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Abstract: A polyphenolic extract from melon (Cucumis melo L.), as a potential source of natural
antioxidants, has been reported to have a positive effect on osteoblast activity. In this study,
the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization,
and metabolism were examined in osteoporotic rat models. Osteoporosis was induced by ovariectomy
(OVX) in female rats and then maintained for 8 weeks, along with the ingestion of phosphate-buffered
saline (PBS, OVXP) or ECO-A (OVXE) for an additional 4 weeks. At a pre-determined timepoint,
bone strengths, as well as bone mineral contents (BMC) and the density (BMD) of femurs and/or
lumbar spines extracted from each animal, were measured by a mechanical test and dual-energy
X-ray absorptiometry, respectively. Moreover, several biochemical markers for bone turnover were
analyzed by respective colorimetric assay kits in addition to clinical analyses. The maximum load
and stiffness of femurs from the OVXE group were found to be significantly higher than the other
groups. Furthermore, the OVXE group showed significantly higher BMC, BMD, and bone volume
than the OVX and OVXP groups, which were comparable to the non-OVX (sham) group. The levels
of bone formation and resorption markers in the OVXE group were similar to the sham group,
but significantly different from other groups. In conclusion, these results suggest that ECO-A can
play potentially positive roles in the protection of bone loss in rats with OVX-induced osteoporosis.

Keywords: melon extract; antioxidant; osteoporosis; bone strength; bone mineralization; bone
metabolism

1. Introduction

Osteoporosis or bone loss is the most common of all metabolic bone disorders in humans,
representing a major public health problem [1,2]. The World Health Organization (WHO) has defined
osteoporosis as a systemic skeletal disease characterized by a low bone mass and the microarchitectural
deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to
fracture [1,3]. Additionally, the National Institutes of Health (NIH) defines it as a skeletal system
disease that increases the risk of fracture due to the weakening of bone strength [2,4]. Osteoporosis is
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classified into primary and secondary osteoporosis. Primary osteoporosis is classified into menopausal
osteoporosis (type 1) and senile osteoporosis (type 2) for convenience, but it is difficult to classify
correctly because the two types merge at a similar period [5]. While the declines in estrogen, generally
following menopause, are well-known risk factors for osteoporosis in women, the effects of age-related
testosterone decline in men on bone health are less well-known [6]. Although osteoporosis can be
treated with medication, side effects such as gastrointestinal disorders, esophagitis, myalgia, jawbone
necrosis, or atypical fracture have been reported [7,8]. Particularly, the use of testosterone therapy has
been recommended in men with symptomatic low testosterone who are at a high risk of fracture [9],
though this should be done in combination with medication with a proven antifracture effect, such as a
bisphosphonate. As side effects have been reported for therapeutic agents used in osteoporosis patients,
some alternative methods for the prevention of osteoporosis have been actively studied using various
extracts or compounds available from natural sources [10]. Among these many natural substances with
osteoporosis-relieving effects, mixed formulations of red clover and pomegranate [11] and Artemisia
annua extract [12] have been shown to prevent ovariectomy (OVX)-induced osteoporotic bone loss.
In addition, a recent report showed that curcumin could partially reverse changes in the diversity of gut
microbiota caused by OVX-induced estrogen deficiency [13]. Furthermore, melon is reported to increase
alkaline dephosphorylase activity in an aqueous extract and increase the expression of Runx2 and
osterix, which are osteogenic markers [14]. Melon (Cucumis melo L.) is one member of the Cucurbitaceae
family and an important diploid horticultural crop, and is cultivated worldwide in subtropical and
tropical regions [15,16]. Melon is used as a tonic, laxative, galactagogue, diuretic, and diaphoretic,
and its extract is known to exhibit high antioxidant activity, like superoxide dismutase [17,18]. Recent
studies reported that the richest phytochemical was caffeic acid and that gallic acid, ellagic acid,
catechin, ferulic acid, kaempferol, and chlorogenic acid were also the main phenolic compounds
found in the extracts of melon peels and seeds [19,20]. Although water-soluble extracts of melon have
positive effects on osteoblast differentiation [14], seminal evidence for their effects on osteoporosis is
still inadequate.

In this study, we aimed to investigate the protective effects of heat-treated melon extract (ECO-A)
on bone strength, mineralization, and metabolism in OVX-induced osteoporotic rats. For this purpose,
the maximum load and stiffness of the femoral heads of the rats were measured by a mechanical strength
test. Additionally, the bone mineralization of the whole body, femurs, and lumbar spines extracted
from the animals fed with or without ECO-A was evaluated by measuring the bone mineral contents
(BMC), density (BMD), and volume (BV) using dual-energy X-ray absorptiometry (DXA). Furthermore,
we analyzed changes in the serum levels of C-telopeptide cross-linked collagen type I (CTXI) as a
bone resorption marker, as well as alkaline phosphatase (ALP), osteocalcin (OC), and calcium as bone
formation markers in the blood collected from each animal.

2. Materials and Methods

2.1. Melon Extract and Animals

ECO-A, prepared by extracting the whole melon including peels, seeds, and pulps with a heat
treatment manufacturing process at 95–100 ◦C and 1 atm, was obtained from GL Biotech Co., Ltd.
(Daejeon, South Korea). Twenty female adult (6-week-old) specific-pathogen-free Sprague Dawley
(SD) rats (220–270 g in weight, Orient Bio, Gyeonggi-do, South Korea) were individually housed in
metabolic cages during the adaptation period of 1 week before surgical treatment and until the day of
sacrifice. They were fed with food (normal rodents pellet diet, Purinafeed, Seongnam-si, South Korea,
Table S1) and water ad libitum both preoperatively and postoperatively under the conditions of a 12 h
of day and night cycle, 21–23 ◦C temperature, and 40–60% humidity. All animal experiments related to
surgical procedures and treatments were approved by the Animal Experiment Ethics Committee of
Seoul National University and performed in accordance with the Animal Care and Use Committee
guidelines (IACUC number: SNU-170706-4).
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2.2. Surgical Procedures for Ovariectomy

A sterile surgical technique was applied throughout the study. Rats were anesthetized by
intraperitoneal injection with chloropent (0.1 mL/kg) before OVX. After anesthetic induction, the lower
abdomen was shaved and swabbed with alcohol and povidone iodine solutions. A longitudinal
incision (2 cm long) was made on each of the ovaries, leading to exposition of the skin and muscle,
and the fallopian tube was closed using 4-0 black silk suture (Silkam®, B. Braun Surgical S.A., Barcelona,
Spain). Then, the fascia, muscle, and skin were sutured along the middle line incision using leftover
suture, and then maintained for 8 weeks to induce osteoporosis.

2.3. Experimental Groups

Animals were randomly divided into four experimental groups: (1) sham group: those who
ingested normal drinking water without any treatment during the entire experimental period, as the
negative control; (2) OVX group: those who ingested normal drinking water for an additional 4 weeks
after OVX on both ovaries; (3) OVXP group: those who ingested 1 x phosphate-buffered saline (PBS)
for 4 additional weeks after OVX (OVX-PBS); and (4) OVXE group: those who ingested ECO-A for
an additional 4 weeks after OVX (OVX-ECO-A). Experimental groups were perorally administered
with 1 mL of either PBS or ECO-A using an oral gavage needle every morning (08:00), lunch (13:00),
and evening (18:00) for 4 weeks (Figure 1). Body weight was weighed 3 days before surgery, on the day
of surgery, and then every week thereafter. Water and food intake were measured daily for 5 weeks
from the 7th week after OVX to the end of the experiment.
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materials testing machine, MTS Systems Corp., Eden Prairie, MN, USA) with a load cell of a 
maximum load of 500 N (MTS 661.11B-02 Force Transducer, MTS Systems Corp.). Using a load jig 
with a thickness of 3 mm on the femoral head, the load was applied until the fracture of the femur 
occurred at a constant rate of 0.1 mm/min. The load–displacement curves were obtained in real time 
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was determined as the maximum load (N), and stiffness (N/mm) was measured from the change in 
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Figure 1. Experiment timeline (O.P: operation, Pre-O.P: pre-operation, 1 week before operation).
After performing an ovariecomy in female Sprague Dawley (SD) rats, they were given regular food and
water for 8 weeks and osteoporosis was induced. Then, phosphate-buffered saline (PBS) or heat-treated
melon extract (ECO-A) was orally administered 3 times a day during the intake period.

2.4. Mechanical Test

To compare the mechanical properties among experimental groups, femurs were extracted from
each group (i.e., sham, OVX, OVXP, and OVXE groups (n = 5, respectively)). All tissue parts, such as
muscles, ligaments, and cartilage, were removed from femur specimens and stored frozen at −10 ◦C
using the gauze impregnated with physiological saline. Ten hours before the mechanical test, they were
taken out and thawed at room temperature. In order to apply the vertical load to the femoral head,
the distal part of the femur was fixed in the vertical direction using a dental resin (Vertex Trayplast,
Vertex-Dental B.V., Soesterberg, Netherlands) and fully cured for 3 h. A metal jig with fixed specimens
was attached to a hydraulic universal testing machine (MTS 858 Mini Bionix materials testing machine,
MTS Systems Corp., Eden Prairie, MN, USA) with a load cell of a maximum load of 500 N (MTS
661.11B-02 Force Transducer, MTS Systems Corp.). Using a load jig with a thickness of 3 mm on
the femoral head, the load was applied until the fracture of the femur occurred at a constant rate
of 0.1 mm/min. The load–displacement curves were obtained in real time through mechanical tests.
The test was terminated when the load suddenly dropped in the load–displacement curve, or cracks or
fractures occurred in the specimen. The load at the breaking point was determined as the maximum
load (N), and stiffness (N/mm) was measured from the change in displacement versus load variation
in the elastic region.
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2.5. Dual-Energy X-ray Absorptiometry

The regions of interest (ROI) of the left proximal femurs and lumbar spines 4–6 of each animal
(n = 5, respectively) were set 2 days before sacrifice, as described elsewhere [21], and scanned using
dual-energy X-ray absorptiometry (DXA) (InAlyzer, MEDIKORS Inc., Seoul, Korea). BMC (bone
mass, g), BMD (BMC / unit area, g/cm2), and BV (cm3) were measured using the InAlyzer software
(MEDIKORS Inc., Seongnam, Korea).

2.6. Blood Analysis

On the day of sacrifice, 2 mL blood from each group was collected by heart sampling using
a sterile syringe (26 G, 3 mL), and plasma was separated after storage at room temperature for
1 h in vacuum tubes (BD Vacutainer® SST™ II Advance, Franklin Lakes, NJ, USA). Serum was
separated by centrifugation at 3000 rpm for 15 min and then stored in a deep freezer (−80 ◦C) prior
to analysis. The level of C-telopeptide cross-linked collagen type I (CTXI) as a bone resorption
marker was analyzed using a rat CTXI ELISA kit (Elabscience Biotechnology Inc., Houston, TX, USA).
To analyze the levels of bone formation markers such as alkaline phosphatase (ALP), osteocalcin
(OC), and calcium, a rat Alkaline Phosphatase Liver/Bone/Kidney (ALPL) ELISA kit (Elabscience
Biotechnology Inc.), a rat Ostocalcin/Bone Gla Protein (OC/BGP) ELISA kit (Elabscience Biotechnology
Inc.), and a calcium colorimetric assay kit (BioVision, Milpitas, CA, USA) were used, respectively,
according to the manufacturer’s protocol.

2.7. Statistical Analysis

All quantitative data were expressed as means ± standard deviation. Statistical comparisons
were carried out with a one-way analysis of variance (ANOVA) using the StatView ver. 5.0 software
(Abacus Concepts Inc., Berkeley, CA, USA), which was followed by the Student–Newman–Keuls test
for multiple comparisons. Statistical significance was accepted for a value of p < 0.05.

3. Results

3.1. Measurement of Body Weight and Daily Food and Water Intake

After performing OVX on statistically similar rats before surgical procedures, an apparent
difference in body weight between the non-OVX (sham) group and the other groups (OVX, OVXP,
and OVE) began to appear from week 2. It was revealed that after 4 weeks of OVX, there was a
significant difference in weight between the sham and other groups (p < 0.05), while no difference
was observed among those groups (Figure 2a). In the case of food and water intake, there was no
significant, and if any, negligible, difference between each group (Figure 2b,c).
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3.2. Evaluation of Bone Strength

Compared to the maximum load (85.68 ± 11.87 N) of femoral heads from the sham group,
it was significantly (p < 0.05) decreased to 72.70 ± 0.02 N in OVX groups, which was calculated as a
reduction of about 15%. The OVXP group also showed a significantly (p < 0.05) higher maximum
load (83.64 ± 2.48 N) compared to the OVX group. Furthermore, the maximum load in the OVXE
group was 94.33 ± 10.77 N, which was approximately 30% higher compared with that in the OVX
group (Figure 3a). On the contrary, the stiffness values in the sham, OVX, and OVXP groups were
235.55 ± 67.68 N/mm, 236.48 ± 44.00 N/mm, and 223.20 ± 59.35 N/mm, respectively, showing that there
was no significant difference. However, the OVXE group exhibited significantly (p < 0.05) greater
stiffness (313.24 ± 37.71 N/mm) than the other groups, and the value was higher by more than 32% and
40% compared with the OVX and OVXP groups, respectively (Figure 3b).
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3.3. Bone Mineralization

To compare the bone density among experimental groups, the ROI was scanned for the whole
body, left femur, and lumbar vertebrae 4–6 by DXA. In the case of the whole body, compared to the
BMC (11.36 ± 0.81 g) and BV (6.87 ± 0.49 cm3) of the sham group, BMC and BV were significantly
(p < 0.05) decreased to 9.28 ± 1.45 g and 5.87 ± 0.80 cm3, respectively, in the OVX groups, corresponding
to a reduction of more than 18% and 14%, respectively (Figure 4). However, the OVXP group showed
10.54 ± 0.73 g of BMC and 6.36 ± 0.47 cm3 of BV, which were significantly (p < 0.05) greater than the
OVX group. Moreover, the BMC and BV of the OVXE group were 11.40 ± 0.59 g and 6.90 ± 0.13 cm3,
respectively, which was approximately 22% higher compared with that of the OVX group. BMD analysis
showed a very similar tendency with BMC and BV results. It was found that BMD results increased in
the order of sham (0.24 ± 0.01 g/cm2), OVXE (0.24 ± 0.01 g/cm2), OVXP (0.23 ± 0.01 g/cm2), and OVX
groups (0.21 ± 0.02 g/cm2).
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In the left femur, the results of BMC, BMD, and BV showed fairly similar patterns to those in the
whole body (Figure 5). BMC (0.69 ± 0.08 g), BMD (0.38 ± 0.03 g/cm2), and BV (0.42 ± 0.05 cm3) in the
sham group were significantly (p < 0.05) decreased to 0.44± 0.07 g, 0.27± 0.04 g/cm2, and 0.27 ± 0.04 cm3,
respectively, in the OVX groups, whereas those values were considerably maintained in the OVXE
groups (with 0.63 ± 0.04 g of BMC, 0.36 ± 0.03 g/cm2 of BMD, and 0.38 ± 0.02 cm3 of BV). On the other
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hand, BMC (0.51 ± 0.04 g), BMD (0.27 ± 0.03 g/cm2), and BV (0.29 ± 0.02 cm3) of the OVXP group were
not significantly different from the OVX group.
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Interestingly, analyses for the lumbar vertebrae 4–6 were found to have considerably similar trends
to the whole body and femur (Figure 6). Compared with BMC (0.56 ± 0.10 g), BMD (0.33 ± 0.12 g/cm2),
and BV (1.90± 0.45 cm3) of the sham group, the values were significantly (p < 0.05) decreased to
0.40 ± 0.05 g, 0.28 ± 0.03 g/cm2, and 1.40 ± 0.12 cm3, respectively, in the OVX groups, which showed
reductions of about 25% for BMC, 15% for BMD, and 18% for BV. In contrast, the values in the
OVXE group were all noticeably maintained at 0.48 ± 0.04 g for BMC, 0.30 ± 0.06 g/cm2 for BMD,
and 1.70 ± 0.40 cm3 for BV, which were all comparable to those in the sham group. There were no
significant differences in the BMC, BMD, and BV levels between OVXP and OVX groups.
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3.4. Blood Analysis

Compared with the contents of ALP (11.77 ± 2.88 ng/mL) and OC (18.33 ± 8.20 ng/m) in serum
from the sham group, the contents were significantly (p < 0.05) increased to 21.15 ± 4.85 ng/mL
and 40.72 ± 3.67 ng/mL, respectively, in the OVX groups, corresponding to an increase of over
60% in both (Figure 7a,b). The OVXP group showed almost equal results (20.99 ± 2.18 ng/mL of
ALP and 41.45 ± 2.58 ng/mL of OC) to the OVX group, whereas those values were significantly
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(p < 0.05) decreased to 13.21 ± 3.18 ng/mL for ALP and 24.76 ± 2.80 ng/mL for OC in the OVXE group.
Additionally, the content of CTXI (236.2 ± 9.02 ng/mL) in the sham group was significantly (p < 0.05)
increased to 249.0 ± 5.87 ng/mL in the OVX group and 256.1 ± 7.90 ng/mL in the OVXP group. However,
the OVXE group showed 240.2 ± 5.70 ng/mL of CTXI, which was significantly (p < 0.05) lower than
the OVX and OVXP groups. (Figure 7c). On the contrary, the calcium content in the sham group was
2.09 ± 0.14 ng/mL, which was significantly (p < 0.05) decreased to 1.92 ± 0.12 ng/mL in the OVX group
and 1.83 ± 0.22 ng/mL in the OVXP group, constituting a reduction of about 8% and 20%, respectively.
In the OVXE group, the content was 2.01 ± 0.11 ng/mL, indicating a recovery to a level comparable to
that of the sham group (Figure 7d).
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4. Discussion

This study concentrates on examining the effect of ECO-A on bone metabolism in OVX-induced
osteoporotic rat models. OVX in rats is a representative method of inducing menopausal disorders
that reduce serum estrogen levels, and it is widely used in studies of osteoporosis and cardiovascular
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disease in women [22]. An artificial ovarian resection results in estrogen, a female hormone, becoming
deficient and causing osteoporosis [23–26]. After OVX was performed in adult SD rats, the change in
body weight was observed weekly. An apparent difference in weight between OVX and sham groups
began to be observed from 2 weeks after surgery (Figure 2a). There are many reports stating that a
decrease in estrogen secretion leads to an increase in weight [27–29], and this brings an increase in
dietary intake, body fat accumulation, and consequently body weight [30–32]. It is suggested that
ECO-A did not significantly affect weight loss, because no change in weight was observed in the OVXE
groups administered with ECO-A after inducing osteoporosis.

Unlike other connective tissues, the mechanical strengths of bone are the result of the deposition
of calcium phosphate in organic components. This highly specialized connective tissue is a strong
support of the human body and plays an important role in the metabolic interrelationship. The strength
of bone is the maximal amount of load tolerated before structural failure occurs. If bone strength
is impaired, it is directly related to critical problems, including decreases in the amount of bone
mass, as well as changes in the bone micro-architecture and in the biophysical properties of the bone
tissue [33]. Therefore, to determine bone strength accurately, bone quality should be analyzed with
a consideration of the micro-structural properties, the composition of mineral and collagen of bone,
and microdamage [34]. In this study, the strength of femoral heads in the OVXE group was shown
to be significantly higher compared with the OVX group, which implicates that ECO-A favorably
affects bone strength (Figure 3). Nevertheless, there are several practical drawbacks that represent
limitations. As the test specimens are small, it can be time-consuming to fix the distal part of the
specimen to the vertical direction and align the specimen appropriately in the jig during the load
application. Furthermore, a 500 N load cell was used since this is the equipment we have available,
but a smaller load cell, in the 200–300 N range, would be more appropriate for future tests, allowing
for a greater resolution and accuracy in the testing.

Previous studies have reported meaningful protective effects of natural extracts on osteoporosis
after 4~12 weeks [10,11,35]. In this study, the potential effect of ECO-A was observed 4 weeks after
OVX-induced osteoporosis, which is considered as a relatively early phase. Osteoporosis is a bone
disease caused by various factors that deteriorate the microstructure of bone tissue with a decrease
in BMD, lessen the mechanical strength, and increase the risk of fracture [4,26]. Calcium is one of
the most important minerals that prevents osteoporosis. In postmenopausal women, a decrease in
estrogen secretion accelerates bone loss and increases the risk of osteoporosis [36], and a decrease
in postmenopausal BMD was observed immediately after menopause and decreased exponentially
with the lapse of time, due to the continuous decrease in bone mass after menopause [37]. However,
BMD only explains a portion of the bone mechanical strength variance since age-related declines in
bone strength are disproportionately steeper than decreases in BMD [38]. There is no change in the
biochemical composition, but, histologically, osteoporosis can be defined as a decrease in the thickness
of the cortical bone and a decrease in the number and size of cancellous bone struts [3,39]. The BMC,
BMD, and BV observed in the whole body, left femur, and lumbar spines (except for BMD) were
increased in the OVXE group compared to the OVX group, indicating that ECO-A has a positive effect
on the maintenance of bone mineralization (Figures 4–6). Since BMD is not the only determinant of the
bone quality [34], such as bone strength and fragility, although it is measurable value by DXA, the DXA
results need to be confirmed by histological observations. It is well-recognized that rat bone is not the
easiest model since specimens are small and difficult to align and match precisely for comparison [40].

In the skeleton, old bone is removed by bone resorption and new bone is produced by bone
formation. Biochemical markers of this bone turnover are an index that reflects the rate of bone
remodeling, and are the only noninvasive method to evaluate bone quality. While bone density is a
static index of bone metabolism, biochemical markers are dynamic indicators. Deoxypyridinoline,
CTXI, and cross-linked N-telopeptide of type I collagen (NTXI) are most recommended as specific bone
resorption markers, whereas ALP, which is secreted by osteoblasts, and OC, are the most well-known
bone formation markers [5]. This study revealed that ECO-A has positive controlling effects on these
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biochemical markers of bone turnover, particularly by lowering the CTXI level and maintaining the
calcium concentration (Figure 7). Meanwhile, the contents of ALP and OC in serum were apparently
decreased after ECO-A administration, although both are representative bone formation markers.
This result can be partially explained by the previous clinical study showing that the mean level
of OC was significantly raised in post-menopausal women who were osteoporotic compared to in
non-osteoporotic individuals [41]. Therefore, both contents were remarkably increased in OVX groups,
while they were recovered in OVXE groups to a level comparable to sham groups. Another recent
study reported that the level of serum bone turnover markers, including ALP, CTXI, OC, N-terminal
propeptide of type I procollagen, and tartrate-resistant acid phosphatase 5b, were all decreased in
ovariectomized diabetic rats treated with salidroside [42].

A previous study revealed that when melon is treated at a high temperature (minimum 140–150 ◦C),
the total polyphenol content and antioxidant activity become higher [43]. When the electron-donating
ability was measured using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, melon extracts showed
little antioxidant activity at an untreated state, but showed a significant increase when heated. In the
present study, the free radical scavenging activity of ECO-A was significantly higher than its untreated
counterpart (Figure S1). It has also been reported that the ascorbic acid-equivalent antioxidant capacity
of heat-treated fruit and vegetable extracts was found to increase with temperature, compared to that
of untreated ones [43,44]. Particularly, the total flavonoid content and antioxidant capacity of melon
after heat treatment at 150 ◦C were increased by more than 37 and 25 times, respectively, compared to
untreated equivalents [43]. The antioxidant activity of Citrus peel extracts was shown to be significantly
affected by the heating and processing time, suggesting that the heating process can be used as a tool
for increasing their antioxidant activity [44]. This phenomenon can be partially explained by some
reports showing that when fruit and vegetables were heat-treated, their antioxidant potential was
increased due to the increase of free phenolic compounds, as well as the improvement of antioxidant
properties of naturally occurring compounds or the formation of novel compounds, such as Maillard
reaction products having antioxidant activity [45]. On the other hand, OVX rats were shown to have
lower levels of antioxidant enzyme activity compared to sham rats, but the antioxidant status was
significantly increased after lutein treatment [46]. Oxidative stress is known to increase the expression
of cytokines in bone and thus induce osteoporosis. Antioxidants may have a role in the inhibition
of the effects of free radicals on the bone and hence in the prevention of osteoporosis [47]. A recent
study reported evidence to recommend the use of water as the solvent of choice for the extraction of
phenolic compounds from bitter melon with antioxidant capacity [48]. Therefore, it is implicated that
polyphenol-rich ECO-A possesses potent antioxidant activity and this is the reason for the protection
from the decline in bone strength, mineralization, and metabolism of ovariectomized rats.

5. Conclusions

In conclusion, the administration of ECO-A to female rats with OVX-induced osteoporosis
allowed their mechanical strengths (maximum load and stiffness) of bone to be significantly improved;
their bone density of the whole body, femur, and lumbar spine to be reasonably maintained; and bone
metabolism (CTXI and calcium levels) to be favorably controlled. Our findings suggest that ECO-A
can be used as a protective and therapeutic agent for OVX-induced osteoporosis. In order to make
sure that ECO-A can effectively protect against osteoporotic bone loss regardless of sex, it should be
confirmed that it has a similar effect on male models to female ones. In the present study, however,
as ECO-A was administered to ovariectomized animals, variables were not considered in the study
design, such as hormonal changes in the early, middle, and late stages of osteoporosis, as well as sex.
In female hypogonadal states, i.e., menopause and climacterium, it is well-recognized that bone loss
accelerates with a lack of estrogen, while our knowledge of the clinical and metabolic consequences of
overt male hypogonadism and the more subtle age-related decline in testosterone on bone quality is
underrepresented [6]. Therefore, taking the limitations of the study design into consideration, further
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studies, including the mechanism of action of ECO-A and the contribution of the growth plate to bone
recovery after a period of hypogonadal loss, need to be undertaken.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-3921/8/8/306/s1.
Figure S1: Antioxidant activity of melon extracts treated without or with heat (ECO-A) determined by measuring
DPPH radical scavenging activity, Table S1: Ingredient of diets used in this study.
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