8.0
Sex ratio, m/f 22/9 34/10

BMI * 25.3 ± 3.4 25.9 ± 3.5
Triglycerides (mg/dL) * 116.8 ± 48.2 124.1 ± 44.6

Total Cholesterol (mg/dL) * 166.6 ± 41.4 181.3 ± 50.5
HDL Cholesterol (mg/dL) * 47.6 ± 14.1 42.3 ± 15.8
LDL Cholesterol (mg/dL) * 96.8 ± 29.8 112.0 ± 45.0

Cholesterol lowering therapy (%) 23/31 (74.2) 41/44 (93.2)
Glycemia (mg/dL) * 114.4 ± 35.8 107.3 ± 20.9

HbA1C (%) * 6.6 ± 1.0 6.5 ± 1.0
Type 2 Diabetes (%) 9/31 (29.0) 19/44 (43.2)

Glucose lowering Therapy (%) 9/9 (100) 12/19 (63.2)
Systolic blood pressure (mmHg) * 138.8 ± 8.7 129.1 ± 12.6
Diastolic blood pressure (mmHg) * 79.9 ± 8.9 72.4 ± 7.3

Anti-hypertensive Therapy (%) 28/31 (90.3) 35/44 (79.5)

* Values are mean ± SD.

All reagents and chemicals used in this study were of analytical grade from Merck-
Millipore (Darmstadt, Germany), unless otherwise stated.

2.2. Lipoproteins Purification

Lipoproteins were isolated by isopycnic salt gradient ultracentrifugation, as previously
reported [23]. Briefly, 3.9 mL of pooled plasma samples were adjusted with solid NaBr
to d = 1.3 g/mL (472.2 mg NaBr/mL plasma) in Thin Wall Ultra-Clear centrifuge tubes
(Beckman Coulter, Indianapolis, IND, United States), gently overlaid with 8.1 mL of a
0.6% NaCl solution (d = 1.006 g/mL), and centrifuged at 285,000× g for 48 h at 4 ◦C in an
Optima L90 series ultracentrifuge instrument equipped with a SW40 Ti rotor (Beckman
Coulter, Indianapolis, IND, United States). Afterwards, both LDL (d = 1.063–1.19 g/mL)
and HDL (d = 1.19–1.21 g/mL) fractions were collected and further purified by a second
centrifugation step, performed at 285,000× g for 24 h in saline solutions at density 1.063 and
1.21 g/mL, respectively. Finally, both fractions were desalted to a final salt concentration
< 5 mM and concentrated using Amicon Ultra-0.5 mL centrifugal filter units (10 KDa
MWCO, Merck-Millipore, Darmstadt, Germany). Protein concentration was determined
using the DC Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA), according to
the manufacturer’s instructions, using bovine serum albumin as standard.

Hereafter, for the sake of simplicity, lipoprotein fractions will be called HDL “hard”
and LDL “hard” as well as HDL “soft” and LDL “soft”, according to the plaque typology.
Moreover, fractions purified from pooled plasma from healthy controls will be called HDL
“CNTR” and LDL “CNTR”.
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2.3. SDS-PAGE Analysis

The degree of purity of both LDL and HDL fractions was evaluated by mono-
dimensional electrophoresis on polyacrylamide gels (PAGE). Samples were diluted with
4X Laemmli buffer, consisting of 250 mM Tris, pH 6.8, 8% sodium dodecyl sulfate (SDS)
(w/v), 8% dithiothreitol (DTT) (w/v), 40% glycerol (v/v), and 0.0008% bromophenol blue
(w/v), boiled for 5 min, and resolved by Tris-glycine SDS-PAGE. For LDL, 4% T and 3%
C stacking gel, 5% T and 3% C running gels were cast, whereas HDL apolipoproteins
profile was obtained using 15% T running gels. Electrophoresis was carried out at 50 V
for the first 15 min and then at 150 V until the bromophenol dye front reached the lower
limit of the gel in a Mini-Protean II cell vertical slab gel electrophoresis apparatus (Bio-Rad
Laboratories, Hercules, CA, USA). Following Coomassie brilliant blue G-250 staining,
gels were acquired at 63 µm resolution using a GS-800 calibrated densitometer (Bio-Rad
Laboratories, Hercules, CA, USA).

2.4. Shotgun Proteomics

Shotgun proteomics was performed on HDL and LDL fractions purified from pooled
plasma samples from 31 patients with hard plaque, 44 patients with soft plaque, and 50 con-
trols, as previously described, with some modifications [44]. First, 50 µg of proteins from
each fraction were diluted with 100 mM NH4HCO3 with 1% sodium deoxycholate (SDC) to
improve protein unfolding and subsequent endoprotease digestion. Cysteine residues were
reduced with 10 mM DTT at 65 ◦C for 30 min, followed by their alkylation with 22 mM
iodoacetamide at room temperature for 1 h in dark conditions. Proteins were digested
overnight at 37 ◦C using trypsin (1:50 w/w). Acidic precipitation of SDC was performed
by incubating each sample with 1% trifluoroacetic acid at 37 ◦C for 45 min. Samples were
centrifuged at 16,000× g for 10 min and subsequently desalted with Mobicol spin columns
(MoBiTec Molecular Biotechnology, Goettingen, Germany) equipped with 10 µm pore size
filters and filled with VersaFlash C18 spherical 70 Å silica particles. Peptides were dried
under vacuum and subsequently dissolved in 0.1% formic acid to achieve an estimated pep-
tide concentration of 0.5 µg/µL prior to liquid chromatography tandem mass spectrometry
(LC-MS/MS) data acquisition. Samples were injected three times to assess the technical
variability of the instrument. The peptides were analyzed by nanoLC-MS/MS on an EASY-
nLC coupled with an Orbitrap Fusion Tribrid mass spectrometer equipped with an EASY
spray source (Thermo Fisher Scientific, Waltham, MA, USA). The peptides were trapped
on a PepMap C18 precolumn (2 cm × 75 µm, i.d., 3 µm particle size, 100 Å pore size) and
separated at a flow rate of 300 nL/min onto a PepMap C18 column of 50 cm × 75 µm i.d.,
2 µm, 100 Å pore size heated at 35 ◦C. The analytical separation was run using a 125 min
gradient of 0.1% formic acid (mobile phase A) and acetonitrile/0.1% formic acid (mobile
phase B) as follows: from 5% to 22% B in 104 min, from 22% to 32% B in 15 min, from
32% to 90% B in 10 min. MS data were acquired in positive ion mode with a spray voltage
of 2.1 kV and a capillary temperature of 275 ◦C. A full MS1 survey scan was acquired
with a mass range of 375–1200 m/z, resolving power of 120,000 FWHM (at 200 m/z), and
a maximum injection time of 50 ms. The most intense precursors (minimum intensity
threshold of 5000, 2–7 charge state) were quadrupole-isolated (isolation width of 1.6 m/z)
and fragmented by higher energy collisional dissociation (HCD) at the normalized colli-
sion energy (NCE) of 27%. Detection was carried out in the dual-pressure ion trap (IT)
with an AGC of 2000 and a maximum injection time of 300 ms. A dynamic exclusion
of 60 s was enabled. Raw data were converted into mzML files and queried against the hu-
man UniprotKB/Swiss-Prot TrEMBL database (188558 sequences) (September 2019) using
X!Tandem (TPP tool) [45]. The parameters used to match the detected features included
in each peak list and the theoretical masses were as follows: a precursor and fragment
ion tolerance of 10 ppm and 0.5 Da, respectively; 2 missed cleavages allowed for trypsin
digestion; cysteine residues carbamidomethylation as static modification (+57.021464 Da);
methionine oxidation (+15.994915 Da) and N-terminal acetylation (+42.010565 Da) as vari-
able modifications. False discovery rate (FDR) was performed by matching the peak list
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data against a decoy database composed of reversed protein sequences. The estimated
number of false-positive peptide identifications was then calculated to filter the true posi-
tive matches according to an FDR ≤ 5% using Mayu v1.06 software [46]. The generated
pepXML files were manually processed using the MS1 full-scan filtering option of Skyline
software v3.1 (McCoss Lab, Seattle, WA, USA) [47] to extract the peak areas of all the identi-
fied peptides. Peak areas values of peptides belonging to the same protein were integrated
to obtain total protein abundance per entry. Protein abundances were normalized by the to-
tal abundance of all the identified proteins for each run. Proteins were considered to be
differentially expressed with an absolute fold change (|FC|) > 3.

2.5. Protein–Protein Interaction (PPI) Network and Gene Ontology (GO) Analysis

Functional PPI networks were generated using only the differentially expressed proteins
queried against the STRING v11.0 database in Cytoscape v3.8.2 [48] with a cut-off confidence
score equal to 0.4. All nodes (proteins) with a number of edges lower than 4 were filtered out
from the network construction. Proteins belonging to each network were assessed for biolog-
ical processes using the Cytoscape plug-in ClueGO [49] using the following parameters: a
p-value ≤ 0.01 integrated with a Bonferroni step down correction; a GO tree interval between
4 and 8; a minimum number of genes per cluster of 4, with 4% of genes; a kappa score of 0.4;
an initial group size of 3 terms, with a percentage of overlapping terms per group of 50%. GO
term fusion of similar associated genes was enabled.

3. Results
3.1. Lipoproteins Purification

LDL and HDL fractions were purified from pooled plasma samples from patients
undergoing carotid endarterectomy with either soft or hard plaques and from healthy
normolipidemic volunteers. The adopted purification procedure, an isopycnic salt gradient
ultracentrifugation followed by a further step of fraction flotation by high centrifugal fields,
provided highly purified LDL and HDL fractions, as shown by their 1-D electrophoretic
profiles (Figure 1). In particular, none of the two fractions were grossly contaminated
by albumin. Furthermore, as expected, LDL fractions were composed of apolipoprotein
B100 for more than 95% of LDL apolipoproteins (upper part of the lane, panel A), whereas
apolipoprotein AI represented over 80% of HDL apolipoproteins (panel B).
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Figure 1. Representative mono-dimensional profiles of both LDL (panel A) and HDL (panel B) fractions purified by isopycnic
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gels. Grey arrowhead indicates the apolipoprotein B100 band (>550 kDa MW) (panel A), and white arrowhead indicates
the apolipoprotein AI band ('28 kDa MW) (panel B). In both panels, the black arrowheads indicate where the albumin
('66 kDa MW) band would be located.

3.2. Proteomics Characterization of HDL and LDL

Protein extracts from both HDL and LDL fractions were digested and analyzed using
a data-dependent mass method coupled to label-free quantification at the MS1 level. A total
of 129 proteins were quantified from the HDL fraction, with an average squared Pearson
correlation (R2) of 0.973 and an average coefficient of variation (%CV) of 31.7%. Concerning
the LDL fraction, 87 proteins were quantified with an average R2 of 0.978 and an average
%CV of 10.9%. HDL and LDL fractions shared 61 proteins, whereas 68 and 26 were uniquely
found in HDL and LDL fractions, respectively (Figure 2, Supplementary Material 2).
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Figure 2. Venn diagram showing the distribution between HDL and LDL of the 155 proteins identified.
The two lipoprotein fractions shared 61 proteins, whereas 68 and 26 proteins were exclusive to HDL
and LDL, respectively.

Identified proteins were compared with a reference database (http://www.DavidsonLab.
com, last update 24 April 2019). Among the 129 proteins identified in HDL, 84 were already
listed as “likely” HDL proteins, whereas two proteins, previously reported by two other labo-
ratories, namely, integrin beta-2 (ITGB2) and secretoglobin family 3A member 2 (SCGB3A2),
potentially increase the number of proteins that could be considered HDL-associated to
221 (Supplementary Material 2). With regard to LDL, 20 proteins were already among
the “likely” LDL proteins, while 21 proteins, involved in complement and coagulation cas-
cades (Figure 3) [25,50], potentially double the list of protein species associated with high
confidence to LDL (Supplementary Material 2).
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3.3. Differential Expression Analysis

Differential expression analysis in both HDL and LDL was performed by comparing
protein abundances between fractions purified from “soft”, “hard”, and “CNTR” plasma
pools using a |FC| > 3.

A total of 84 and 16 proteins were found to be differentially expressed in HDL and LDL
fractions from atherosclerotic patients compared to controls, respectively (Supplementary
Material 3). Concerning HDL, 37 proteins were found to be down-regulated and 1 up-
regulated in the “hard” group, while 6 proteins were found down-regulated and 59 proteins
up-regulated in the “soft” group. Moreover, LDL showed 8 down-regulated and 1 up-
regulated proteins in the “hard” group, while 4 and 5 proteins were, respectively, under-
and over-expressed in “soft” plaques. Differentially expressed proteins were subsequently
used to generate PPI networks to study the functional association between them. A highly
interconnected network was obtained for HDL “hard” plague (Figure 4A), in which most
of the proteins were shown to be involved in biological functions related to protein processes,
including maturation (PCSK9, APOH), transport (HBA1, HBB, TTR, TF, LPA), localization
(CD44, LPA, F2, PCYOX1), inflammatory response (C4A, C4B, F2, A2M), wound healing
(SERPIND1, F2, CD44), and coagulation (SERPIND1, F2, CD44) (Figure 4B). Moreover,
the HDL “soft” network (Figure 4C) evidenced a significant enrichment in proteins involved
in acute inflammatory response (SERPING1, LBP, ORM1, and C4BPA), defense response
(ITGB1, PPBP, and DCD), response to wounding (NOTCH3, ITGB1, ITGB3, ITGA2, and
AGT), and lipid transport (LBP, APOL1, LPA, APOH, and APOF) (Figure 4D). Similarly,
networks generated from differentially expressed proteins of LDL “hard” (Figure 5A) and
“soft” (Figure 5C) plaques showed a high significance of biological processes related to acute
phase response and inflammation (ORM2, DCD, CD59, and A2M) for “hard plaques” and
lipid metabolic processes, transport, localization, and homeostasis (LRP2, APOH, APOC2,
APOC4, and APOF) for “soft plaques” (Figure 5B,D).

By comparing the protein abundances between “soft” and “hard” plaques (soft-to-
hard ratio), 82 proteins were found up-regulated and 4 proteins down-regulated in HDL
“soft” plaque (Supplementary Material 3). With regard to LDL, 15 and 1 proteins were up-
and down-regulated in “soft” plaques, respectively. Additionally, for these proteins, func-
tional networks were generated (Figure 6A,C, respectively, for HDL and LDL). GO analyses
showed significant enrichment in proteins involved in immune system processes, inflam-
mation, hemostasis, and lipid transport (to cite few) in the HDL “soft” group, whereas
terms such as “regulation of lipoprotein particle remodeling”, “regulation of lipoprotein
lipase activity”, “lipid metabolic process”, and “lipid transport” were enriched in the LDL
“soft” group (Figure 6B,D, respectively, for HDL and LDL).
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4. Discussion

Carotid atherosclerosis represents a relevant healthcare problem as unstable plaques
cause approximately 15% of neurologic events, namely, transient ischemic attack (TIA)
and stroke [51], the latter being responsible for 11.6% of global deaths [https://vizhub.
healthdata.org/gbd-compare/, last update 24 April 2019].

Several studies have shown that plaque instability is associated with a substantial
increase in inflammatory and proteolytic activity [12,52], oxidative modifications [15],
lipid accumulation, thrombosis, and angiogenesis [2,51]. Understanding the mechanisms
leading to plaque stabilization or to its evolution towards ulceration is mandatory to
prevent major adverse clinical events related to thrombosis and artery occlusion. In this

https://vizhub.healthdata.org/gbd-compare/
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respect, the identification of serum biomarkers of vulnerable carotid plaques may also be
useful for selecting patients requiring surgery [51].

We have performed a shotgun proteomic analysis on highly purified HDL and LDL
fractions from pooled plasma samples obtained through two ultracentrifugation steps
in high-salt media from patients who underwent carotid endarterectomy and healthy
controls, which allowed for the comparison of levels of tens of proteins simultaneously.
Plasma samples from patients were pooled according to carotid plaque echogenicity using
ultrasonography, a well-established non-invasive method to assess plaque characteristics
and the severity of carotid stenosis [39–43]. The use of pooled samples represents the major
limitation of the present study since each piece of data reported represents an average value
while a measurement of the level of variation or dispersion from the average is missing.

As reported by several studies, the method used to isolate lipoproteins significantly
affects the protein content of the resulting particles. The most widely used methods, es-
tablished in the 1950s [53], rely on ultracentrifugation in high-salt media containing KBr
or NaBr for lipoprotein purification (see Supplementary Material 1). Although the high
ionic strength, together with the high centrifugal field forces, might cause the loss of some
proteins from the lipoprotein particle, these methods allow us to identify proteins that are,
with high confidence, actually associated with a given lipoprotein fraction. In some appli-
cations, salts may be partially substituted by deuterium oxide, therefore reducing the ionic
strength of the solution [54]. Alternatively, lipoproteins can be isolated by immunopurifica-
tion [19], free solution isotachophoresis [55], or chromatographic techniques, such as fast
protein liquid chromatography [56] and size exclusion chromatography [57]. Even though
this probably reduces the loss of weakly associated protein, at the same time, it leads to
non-specific co-purification of protein contaminants or, in the case of immunopurification,
other lipoprotein fractions bearing the same antibody target.

According to “The HDL Proteome Watch Database” by the Davidson Laboratory
(http://www.DavidsonLab.com, last update 24 April 2019), which includes 41 proteomics
studies on HDL, published up to 2020, 819 proteins have been identified, of which 219 (de-
fined “likely” HDL proteins) have been reported by at least three different laboratories.
In this study, 129 proteins were identified, including 84 “likely” HDL proteins and two
proteins previously reported by two other laboratories, integrin beta-2 (P05107) and secre-
toglobin family 3A member 2 (Q96PL1), which potentially increase the number of proteins
that could be considered HDL-associated to 221.

With regard to LDL, the Davidson database lists 60 proteins from 4 proteomics studies
up to 2015; of these, 22 (defined “likely” LDL proteins) were identified independently
by at least two studies. We identified 87 LDL associated proteins, of which 20 were from
the “likely” LDL proteins list and 21 were already reported by either Dashty et al. (20 out
of 21) [25] or Bancells C et al. (Protein S100-A9, P06702) [50], potentially doubling the pro-
tein species of the LDL cargo. Interestingly, GO analysis has shown a functional association
between these proteins and complement activation, as already evidenced by the fact that
LDL and its acetylated form induce complement activation and C3b opsonization [58].

Commonly identified proteins in both HDL and LDL included 15 apolipoproteins
(A-I, A-II, A-IV, A-V, B-100, C-I, C-II, C-III, C-IV, D, E, F, L1, M, (a)), complement factors
(C3, C4-A, C4-b, and C9), fibrinogen (α, β, and γ chains), and several immunoglobulin
isoforms and serum amyloid proteins (A-1, A-2, and A-4). The 68 proteins uniquely identi-
fied in the HDL fraction included proteins involved in innate immune response (C4BPA,
SERPING1, CAMP), extracellular matrix organization (CD44, ITGA2, ITGA2B, ITGB3),
and acute phase response (F2, ITIH4, LBP, and SERPINF2). On the other hand, proteins
involved in “leukocyte migration” (ITGA6, SELL), “platelet degranulation” (CD9, A1BG,
TUB4A), and “cell surface signaling pathway” (CD59, CD9, MADD) were exclusively
found in the LDL fraction.

Both “hard” and “soft” lipoprotein fractions shared proteins involved in biological
processes such as inflammatory and immune responses, complement activation, and blood
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coagulation, confirming the relevance of these events in the generation and worsening
of atherosclerotic plaques, as already shown by a large amount of evidence [59–62].

Particularly, some proteins that might contribute to increase cardiovascular risk in pa-
tients with soft plaque showed higher expression levels in HDL “soft” compared to “hard”,
including complement factors C3 and C4, which have been described to promote atheroscle-
rosis [63]; integrins, which are a class of proteins that may mediate the recruitment of in-
flammatory cells to atherosclerotic plaques [64]; prenylcysteine oxidase 1 [65], which is a
pro-oxidant enzyme; transthyretin [66]; and lipopolysaccharide-binding protein, which has
been previously evidenced to play a role in atherosclerosis development [67] and cardiovas-
cular mortality [68]. Moreover, some SAA proteins (SAA1, SAA2, and SAA4) were found
up-regulated in the HDL “soft” group but down-regulated, with the exception of SAA1,
in the LDL “soft” group. Despite the role of SAA proteins in atherogenesis still being
unclear, evidence has shown that their altered regulation is correlated with an increased
cardiovascular risk through the binding of lipoproteins to vascular extracellular matrix
proteoglycans [69,70] and the favoring of chemiotaxis by activating toll-like receptors via
serum amyloid A [71].

5. Conclusions

By applying shotgun proteomics to the analysis of lipoproteomes, this study has
provided new insights into the protein composition of both HDL and LDL, widening
the already substantial HDL proteome with two additional HDL-like proteins and the LDL
proteome with twenty-one additional LDL-like proteins, with potential implications in in-
flammatory, immune, and coagulation pathways. Furthermore, differential expression
analysis has shown protein signatures specific for patients with “hard” or “soft” plaques,
which represent a useful starting point for further research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9091156/s1, Supplementary Material 1: Main findings and methodological
approaches of the last twenty-year lipoproteomics studies on VLDL, LDL and HDL purified fractions.
Studies dealing with cardiovascular disease (CVD), diabetes, kidney disease and experimental
atherosclerosis are highlighted with different colours. Supplementary Material 2: List of HDL and
LDL proteins identified in this study, also following sorting in HDL exclusive, LDL exclusive and
shared. HDL. Proteins previously identified in minimum of 3 separate laboratories and defined
“Likely” HDL proteins, according to Davidson's Lab Database, are highlighted in green, whereas
proteins previously identified in 2 separate laboratories are in yellow. Supplementary Material 3. List
of identified HDL and LDL proteins in the two groups of patients and controls, their abundances
(mean values from three technical replicates) and the absolute fold change (|FC|) with respect to
each other. FC > 3 are highlighted in green whereas FC < 0.33 in red.
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Nat. Rev. Dis. Prim. 2019, 5, 56. [CrossRef] [PubMed]
3. Puig, N.; Jiménez-Xarrié, E.; Camps-Renom, P.; Benitez, S. Search for Reliable Circulating Biomarkers to Predict Carotid Plaque

Vulnerability. Int. J. Mol. Sci. 2020, 21, 8236. [CrossRef]
4. Zhu, G.; Hom, J.; Li, Y.; Jiang, B.; Rodriguez, F.; Fleischmann, D.; Saloner, D.; Porcu, M.; Zhang, Y.; Saba, L.; et al. Carotid plaque

imaging and the risk of atherosclerotic cardiovascular disease. Cardiovasc. Diagn. Ther. 2020, 10, 1048–1067. [CrossRef]
5. Tuñón, J.; Martín-Ventura, J.L.; Blanco-Colio, L.M.; Lorenzo, O.; López, J.A.; Egido, J. Proteomic strategies in the search of new

biomarkers in atherothrombosis. J. Am. Coll. Cardiol. 2010, 55, 2009–2016. [CrossRef] [PubMed]
6. Rocchiccioli, S.; Pelosi, G.; Rosini, S.; Marconi, M.; Viglione, F.; Citti, L.; Ferrari, M.; Trivella, M.G.; Cecchettini, A. Secreted

proteins from carotid endarterectomy: An untargeted approach to disclose molecular clues of plaque progression. J. Transl. Med.
2013, 11, 260. [CrossRef] [PubMed]

7. Eslava-Alcon, S.; Extremera-García, M.J.; González-Rovira, A.; Rosal-Vela, A.; Rojas-Torres, M.; Beltran-Camacho, L.; Sanchez-
Gomar, I.; Jiménez-Palomares, M.; Alonso-Piñero, J.A.; Conejero, R.; et al. Molecular signatures of atherosclerotic plaques:
An up-dated panel of protein related markers. J. Proteom. 2020, 221, 103757. [CrossRef]

8. Lygirou, V.; Latosinska, A.; Makridakis, M.; Mullen, W.; Delles, C.; Schanstra, J.P.; Zoidakis, J.; Pieske, B.; Mischak, H.; Vlahou, A.
Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease. J. Transl. Med. 2018, 16, 104. [CrossRef]

9. Delles, C.; Diez, J.; Dominiczak, A.F. Urinary proteomics in cardiovascular disease: Achievements, limits and hopes. Pro-
teom. Clin. Appl. 2011, 5, 222–232. [CrossRef]

10. Hoofnagle, A.N.; Heinecke, J.W. Lipoproteomics: Using mass spectrometry-based proteomics to explore the assembly, structure,
and function of lipoproteins. J. Lipid Res. 2009, 50, 1967–1975. [CrossRef]

11. Shah, A.S.; Tan, L.; Long, J.L.; Davidson, W.S. Proteomic diversity of high density lipoproteins: Our emerging understanding
of its importance in lipid transport and beyond. J. Lipid Res. 2013, 54, 2575–2585. [CrossRef] [PubMed]

12. Lepedda, A.J.; Cigliano, A.; Cherchi, G.M.; Spirito, R.; Maggioni, M.; Carta, F.; Turrini, F.; Edelstein, C.; Scanu, A.M.;
Formato, M. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid
arteries. Atherosclerosis 2009, 203, 112–118. [CrossRef]

13. Lepedda, A.J.; Lobina, O.; Rocchiccioli, S.; Nieddu, G.; Ucciferri, N.; De Muro, P.; Idini, M.; Nguyen, H.Q.; Guarino, A.;
Spirito, R.; et al. Identification of differentially expressed plasma proteins in atherosclerotic patients with type 2 diabetes.
J. Diabetes Complicat. 2016, 30, 880–886. [CrossRef] [PubMed]

14. Lepedda, A.J.; Zinellu, A.; Nieddu, G.; Zinellu, E.; Carru, C.; Spirito, R.; Guarino, A.; De Muro, P.; Formato, M. Protein sulfhydryl
group oxidation and mixed-disulfide modifications in stable and unstable human carotid plaques. Oxid. Med. Cell. Longev. 2013,
2013, 403973. [CrossRef]

15. Lepedda, A.J.; Formato, M. Oxidative Modifications in Advanced Atherosclerotic Plaques: A Focus on In Situ Protein Sulfhydryl
Group Oxidation. Oxid. Med. Cell. Longev. 2020, 2020, 6169825. [CrossRef] [PubMed]

16. Nakashima, Y.; Wight, T.N.; Sueishi, K. Early atherosclerosis in humans: Role of diffuse intimal thickening and extracellular
matrix proteoglycans. Cardiovasc. Res. 2008, 79, 14–23. [CrossRef]

17. Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and Reverse Cholesterol Transport. Circ. Res. 2019, 124, 1505–1518. [CrossRef]
18. Kajani, S.; Curley, S.; McGillicuddy, F.C. Unravelling HDL-Looking beyond the Cholesterol Surface to the Quality Within.

Int. J. Mol. Sci. 2018, 19, 1971. [CrossRef]
19. Vaisar, T.; Pennathur, S.; Green, P.S.; Gharib, S.A.; Hoofnagle, A.N.; Cheung, M.C.; Byun, J.; Vuletic, S.; Kassim, S.; Singh, P.; et al.

Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin.
Investig. 2007, 117, 746–756. [CrossRef] [PubMed]

20. Heinecke, J.W. The protein cargo of HDL: Implications for vascular wall biology and therapeutics. J. Clin. Lipidol. 2010, 4, 371–375.
[CrossRef]

21. Alwaili, K.; Bailey, D.; Awan, Z.; Bailey, S.D.; Ruel, I.; Hafiane, A.; Krimbou, L.; Laboissiere, S.; Genest, J. The HDL proteome
in acute coronary syndromes shifts to an inflammfatory profile. Biochim. Biophys. Acta 2012, 1821, 405–415. [CrossRef] [PubMed]

22. Yan, L.R.; Wang, D.X.; Liu, H.; Zhang, X.X.; Zhao, H.; Hua, L.; Xu, P.; Li, Y.S. A pro-atherogenic HDL profile in coronary heart
disease patients: An iTRAQ labelling-based proteomic approach. PLoS ONE 2014, 9, e98368. [CrossRef]

http://doi.org/10.1111/joim.12406
http://doi.org/10.1038/s41572-019-0106-z
http://www.ncbi.nlm.nih.gov/pubmed/31420554
http://doi.org/10.3390/ijms21218236
http://doi.org/10.21037/cdt.2020.03.10
http://doi.org/10.1016/j.jacc.2010.01.036
http://www.ncbi.nlm.nih.gov/pubmed/20447523
http://doi.org/10.1186/1479-5876-11-260
http://www.ncbi.nlm.nih.gov/pubmed/24131807
http://doi.org/10.1016/j.jprot.2020.103757
http://doi.org/10.1186/s12967-018-1476-9
http://doi.org/10.1002/prca.201000125
http://doi.org/10.1194/jlr.R900015-JLR200
http://doi.org/10.1194/jlr.R035725
http://www.ncbi.nlm.nih.gov/pubmed/23434634
http://doi.org/10.1016/j.atherosclerosis.2008.07.001
http://doi.org/10.1016/j.jdiacomp.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/27037039
http://doi.org/10.1155/2013/403973
http://doi.org/10.1155/2020/6169825
http://www.ncbi.nlm.nih.gov/pubmed/31998439
http://doi.org/10.1093/cvr/cvn099
http://doi.org/10.1161/CIRCRESAHA.119.312617
http://doi.org/10.3390/ijms19071971
http://doi.org/10.1172/JCI26206
http://www.ncbi.nlm.nih.gov/pubmed/17332893
http://doi.org/10.1016/j.jacl.2010.08.005
http://doi.org/10.1016/j.bbalip.2011.07.013
http://www.ncbi.nlm.nih.gov/pubmed/21840418
http://doi.org/10.1371/journal.pone.0098368


Biomedicines 2021, 9, 1156 15 of 17

23. Lepedda, A.J.; Nieddu, G.; Zinellu, E.; De Muro, P.; Piredda, F.; Guarino, A.; Spirito, R.; Carta, F.; Turrini, F.; Formato, M. Proteomic
analysis of plasma-purified VLDL, LDL, and HDL fractions from atherosclerotic patients undergoing carotid endarterectomy:
Identification of serum amyloid A as a potential marker. Oxid. Med. Cell. Longev. 2013, 2013, 385214. [CrossRef]

24. Green, P.S.; Vaisar, T.; Pennathur, S.; Kulstad, J.J.; Moore, A.B.; Marcovina, S.; Brunzell, J.; Knopp, R.H.; Zhao, X.Q.; Heinecke, J.W.
Combined statin and niacin therapy remodels the high-density lipoprotein proteome. Circulation 2008, 118, 1259–1267. [CrossRef]

25. Dashty, M.; Motazacker, M.M.; Levels, J.; de Vries, M.; Mahmoudi, M.; Peppelenbosch, M.P.; Rezaee, F. Proteome of human plasma
very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb. Haemost.
2014, 111, 518–530. [CrossRef]

26. Vaisar, T.; Mayer, P.; Nilsson, E.; Zhao, X.Q.; Knopp, R.; Prazen, B.J. HDL in humans with cardiovascular disease exhibits a
proteomic signature. Clin. Chim. Acta 2010, 411, 972–979. [CrossRef] [PubMed]

27. Tan, Y.; Liu, T.R.; Hu, S.W.; Tian, D.; Li, C.; Zhong, J.K.; Sun, H.G.; Luo, T.T.; Lai, W.Y.; Guo, Z.G. Acute coronary syndrome
remodels the protein cargo and functions of high-density lipoprotein subfractions. PLoS ONE 2014, 9, e94264. [CrossRef]
[PubMed]

28. Cubedo, J.; Padró, T.; García-Moll, X.; Pintó, X.; Cinca, J.; Badimon, L. Proteomic signature of Apolipoprotein J in the early phase
of new-onset myocardial infarction. J. Proteome Res. 2011, 10, 211–220. [CrossRef]

29. Rubinow, K.B.; Henderson, C.M.; Robinson-Cohen, C.; Himmelfarb, J.; de Boer, I.H.; Vaisar, T.; Kestenbaum, B.; Hoofnagle, A.N.
Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int. 2017, 92, 1526–1535.
[CrossRef]

30. Wang, K.; Zelnick, L.R.; Hoofnagle, A.N.; Vaisar, T.; Henderson, C.M.; Imrey, P.B.; Robinson-Cohen, C.; de Boer, I.H.; Shiu, Y.T.;
Himmelfarb, J.; et al. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin. J. Am. Soc. Nephrol. 2018, 13,
1225–1233. [CrossRef]

31. Shao, B.; de Boer, I.; Tang, C.; Mayer, P.S.; Zelnick, L.; Afkarian, M.; Heinecke, J.W.; Himmelfarb, J. A Cluster of Proteins Implicated
in Kidney Disease Is Increased in High-Density Lipoprotein Isolated from Hemodialysis Subjects. J. Proteome Res. 2015, 14,
2792–2806. [CrossRef]

32. Shao, B.; Zelnick, L.R.; Wimberger, J.; Himmelfarb, J.; Brunzell, J.; Davidson, W.S.; Snell-Bergeon, J.K.; Bornfeldt, K.E.; de Boer,
I.H.; Heinecke, J.W. Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes
Mellitus. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1483–1491. [CrossRef]

33. Gourgari, E.; Ma, J.; Playford, M.P.; Mehta, N.N.; Goldman, R.; Remaley, A.T.; Gordon, S.M. Proteomic alterations of HDL
in youth with type 1 diabetes and their associations with glycemic control: A case-control study. Cardiovasc. Diabetol. 2019, 18, 43.
[CrossRef] [PubMed]

34. Kheniser, K.G.; Osme, A.; Kim, C.; Ilchenko, S.; Kasumov, T.; Kashyap, S.R. Temporal Dynamics of High-Density Lipoprotein
Proteome in Diet-Controlled Subjects with Type 2 Diabetes. Biomolecules 2020, 10, 520. [CrossRef] [PubMed]

35. O’Reilly, M.; Dillon, E.; Guo, W.; Finucane, O.; McMorrow, A.; Murphy, A.; Lyons, C.; Jones, D.; Ryan, M.; Gibney, M.; et al. High-
Density Lipoprotein Proteomic Composition, and not Efflux Capacity, Reflects Differential Modulation of Reverse Cholesterol
Transport by Saturated and Monounsaturated Fat Diets. Circulation 2016, 133, 1838–1850. [CrossRef]

36. Gordon, S.M.; Li, H.; Zhu, X.; Tso, P.; Reardon, C.A.; Shah, A.S.; Lu, L.J.; Davidson, W.S. Impact of genetic deletion of platform
apolipoproteins on the size distribution of the murine lipoproteome. J. Proteom. 2016, 146, 184–194. [CrossRef]

37. Brott, T.G.; Halperin, J.L.; Abbara, S.; Bacharach, J.M.; Barr, J.D.; Bush, R.L.; Cates, C.U.; Creager, M.A.; Fowler, S.B.; Friday, G.; et al.
2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management
of patients with extracranial carotid and vertebral artery disease: Executive summary: A report of the American College
of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association,
American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology,
American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention,
Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional
Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Developed in collaboration with the American Academy
of Neurology and Society of Cardiovascular Computed Tomography. Catheter. Cardiovasc. Interv. 2013, 81, E76–E123. [CrossRef]

38. Gray-Weale, A.C.; Graham, J.C.; Burnett, J.R.; Byrne, K.; Lusby, R.J. Carotid artery atheroma: Comparison of preoperative B-mode
ultrasound appearance with carotid endarterectomy specimen pathology. J. Cardiovasc. Surg. 1988, 29, 676–681.

39. Huibers, A.; de Borst, G.J.; Bulbulia, R.; Pan, H.; Halliday, A.; ACST-1 Collaborative Group. Plaque Echolucency and the Risk
of Ischaemic Stroke in Patients with Asymptomatic Carotid Stenosis Within the First Asymptomatic Carotid Surgery Trial
(ACST-1). Eur. J. Vasc. Endovasc. Surg. 2016, 51, 616–621. [CrossRef]

40. Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.;
et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477.
[CrossRef]

41. Nezu, T.; Hosomi, N. Usefulness of Carotid Ultrasonography for Risk Stratification of Cerebral and Cardiovascular Disease.
J. Atheroscler. Thromb. 2020, 27, 1023–1035. [CrossRef]

42. Cismaru, G.; Serban, T.; Tirpe, A. Ultrasound Methods in the Evaluation of Atherosclerosis: From Pathophysiology to Clinic.
Biomedicines 2021, 9, 418. [CrossRef]

http://doi.org/10.1155/2013/385214
http://doi.org/10.1161/CIRCULATIONAHA.108.770669
http://doi.org/10.1160/TH13-02-0178
http://doi.org/10.1016/j.cca.2010.03.023
http://www.ncbi.nlm.nih.gov/pubmed/20307520
http://doi.org/10.1371/journal.pone.0094264
http://www.ncbi.nlm.nih.gov/pubmed/24736723
http://doi.org/10.1021/pr100805h
http://doi.org/10.1016/j.kint.2017.05.020
http://doi.org/10.2215/CJN.11321017
http://doi.org/10.1021/acs.jproteome.5b00060
http://doi.org/10.1161/ATVBAHA.119.312556
http://doi.org/10.1186/s12933-019-0846-9
http://www.ncbi.nlm.nih.gov/pubmed/30922315
http://doi.org/10.3390/biom10040520
http://www.ncbi.nlm.nih.gov/pubmed/32235466
http://doi.org/10.1161/CIRCULATIONAHA.115.020278
http://doi.org/10.1016/j.jprot.2016.06.035
http://doi.org/10.1002/ccd.22983
http://doi.org/10.1016/j.ejvs.2015.11.013
http://doi.org/10.1093/eurheartj/ehz425
http://doi.org/10.5551/jat.RV17044
http://doi.org/10.3390/biomedicines9040418


Biomedicines 2021, 9, 1156 16 of 17

43. Gupta, A.; Kesavabhotla, K.; Baradaran, H.; Kamel, H.; Pandya, A.; Giambrone, A.E.; Wright, D.; Pain, K.J.; Mtui, E.E.; Suri, J.S.;
et al. Plaque echolucency and stroke risk in asymptomatic carotid stenosis: A systematic review and meta-analysis. Stroke 2015,
46, 91–97. [CrossRef] [PubMed]

44. Idini, M.; Wieringa, P.; Rocchiccioli, S.; Nieddu, G.; Ucciferri, N.; Formato, M.; Lepedda, A.; Moroni, L. Glycosaminoglycan
functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomater. 2019, 96, 188–202. [CrossRef] [PubMed]

45. Deutsch, E.W.; Mendoza, L.; Shteynberg, D.; Slagel, J.; Sun, Z.; Moritz, R.L. Trans-Proteomic Pipeline, a standardized data
processing pipeline for large-scale reproducible proteomics informatics. Proteom. Clin. Appl. 2015, 9, 745–754. [CrossRef]
[PubMed]

46. Reiter, L.; Claassen, M.; Schrimpf, S.P.; Jovanovic, M.; Schmidt, A.; Buhmann, J.M.; Hengartner, M.O.; Aebersold, R. Protein
identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteom.
2009, 8, 2405–2417. [CrossRef] [PubMed]

47. Schilling, B.; Rardin, M.J.; MacLean, B.X.; Zawadzka, A.M.; Frewen, B.E.; Cusack, M.P.; Sorensen, D.J.; Bereman, M.S.; Jing, E.;
Wu, C.C.; et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms
in skyline: Application to protein acetylation and phosphorylation. Mol. Cell. Proteom. 2012, 11, 202–214. [CrossRef]

48. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

49. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J.
ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics
2009, 25, 1091–1093. [CrossRef]

50. Bancells, C.; Canals, F.; Benítez, S.; Colomé, N.; Julve, J.; Ordóñez-Llanos, J.; Sánchez-Quesada, J.L. Proteomic analysis of elec-
tronegative low-density lipoprotein. J. Lipid Res. 2010, 51, 3508–3515. [CrossRef]

51. Hermus, L.; Lefrandt, J.D.; Tio, R.A.; Breek, J.C.; Zeebregts, C.J. Carotid plaque formation and serum biomarkers. Atherosclerosis
2010, 213, 21–29. [CrossRef] [PubMed]

52. Formato, M.; Farina, M.; Spirito, R.; Maggioni, M.; Guarino, A.; Cherchi, G.M.; Biglioli, P.; Edelstein, C.; Scanu, A.M. Evidence for a
proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries. Arter. Thromb.
Vasc. Biol. 2004, 24, 129–135. [CrossRef] [PubMed]

53. Havel, R.J.; Eder, H.A.; Bragdon, J.H. The distribution and chemical composition of ultracentrifugally separated lipoproteins
in human serum. J. Clin. Investig. 1955, 34, 1345–1353. [CrossRef]

54. Ståhlman, M.; Davidsson, P.; Kanmert, I.; Rosengren, B.; Borén, J.; Fagerberg, B.; Camejo, G. Proteomics and lipids of lipoproteins
isolated at low salt concentrations in D2O/sucrose or in KBr. J. Lipid Res. 2008, 49, 481–490. [CrossRef] [PubMed]

55. Böttcher, A.; Schlosser, J.; Kronenberg, F.; Dieplinger, H.; Knipping, G.; Lackner, K.J.; Schmitz, G. Preparative free-solution
isotachophoresis for separation of human plasma lipoproteins: Apolipoprotein and lipid composition of HDL subfractions.
J. Lipid Res. 2000, 41, 905–915. [CrossRef]

56. Collins, L.A.; Olivier, M. Quantitative comparison of lipoprotein fractions derived from human plasma and serum by liquid
chromatography-tandem mass spectrometry. Proteome Sci. 2010, 8, 42. [CrossRef]

57. Gordon, S.M.; Deng, J.; Lu, L.J.; Davidson, W.S. Proteomic characterization of human plasma high density lipoprotein fractionated
by gel filtration chromatography. J. Proteome Res. 2010, 9, 5239–5249. [CrossRef]

58. Klop, B.; van der Pol, P.; van Bruggen, R.; Wang, Y.; de Vries, M.A.; van Santen, S.; O’Flynn, J.; van de Geijn, G.J.; Njo, T.L.;
Janssen, H.W.; et al. Differential complement activation pathways promote C3b deposition on native and acetylated LDL thereby
inducing lipoprotein binding to the complement receptor 1. J. Biol. Chem. 2014, 289, 35421–35430. [CrossRef]

59. Speidl, W.S.; Kastl, S.P.; Huber, K.; Wojta, J. Complement in atherosclerosis: Friend or foe? J. Thromb. Haemost. 2011, 9, 428–440.
[CrossRef] [PubMed]

60. Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014, 276, 618–632.
[CrossRef] [PubMed]

61. Van Tuijl, J.; Joosten, L.A.B.; Netea, M.G.; Bekkering, S.; Riksen, N.P. Immunometabolism orchestrates training of innate immunity
in atherosclerosis. Cardiovasc. Res. 2019, 115, 1416–1424. [CrossRef] [PubMed]

62. Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018, 132, 1243–1252. [CrossRef]
63. Hertle, E.; van Greevenbroek, M.M.; Arts, I.C.; van der Kallen, C.J.; Geijselaers, S.L.; Feskens, E.J.; Jansen, E.H.; Schalkwijk, C.G.;

Stehouwer, C.D. Distinct associations of complement C3a and its precursor C3 with atherosclerosis and cardiovascular disease.
The CODAM study. Thromb. Haemost. 2014, 111, 1102–1111. [CrossRef] [PubMed]

64. Sotiriou, S.N.; Orlova, V.V.; Al-Fakhri, N.; Ihanus, E.; Economopoulou, M.; Isermann, B.; Bdeir, K.; Nawroth, P.P.; Preissner, K.T.;
Gahmberg, C.G.; et al. Lipoprotein(a) in atherosclerotic plaques recruits inflammatory cells through interaction with Mac-1
integrin. FASEB J. 2006, 20, 559–561. [CrossRef] [PubMed]

65. Herrera-Marcos, L.V.; Lou-Bonafonte, J.M.; Martinez-Gracia, M.V.; Arnal, C.; Navarro, M.A.; Osada, J. Prenylcysteine oxidase 1, a
pro-oxidant enzyme of low density lipoproteins. Front. Biosci. 2018, 23, 1020–1037. [CrossRef]
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