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ABSTRACT: We perform extensive molecular dynamics (MD) simulations between
pairs of ions of various diameters (2−5.5 Å in increments of 0.5 Å) and charge (+1 or
−1) interacting in explicit water (TIP3P) under ambient conditions. We extract their
potentials of mean force (PMFs). We develop an interpolation scheme, called i-PMF,
that is capable of capturing the full set of PMFs for arbitrary combinations of ion sizes
ranging from 2 to 5.5 Å. The advantage of the interpolation process is computational
cost. Whereas it can take 100 h to simulate each PMF by MD, we can compute an equivalently accurate i-PMF in seconds. This
process may be useful for rapid and accurate calculation of the strengths of salt bridges and the effects of bridging waters in
biomolecular simulations. We also find that our data is consistent with Collins’ “law of matching affinities” of ion solubilities:
small−small or large−large ion pairs are poorly soluble in water, whereas small−large are highly soluble.

■ INTRODUCTION

We describe here a method that can rapidly and accurately
compute the potentials of mean force (PMFs) between
spherical univalent ions in water. The PMF between an ion A
and ion B represents the reversible work (as a function of
distance between the two ions, r), averaged over all the
configurations of the surrounding solvent, needed to bring A
and B from infinite separation to a distance r.1,2 PMFs are
central to many solvation processes. For example, some pairs
of ions form a stable contact pair or salt bridge; others form a
stable solvent-separated pair and have intervening bridging
water molecules. The PMF is relevant to understanding the
solubilities of salts in water, the equilibria and dynamics when
a drug molecule approachesand binds toa protein
binding site, and how some parts of a protein molecule
approach other parts as the protein molecule folds.
Currently, the gold standard for computing the PMFs

between large moleculessuch as are typical in biologyis
to use explicit-solvent simulations with semiempirical force
fields. However, these simulations are often computationally
too expensive for many of the calculations that would be of
practical interest. Even in the case of simple spherical solutes,
extensive sampling is required to get converged results.
Various sampling techniques have been introduced to mitigate
the computational expense:3,4 constraints,5−8 umbrella sam-
pling,9 and weighted histogram methods,10 for example. On
the other hand, treating water explicitly in analytical theories
is challenging, because of the need to properly account for the
orientation (angular) effects of water. For simple salt
solutions, integral-equation theories often predict qualitatively

correct trends11−15 but not quantitative details.13,15 An
alternative is to use implicit-solvent models (such as
Poisson−Boltzmann (PB) or generalized Born (GB)),16−19

in which the solvent is approximated as a dielectric
continuum.19−26 Implicit-solvent models have the advantage
of computational speed: a PMF costs around 100 h of MD
simulation time in explicit water but only minutes on a
personal computer for PB PMF or fractions of a second for
GB.
However, implicit-solvent models do not capture the subtle

features of PMFs, which require some representation of
particulate water29,30 (see Figure 1). To correct for the energy
errors in implicit modeling, radii can be adjusted empirically,
but this can sacrifice transferability. Other approaches have
been applied to improving implicit-solvent models. Implicit-
solvent models can allow interstitial high dielectrics (e.g.,
water), but they give incorrect PMFs between nonbonded
atoms.31 Salt bridges, for example, treated via GB models are
typically too stable compared to explicit-solvent results, which
leads to oversampling such conformations in MD simu-
lations.32 Much work has been done to overcome these
difficulties, such as the following. A method for including a
single explicit bridging water between the pairs of the salt
bridge charges was proposed by Yu et al.,33 and it was shown
that this significantly improves the predictions. Geney et al.34

introduced an empirical correction to the dielectric radii of
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hydrogen atoms of charged protein groups, bringing the
contact depth of GB PMFs in better agreement with explicit
solvent for the tested salt bridges. Recently, Nguyen et al.35

did more systematic fits to improve the GB solvent model
parameters for protein simulations. To account for the proper
coupling between nonpolar and polar solvation energies in
implicit-solvent models, Dzubiella et al.36 proposed a
variational formalism where the Gibbs free energy of the
system is expressed as a functional of the solvent volume
exclusion function. The method captures the sensitivity of
solvent expulsion in cases of simple spherical solutes. Mongan
et al.37 proposed an extension of the GB model to correctly
describe the solvent-excluded volume of each pair of atoms,
and that improved the nonbonded PMFs. An empirical model
of Chen and Brooks38 captures the context dependence of the
effective surface tension, and the authors showed that it can
resolve deficiencies in PMFs of nonpolar peptide side chain
analogues.
Our goal here is an approach to computing ion−ion PMFs

that is both fast and accurate. We first perform MD
simulations in explicit solvent as our sort of gold standard
for what we aim to capture in a fast computational method.
We describe here a waywhich we call interpolation PMF (i-
PMF)to determine any ion−ion PMF from this set of
presimulated MD explicit-water PMF simulations. Thus, i-
PMF gets its physical accuracy from this precomputation
stage. i-PMF gets its speed because we simply capture the
explicit results by simple interpolations of the precomputed
results that we store in look-up tables. We show here that this
simple approach results in fast and accurate PMF determi-
nations. i-PMF is in the spirit of a recent solvation model
called SEA (semi-explicit assembly) in which solvation free
energies of single spheres are computed through an explicit-
simulation precompute step, and then assembled into the
solute of interest at run-time by summing regional free
energies.39−42

We describe below the two components of the i-PMF
method: First, we performed extensive MD simulations of
small spherical ions of different charges and radii, and
harvested their PMFs. Second, we describe our interpolation

algorithm, the i-PMF, that allows us to capture the
presimulated MD results with interpolation fits. Next, we
show that the i-PMF method gives good agreement with MD
and experimental results.

■ THEORETICAL METHODS

Details of the Ion−Ion PMF Simulations by MD in
Explicit Solvent. We performed MD simulations, mostly on
the TITAN supercomputer at Oak Ridge National Labo-
ratory,43 using version 4.6.2 of GROMACS.44 Each simulation
consisted of two charged solute particles and 635 water
molecules in a rhombic dodecahedron box. Periodic boundary
conditions were applied. All simulations were performed in
the isothermal−isobaric ensemble at 298.15 K and 1 atm by
applying the Nose−́Hoover thermostat (coupling constant of
2 ps) and Parrinello−Rahman barostat (coupling constant of
10 ps). The equations of motion were integrated using the
leapfrog algorithm with a time step of 0.2 ps. The smooth
version of the particle mesh Ewald (PME)45 was used to treat
electrostatics (grid spacing of 0.12, PME order of 4, real-space
cutoff of 9 Å, and Ewald screening parameter of 0.347 Å−1),
and a 9 Å cutoff for Lennard-Jones (LJ) interactions was used
along with long-ranged dispersion corrections for energy and
pressure. The LJ size parameter (σLJ) of the solutes ranged
from 2 to 5.5 Å in increments of 0.5 Å, while the LJ energy
parameter (ϵLJ) was set to 0.1 kcal·mol−1 for all solutes. The
choice for the σLJ range and for the ϵLJ value was based on
the values for the alkali metal (Na+, K+, Rb+, Cs+) and
halogenide (Cl−, Br−, I−) ion LJ parameters of the Dang force
field.46−49 The solute particles were each given a formal
charge of −1 or +1. We simulated all possible combinations
of solute pairs (of different sizes and charges), a total of 136
combinations (+1:−1, +1:+1, and −1:−1 ion pairs) for a
given water model. We performed simulations using the
TIP3P27 water model. Lorentz−Berthelot mixing rules were
used for σLJ and ϵLJ.
We obtained the PMFs from MD simulations in which

constraints were applied to hold the solute pairs at a series of
fixed interparticle separations during the course of the
simulation.5−7,50 The SHAKE algorithm was used to apply
the interparticle constraint. The closest distance between the
solute particles was 1.6 Å, and the largest interparticle distance
was 12 Å. In the interval from 1.6 to 5 Å, the separation step
was 0.1 Å, from 5 to 8 Å it was 0.2 Å, and 0.4 Å increments
were used for the rest (up to 12 Å). Therefore, to construct
the PMF for a given solute pair, 60 independent simulations
were performed where, after energy minimization and 0.1 ns
equilibration, the trajectory over 3 ns was collected (in total,
this amounted to 136 × 60 = 8160 independent MD runs).
The individual PMF was calculated by integrating the average
mean force over the solute separation distance, while the
entropic force due to the increase in phase space with solute
separation was added to the average mean force prior to
integration.6 Uncertainties in the average mean force values
were estimated from the limiting value of the block
averages,51 and the errors in PMF were calculated by
integrating the variances of the mean force.
In short, in the presimulation step of the i-PMF method,

we performed explicit-solvent (TIP3P water) MD simulations
to obtain the PMFs for different combinations of solute
charges (Q1, Q2) and LJ size parameters (σLJ,1 and σLJ,2). We
call these the “presimulated PMFs”. We tabulated the values of

Figure 1. PMFs of a model NaCl from explicit-solvent MD
simulation (symbols) and implicit-solvent theories: PB (continuous
blue line) and GB (dashed green line). The TIP3P water model27

was used in MD simulations. PB calculations were done with APBS
1.3 software,28 and GB results were obtained according to the GB
model of Still et al.23 The permittivity of water was set to 78.54 in
the PB and GB calculations. Parameters from Dang et al. were used
for Na+ and Cl− ions (see Table 1).
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the presimulated PMFs for given (Q1, Q2) and (σLJ,1, σLJ,2) at
the end of the Supporting Information file.
To validate that the i-PMF method is predictive, we

performed additional test MD runs for selected charge and
size combinations of ions with the same protocol. All results
apply to systems at 298.15 K and 1 atm. The LJ energy
parameter was the same for all ions (ϵLJ,ion = 0.1 kcal mol−1).
Interpolation Procedure for Capturing the Presimu-

lated MD PMFs. Our procedure handles three independent
variables. By definition, a PMF is the free energy as a function
of distance r between the two ions. In addition, here we aim
to account for two other variables at the same time, σLJ,1 and
σLJ,2, the diameters of the two ions, each of which has a given
fixed charge. Below is the procedure for performing this
interpolation from our MD simulation data, and we use this
process to determine PMFs for any given pair of charges on
the ions. Here is a short summary of how interpolations are
performed on two variables at the same time. Suppose that we
are given a matrix of functional values, f(xi, yj), that
correspond to points on a two-dimensional (n × m) grid of
points (xi, yj). Here, i goes from 1 to n and j goes from 1 to
m. In a two-dimensional interpolation, we want to estimate,
by interpolation, the function f at some point not tabulated
(xa, yb)we want to find f(xa, yb). The point (xa, yb) falls into
a grid square; i.e., four tabulated points surround the desired
interior point. Say that xi ≤ xa ≤ xi+1 and xj ≤ yb ≤ xj+1; let us
denote these four functional points in the following way
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In the simplest case of interpolation on the grid square
bilinear interpolationthe interpolation formula is52
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In order to obtain a smoother interpolated surface, higher-
order interpolation techniques are applied. For example, in bi-
cubic spline interpolation, we enforce the smoothness of some
of the derivatives as the interpolating point cross grid square
boundaries. To do a bicubic interpolation within a grid
square, one needs to know the function f and the derivatives
f x′ = ∂f/∂x, f y′ = ∂f/∂y, f xy′ = ∂f 2/∂x∂y at each of the four
corners of the square. The values of the derivatives at the grid
points are determined globally by one-dimensional splines.
The interpolating function has the following form52
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and we need to find 16 coefficients cmn by first solving the
equations for the square grid points. The function f was in our
case the PMF, and xi and yj were the σLJ. Besides bilinear and
cubic spline interpolation, we tested the performance of two
additional interpolation techniques (nearest-neighbor and
piecewise-cubic-Hermite-polynomial interpolations). For a
more detailed discussion regarding the two-dimensional
interpolation algorithms, see refs 52 and 53.
Now, we describe the i-PMF interpolation methodology for

capturing the PMF for any particular pair of ion sizes and
charges and water model. For a given pair of solutes with
charges Q1 and Q2 (Qi = +1 or −1) and for a given
interparticle separation distance r, a matrix of PMF values
corresponding to different combinations of the solutes’ LJ size
parameters (σLJ,1 and σLJ,2) was built from the presimulated
PMFs. The span of σLJ,1 and σLJ,2 was from 2 to 5.5 Å in
increments of 0.5 Å, so the matrix dimension was 8 × 8. In
total, 60 such matrices were constructed, each belonging to a
given interparticle separation distance r ∈ [1.6,12] Å (see
section above). For every matrix, a two-dimensional
interpolation fit through the grid points was performed. For
that purpose, we used the function “interp2” implemented in
the GNU Octave54,53 software (version 3.6.2). A matrix of
interpolated values was constructed and used as a look-up
table to determine the value of the PMF at a given r for an
arbitrary pair of σLJ,1′ , σLJ,2′ ∈ [2, 5.5] Å values. σLJ,1′ and σLJ,2′
are different from the size parameters σLJ,1 and σLJ,2 of the
ions used in the grid. Figure 2 shows a cartoon representation
of the proposed algorithm for PMF prediction.
We stored the interpolated values of the PMF for every

σLJ,1′ in the range from 2 to 5.5 Å in increments of ΔσLJ,1′ =
ΔσLJ,2′ = 0.01 Å (this means that the matrix of interpolated
values was of dimension 351 × 351 at each r). Although, for
example, σLJ values of ions in Dang force field are given to
five significant digits (see Table 1), no significant differences
in predicted PMFs were observed if smaller ΔσLJ′ were used to
store the interpolated data.
We tested different interpolation algorithms. By comparing

the PMF obtained via an interpolation scheme and a full
explicit-solvent simulation, we concluded that the cubic spline
interpolation method worked best in the majority of cases.
Details of this comparison are shown below.
For our initial i-PMF implementation, it takes approx-

imately 8 s on a personal computer (PC) to build tables of
presimulated values, interpolating through the grid points,
making the look-up tables of interpolated values, and
extracting from them the PMF for a desired combination of
charges and ion sizes. After the interpolation is performed a
single time and the look-up tables are available, the PMF can
be extracted in 2−3 s on a PC. This is a significant speed-up
compared to MD simulations. Our MD PMFs required a

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp501141j | J. Phys. Chem. B 2014, 118, 8017−80258019



cluster of computers with many processors (the value of the
PMF at each r is its own simulation), and in total, it takes
more than 100 h of CPU time to get a single PMF.
Comparison of Different Interpolation Schemes.

Figure 3 shows the results of the i-PMF method utilizing
four different interpolation algorithms. A size asymmetric
+1:−1 system mimicking potassium iodide (σLJ,+ = 3.3345 Å,
σLJ,− = 5.1705 Å; see Table 1) at infinite dilution was selected
as a representative case. A similar analysis of i-PMF
predictions in other cases shown in this paper is provided
in the Supporting Information. The simulated PMF shows a
deep first minimum, corresponding to the contact ion pair
(rCP ≈ 3.6 Å), a desolvation barrier at r ≈ 4.6 Å, and further
peaks involving the solvent shared/separated pairs (cf. Table
2). We see that all of the interpolation algorithms give a PMF
that qualitatively agrees with the simulated one. Nevertheless,
the performance of the nearest-neighbor interpolation is the
least accurate of the four interpolation algorithms over a
broad range of interparticle separation distances. It over-
estimates the contact pair (CP) peak and underestimates the
desolvation barrier (numerical data are collected in Table 2).
The bilinear interpolation underestimates the depth of the
contact pair minimum, and the values at short r (repulsive
wall) are shifted to somewhat larger r. The value of the CP
which follows from piecewise cubic Hermite polynomial
interpolation lies on the border of the experimental error, but
the rest of the PMF agrees within the error bars with the MD

results. The PMF obtained via the cubic spline interpolation
through the grid points gives the best agreement with the
simulated PMF. The positions of the characteristic peaks are
within the error bars (Table 2).
Here, we want to find the best interpolation method. The

goodness of the interpolation schemes for the i-PMF method
can be expressed in terms of the reduced χ2 parameter (see
the Supporting Information file for the definition). Smaller
χred

2 values indicate better agreement between the predicted
and simulated PMF. The values of χred

2 are 22.0 for bilinear
interpolation, 8.2 for nearest-neighbor interpolation, 1.8 for
piecewise cubic Hermite polynomial interpolation, and 0.4 for
cubic spline interpolation algorithm. The large value of χred

2 in
the case of the bilinear interpolation algorithm originates in
the differences between the predicted and simulated PMF at
small interparticle separation distances (the repulsive wall of
the PMF). The values of the PMF on the steep repulsive wall
are on the order of 103 kcal·mol−1 (and larger), but the error
in the case of +1:−1 ion pairs is small (∼10−2 kcal·mol−1).
Even though the differences between the predicted and
simulated PMFs are only around 1 kcal·mol−1, the χred

2

becomes extremely large due to the small error in the

Figure 2. Illustration of the i-PMF process from the bottom upward.
Presimulating a systematic series of ion size and charge combinations
on a supercomputer, Oak Ridge National Lab’s TITAN in this case,
provides us with a data set of accurately calculated PMFs. We
perform independent two-dimensional interpolations over these
solute size combination grids to determine the interaction strength
for two arbitrarily sized solutes across the full range of particle
separation distances. The estimated PMF is finally assembled from
this interpolation data for this specific solute pair.

Table 1. Dang Lennard-Jones Parameters for Selected
Alkali Metal and Halogenide Ions with Charges of Cations
at +1, Charges of Anions at −1, and ϵLJ = 0.1 kcal mol−1

cation σLJ (Å) anion σLJ (Å)

Na+ 2.5865 Cl− 4.4045
K+ 3.3345 Br− 4.6265
Rb+ 3.5305 I− 5.1705
Cs+ 3.8865

Figure 3. Comparison of i-PMF predicted PMFs using different
interpolation algorithms for PMF prediction in the case of a model
KI salt in TIP3P water: nearest-neighbor interpolation (blue line),
bilinear interpolation (orange line), piecewise cubic Hermite
polynomial interpolation (green line), and cubic spline interpolation
with smooth first and second derivatives (red line). Symbols denote
the test MD results obtained independently of the interpolation
scheme. The cubic spline interpolation algorithm best captures the
magnitude and shape of PMF features.

Table 2. Comparison of the Predicted Positions and Values
of the First and Second Minimum and the First Maximum
of the PMF for Potassium Iodide Obtained with MD and
the i-PMF Method Using Nearest-Neighbor (NN), Bilinear
(BL), Piecewise Cubic Hermite Polynomial (PC), and
Cubic Spline Interpolation with Smooth First and Second
Derivatives (CS)

first minimum first maximum second minimum

method
r

(Å)
PMF

(kcal mol−1)
r

(Å)
PMF

(kcal mol−1)
r

(Å)
PMF

(kcal mol−1)

MD 3.6 −1.22(3) 4.6 0.37(3) 6.0 −0.36(2)
NN 3.6 −1.38(3) 4.7 0.28(3) 6.0 −0.33(3)
BL 3.6 −0.92(4) 4.6 0.35(3) 6.0 −0.31(3)
PC 3.6 −1.16(3) 4.6 0.40(3) 6.0 −0.33(3)
CS 3.6 −1.21(4) 4.6 0.39(3) 6.0 −0.34(3)
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simulated PMF. This region of the PMF is not very important
when one discusses the structural aspects of ion−ion and
ion−water interactions (the χred2 was indeed defined in such a
way as to avoid points on the repulsive wall; see the
Supporting Information file). If two points on the steep
repulsive wall, lying just before the CP minimum (r < 3.6 Å),
are not taken into consideration when calculating χred

2, then
the value of χred

2 for bilinear interpolation lowers to 6.1. This
smaller value compared to the χred

2 for the nearest-neighbor
case agrees with the previous visual judgment of a better
overall prediction of the bilinear interpolation compared to a
nearest-neighbor fit. As a rule, a value of χred

2 = 1 suggests
that the extent of the agreement between observations and
estimates is in accord with the error variance. χred

2 > 1
indicates that the fit has not fully captured the data (or that
the error estimate has been underestimated), while χred

2 < 1
speaks in favor of an unexpectedly good fit. We have
concluded that (in the majority of cases) the most satisfactory
interpolation algorithm for predicting the PMF of opposite-
charged as well as like-charged PMFs involves the cubic spline
interpolation (see Tables S1−S4 of the Supporting
Information file). The method gives quantitative agreement
within the error bars in most of the relevant cases displayed in
the rest of the figures and in data presented in the Supporting
Information. In the following subsections, we show a few
characteristic cases that further demonstrate the quality of the
proposed PMF prediction scheme.
Here our studies are limited. We use only a single value of

the LJ energy parameter (ϵLJ), regardless of the charge or size
of the ions. This is true for the selected ions in the Dang ion
force field (cf. Table 1), but in principle, each ion could
require its own ϵLJ value. The present approach could readily
be generalized but at substantial computational expense. In
that case, the presimulated PMFs would need to be collected
for different combinations of ϵLJ. Instead of performing a two-
dimensional interpolation, a four-dimensional interpolation
through the PMF values corresponding to (σLJ,1, ϵLJ,1; σLJ,2,
ϵLJ,2) would need to be conducted.

■ RESULTS AND DISCUSSION
Here, we compare the results of the i-PMF method to the
results of the precomputed MD simulations. We find that i-
PMF works quite well across the whole range of solutes, from
small ions with high charge density to large ones having small
charge density. It captures the position and the depth of the
characteristic wells corresponding to the contact and solvent
shared/separated pairs and the height of the peaks of the
desolvation barriers. The method is even capable of capturing
the complex behavior of the PMF in the case of small ions
having a large charge density (<3 Å), where the path from the
solvent shared to solvent separated pair involves multiple
transition barriers.
Up to a distance of the CP minimum (i.e., for the values on

the repulsive wall), the cubic Hermite polynomial interpola-
tion performs slightly better than cubic spline interpolation
(not shown). In an extreme case of σLJ = 2.25 Å, the cubic
Hermite polynomial interpolation works better up to the
distance of the desolvation barrier. However, we need to
stress that in these cases the selected size parameters of ions
are small (2.25 Å) and do not correspond to practical model
situations. We selected this example to demonstrate that the
interpolation method works in “extreme” cases (inset in
Figure 4). Improved performance of the interpolation could

be achieved by providing a finer grid at the size edges, i.e.,
between 2 and 2.5 Å, and equivalently between 5 and 5.5 Å
for larger solutes. This would, however, require an increase in
the number of PMFs calculated in the presimulation step.
Figure S1 of the Supporting Information shows how the
interpolated PMF values change with increasing size of the
ions (size symmetric case) for few selected interparticle
separation distances. Comparison to the simulated values
shows that the deviations between predicted and simulated
values are the largest for solutes between 2 and 2.5 Å. The
χred

2 values for the cases displayed in Figure 4 are given in
Table S2 of the Supporting Information file. In the cases
where χred

2 is smaller for the cubic Hermite polynomial
interpolation compared to cubic spline interpolation, this
originates from the data on the repulsive wall. For the
relevant domains of the PMF, the cubic spline interpolation
gives the best results, as already discussed.
We also find that, in addition to working for ions having

identical sizes, i-PMF works for ions with different sizes.
Figure 5 shows PMFs for combinations of small and large
cations (Na+ and Cs+, respectively) with small and large
anions (Cl− and I−, respectively), using ion parameters listed
in Table 1. Results of predicted PMFs for NaCl and NaI ion
pairs in TIP3P water are given in panel a, and PMFs for CsCl
and CsI, in panel b. Displayed MD simulation data (symbols)
were obtained independently of the prediction scheme. In all
cases, the predicted PMF (cubic spline interpolation through
a presimulated grid of PMF values) agrees quantitatively with
the reference MD simulations. Results for other combinations
of ions given in Table 1 are shown in Figure S3 of the
Supporting Information file. The method performs somewhat
worse in the case of KCl, KBr, RbBr, and CsBr where some
parts of the PMF are either slightly over- or underestimated
compared to corresponding MD results. The differences are,
however, small, and the agreement can still be considered very
good. The quality of the prediction was estimated for all the
shown cases in terms of the χred

2 parameter (Table S1 of the
Supporting Information file). Out of all four interpolation
algorithms tested here, the cubic spline interpolation performs
the best. We find that i-PMF gives more accurate PMFs

Figure 4. i-PMF prediction (lines) and MD simulation (symbols)
PMFs for model size symmetric cations and anions. Solute sizes are
σLJ,+ = σLJ,− = 2.75 (blue), 3.25 (violet), 3.75 (purple), 4.25 (brown),
4.75 (green), and 5.25 Å (yellow); inset, 2.25 Å. In all cases, we find
that the predictions are nearly indistinguishable from MD
simulations, and i-PMF even captures the structural features of
“extreme” ion pairing cases where the ion sizes are unphysically small
(inset).
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(Figure 5a) than the simple PB or GB models in Figure 1
with similar computational performance.
We also computed PMFs for like-sign pairs, such as Na+−

Na+ and Cl−−Cl− ion pairs. Previously, such quantities have
been studied by integral-equation theories and computer
simulations.55−64 Again, we find excellent agreement between
the interpolation formulas and the MD simulations; see
Figure 6. We see the expected charge−charge repulsion.
Interestingly, because the solvent is water, the repulsions are
very weak. Examples of PMFs for other like-charged pairs of
ions from Table 1 are given in Figure S4 of the Supporting
Information file.
Predicting Association Constants for Ion Pairing by

Using Interpolated PMFs. In this section, we explore the
application of our PMF modeling to ion solubilities in water.
A quantitative measure of the ion pair formation is given by
the corresponding change in standard free energy. This
quantity is related to the equilibrium constant for the process.
The apparent association constant for the process of

forming an ion pair is in the case of univalent ions (A+ + B−

⇌ AB) defined as Ka = ([AB]/c⊖)·([A+]/c⊖)−1·([B−]/c⊖)−1,
where [X] denotes the molar concentration of species X and
c⊖ = 1 mol dm−3 is the standard molar concentration. The
change in standard free energy of ion pair formation is related
to the equilibrium constant via a thermodynamic relation
ΔG̵⊖ = −RT ln Ka. By conducting equilibrium MD
simulations where the free energy change is obtained by
counting the time that the ions spend in the associated and
dissociated states, one can calculate Ka. This, however,

requires running long explicit-solvent MD simulations for a
given ion pair in order to obtain reasonable statistics.65−70 An
alternative is to calculate the association constants from the
radial distribution function. Both approaches imply that a
definition of associated/dissociated state is given. Here, we
define an ion pair as a configuration of a cation and anion
where the two are not separated more than a certain distance
rCP. We take this distance to be the first minimum in the
cation−anion radial distribution function gAB(r) = exp-
[−PMFAB(r)/RT] (R denoting the gas constant), correspond-
ing to the so-called contact pair distance. For all r > rCP, we
treat ions as free. Concentrations of free ions and of the ion
pair can be estimated by integrating the gAB(r).

50 The ratio of
the concentration of the ion pair to the total concentration of
the electrolyte (ctot) is equal to

∫

∫
=

c

r g r r

r g r r
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( ) d
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0
2

AB

0
2

AB

CP

max

(5)

and the concentration of the free ions is [A+] = [B−] = ctot −
[AB]. Rmax is the largest interparticle separation distance (12
Å in our case). The total concentration of the electrolyte is
ctot = 3/(NA4πRmax

3), where NA is the Avogadro constant.
In Table 3, we compare predicted association constants for

ion pair formation, obtained from integrating the appropriate
parts of the predicted PMFs (eq 5), with the Ka from
reference MD simulation PMFs. We report the values for all
combinations of cation−anion pairs given in Table 1. Prior to
integration, a cubic spline interpolation was used to smooth
the original PMFs. It was demonstrated in previous
studies50,71 that this does not significantly affect the value of
Ka. The error in the association constant was determined as
ΔKa = |Ka′ − Ka″|/2, where Ka′ and Ka″ correspond to constants
obtained from a PMF increased and decreased by its variance,
respectively.
From Table 3, we see that the agreement of the predicted

association constants with the ones obtained by integration of
the simulated reference PMFs falls in most cases within the

Figure 5. i-PMF prediction (lines) and MD simulation (symbols)
PMFs for salts with dissimilarly sized cations and anions. Displayed
are sodium (panel a) and cesium (panel b) chlorides (green) and
iodides (purple). We find i-PMF gives quantitative agreement in all
cases, indicating that more complex mixed-size solute pairings are no
more challenging than the previous size-symmetric solute pairings.

Figure 6. i-PMF predicted (lines) and MD simulation (symbols)
PMFs for Na+−Na+ (yellow down-triangles and line), Cl−−Cl−
(green up-triangles and line), and Na+−Cl− (brown circles and
line). These results indicate that i-PMF can successfully predict all
the potential pair interactions (including like-charge interactions)
present in a given salt solution simulation. The i-PMF NaCl curve
also can be compared with the implicit results in Figure 1 to
highlight the method’s ability to capture the detailed pairing features
seen in explicit MD simulations.
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limits of the estimated errors. The predicted Ka is systemati-
cally smaller than the reference one in the cases of KCl, KBr,
and RbBr, and larger in the case of RbI and CsI. Small
differences in predicted and simulated PMFs accumulate in
the integration process, resulting in larger Ka differences than
one might expect through visually comparing both PMFs.
Also, the Rmax in eq 5 should in principle be ∞, but we were
restricted by the dimensions of the simulation box. Differ-
ences in PMFs at larger interparticle separation distances
amplify by integration and are reflected in estimated Ka. In
Figure S6 of the Supporting Information, we show predicted
association constants for size symmetric +1:−1 ion pairs as a
function of ion sizes. We see that the predicted Ka agree well
with constants determined from reference MD simulation
PMFs.
Finally, we explore the “law of matching water affinities” of

K. D. Collins.72 In short, this is the idea that small−small ion
pairs are insoluble in water (because of strong electrostatic
attractions), that large−large ion pairs are poorly soluble in
water (because they act largely like hydrophobic spheres), but
that large−small ion pairs are very soluble in water. Here, we
make a simple test using our interpolated PMFs. Since we can
consider the CP state as a precipitated form of the salt, the Ka
correlates with the solubility of the salt in question. Figure 7

therefore shows inverse values of the experimentally
determined solubilities73 in panel a and our predicted Ka
values in panel b. Experiments show that NaI and CsCl (one
ion big and the other small) have large solubilities (S−1 is
small), whereas CsI and NaCl (two big and two small ions)
have the smallest solubilities (S−1 is large). With respect to a
given cation, the predicted association constants show a
qualitatively similar pattern as experiments: for Cs+ salts Ka
diminishes from CsI to CsCl, for Rb+ and K+ there is not
much difference with respect to the anion, while for Na+ the
constants increase going from NaI to NaCl. For potassium
salts, experiments show a more significant increase in S−1 for
KCl than is reflected in the predicted Ka values. For salts with
a common anion, the predicted Ka values increase with
increasing size of the cation (from Na+ to Cs+). Such a trend
is expressed also in experimental data for I− and Br− salts but

not for Cl−. It seems that the predicted Ka value for KCl is
too small and the one for CsI too large. In that respect, the
predicted Ka for CsCl does not follow the law of matching
water affinities. It should be noted that these Ka results are
only for the set of ion parameters listed in Table 1. Many
other sets of ion parameters have been proposed, and
alternate sets may show different behavior.
Figure S7 of the Supporting Information shows a density

map of predicted Ka values for a systematic variation in the
sizes of anion−cation pairs (from 3 to 5.5 Å). We see that Ka
is the largest in the case of two big ions and the smallest for
the combination of one big and one small ion, in agreement
with Collins’ proposed behavior.

■ CONCLUSIONS
We performed extensive MD simulations of the PMFs
between ions of different sizes and charge in TIP3P water.
By applying an interpolation scheme (i-PMF) on this
presimulated PMF data set, we can calculate PMFs accurately
and quickly for an arbitrary combination of size and charge of
the two ions. We tested various interpolation formulas and
found that the cubic spline interpolation algorithm gives the
most accurate representation of the majority of MD results.
The accuracy of the prediction is scalable based on the
density of the presimulated PMF grid. Improved agreement
could come from a denser grid of PMFs or an expanded set
of sizes. The advantage of the interpolations is about a 5
order of magnitude gain in speed, without loss of predictive
accuracy (within the error bars). Our interpolated PMFs are
consistent with experimentally observed ion-pair solubilities
and with Collins’ law of matching affinities. The i-PMF
method may be useful where there is a need to calculate
accurate PMFs rapidly.

■ ASSOCIATED CONTENT
*S Supporting Information
Figure S1 shows dependence of the predicted PMFs on the
size of the ions (size symmetric +1:−1 cases) for selected
interparticle separation distances. Predictions are compared
with test MD results. Figure S2 gives a schematic
representation of the region used in determining χred

2 in the
case of +1:−1 ion pairs. In Figures S3 and S4, predicted and
simulated PMFs are shown for selected alkali metal halides
and like-charged pairs (alkali metal−alkali metal, halogenide−
halogenide), respectively. Figure S5 gives similar information
as Figure S1 but for size symmetric −1:−1 ion pairs. Figures
S6 and S7 show the predicted association constants for +1:−1
electrolytes. All predictions follow from cubic spline
interpolations with smooth first and second derivatives, except
for data shown in Figures S4b and S5 which apply also to
piecewise cubic Hermite polynomial interpolation (dashed
lines). In Tables S1−S4, the values of χred

2 are given for all
displayed cases and for all four interpolation algorithms. At

Table 3. Association Constants of Selected Salts Obtained from the Predicted (Ka
i‑PMF) and from MD Simulation (Ka

MD) PMFs
with the Estimated Error of the Last Digit Reported in Parentheses

Cl− Br− I−

Ka
i‑PMF Ka

MD Ka
i‑PMF Ka

MD Ka
i‑PMF Ka

MD

Na+ 0.148(7) 0.141(4) 0.118(8) 0.112(3) 0.061(3) 0.064(2)
K+ 0.40(1) 0.435(9) 0.40(1) 0.446(9) 0.42(1) 0.418(8)
Rb+ 0.47(1) 0.49(1) 0.52(1) 0.55(1) 0.59(2) 0.55(1)
Cs+ 0.65(2) 0.64(2) 0.78(2) 0.77(1) 0.99(2) 0.91(2)

Figure 7. Inverse values of the experimentally determined
solubilities,73 S−1 (panel a), and ion-association constants from
predicted PMFs, Ka (panel b), for selected alkali metal halides.
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the end of the Supporting Information file, we give tabulated
values of the presimulated PMFs. All results are given for T =
298.15 K and p = 1 atm. The ions were immersed in the
TIP3P water model, and Dang LJ parameters were used to
describe the ions (ϵLJ,ion = 0.1 kcal mol−1 for all ions). This
material is available free of charge via the Internet at http://
pubs.acs.org.
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