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Abstract: To investigate the properties of a large-scale brain network, it is a common practice to 

reduce the dimension of resting state functional magnetic resonance imaging (rs-fMRI) data to 

tens to hundreds of nodes. This study presents an analytic streamline that incorporates modular 

analysis and similarity measurements (MOSI) to fulfill functional parcellation (FP) of the cortex. 

MOSI is carried out by iteratively dividing a module into sub-modules (via the Louvain 

community detection method) and unifying similar neighboring sub-modules into a new module 

(adjacent sub-modules with a similarity index <0.05) until the brain modular structures of 

successive runs become constant. By adjusting the gamma value, a parameter in the Louvain 

algorithm, MOSI may segment the cortex with different resolutions. rs-fMRI scans of 33 healthy 

subjects were selected from the dataset of the Rockland sample. MOSI was applied to the 

rs-fMRI data after standardized pre-processing steps. The results indicate that the parcellated 

modules by MOSI are more homogeneous in content. After reducing the grouped voxels to 

representative neural nodes, the network structures were explored. The resultant network 

components were comparable with previous reports. The validity of MOSI in achieving data 

reduction has been confirmed. MOSI may provide a novel starting point for further investigation 

of the network properties of rs-fMRI data. Potential applications of MOSI are discussed. 
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1. Introduction 

Functional brain imaging has become an important resource for understanding brain function 

and neuropsychiatric conditions. Each neuroimaging tool has its own strengths and limitations, and it 

is generally agreed that different modalities may contribute complimentary information, such as 

electrophysiology vs. blood-oxygen-level dependent (BOLD) signals and structural connectivity vs. 

functional connectivity (FC) [1]. In contrast to the low spatial resolution of electroencephalography, 

functional magnetic resonance imaging (fMRI) may provide neuro-informatics at higher anatomical 

precision from tens to hundreds of thousands of voxels. An innate difficulty associated with fMRI 

lies in how to utilize the high dimensional data to draw conclusions. 

It is well known that the temporal dynamics between neighboring fMRI voxels are not totally 

independent of each other, justifying an application of a reduction strategy to simplify the data 

structure. In activation designs (i.e., the subjects are challenged with psychological tasks), both 

parametric (random field theory) and non-parametric (simulation) approaches have been developed 

to quantify ―resolution elements‖ that may help to eschew stringent Bonferroni correction and hence 

to provide appropriate statistical inferences [2,3]. However, in resting state fMRI (rs-fMRI) designs, 

researchers still heavily rely on predefined regions of interest (ROIs) that are informed by anatomical 

atlases, not the BOLD data itself, to achieve data reduction (i.e., structural parcellation) [4–9]. The 

resolution of rs-fMRI data can therefore be reduced to tens or hundreds of units. Although widely 

applied, its validity has been questioned because the correspondence between functionally 

specialized brain regions and brain areas delineated by anatomical landmarks and cytoarchitectonic 

structures may be limited [4,5,10–13]. In other words, the ROIs derived from structural atlases are 

not necessarily functionally homogeneous, which may result in biased and even faulty network 

property estimation. Empirical evidence arguing both for and against the aforementioned approach 

has been reported [4,5,7–9,12,13]. A recent study suggested that despite the flawed biological 

plausibility, whether an atlas-informed partition of the cortex is a valid data-reduction strategy or not 

is actually a context-dependent issue [6]. Either taking its validity for granted or rejecting its 

usefulness blatantly is an arbitrary assertion. 

Given the ambiguity and debate described above, it is desirable to parcellate the cerebral cortex 

based on the similarity of regional and neighboring BOLD dynamics itself to achieve data reduction 

(i.e., functional parcellation [FP]), instead of resorting to the structural parcellation via pre-defined 

ROIs. However, this challenging issue in rs-fMRI research is more complicated than it appears. The 

cortex is organized in distributed hierarchical and parallel manners with intense forward, backward 

and lateral projections [14–16], which may endorse diverse functional specialization of brain regions 

and sub-regions [17–27]. The above observation indicates that FP of the cortex can actually be 

performed at multiple resolutions that are dependent on the perspectives/scales that researchers wish 

to explore [28,29]. However, contradictory evidence suggests that the cortical modules in rs-fMRI 



528 

AIMS Neuroscience                                                          Volume 8, Issue 4, 526–542. 

research seem to be stable and independent of different methodologies [4,30]. Although several 

elegant algorithms have been developed to perform automatic whole-brain FP, a consensus has not 

been reached yet [31–35]. Previous research sampled the cortex uniformly to reduce the data 

dimensions [28]. Cohen et al. utilized information of the transition of FC maps to delineate the 

boundaries between functional areas, while Wig et al. applied snowball sampling to identify the 

neighbors and neighbors of neighbors and so forth to achieve FP [31,34]. Although the above 

exemplified methods are persuasive in formulation and comparable in results, they provide fixed 

partitions and do not address the nature of local homogeneity that is the fundamental observation and 

rationale to pursue a data-reduction procedure (note: ―local homogeneity‖ is used to avoid confusion 

with the term ―regional homogeneity‖ in re-fMRI research, ReHo). 

This study proposes a fast, iterative algorithm to perform automatic FP that incorporates 

modular analysis and similarity measurements (named MOSI), the former splitting a module into 

sub-modules and the latter uniting similar sub-modules into a bigger module. Modules or 

communities are groups of nodes within a network that are more densely connected to one another 

than to other nodes [36,37]. In this research, the neural nodes are the voxels, and the connectivity 

strengths (edges) between nodes are defined by FC, i.e., correlation strength. Since the (sub-) 

modules were derived by the connectivity strengths, the voxels with similar BOLD dynamics (thus 

higher connectivity strengths) tended to aggregate as a community. The modularity of a partition is a 

metric between −1 and 1 that indicates the quality of the network partition, i.e., the density of edges 

inside communities compared to that of edges between communities [37,38]. After partition, the 

mean BOLD signal of each (sub-) module is correlated with those of the remaining (sub-) modules to 

constitute a correlation (FC) map. The adjacent (sub-) modules with similar FC maps (and hence 

smaller ―relative distance‖) are grouped together as a new module (note: adjacency is defined as 26 

possible connections by any points, lines or faces of a 3-dimensional cube). Iteration of the division 

and unification processes will be carried out until the derived modular structure is stable. The 

number of modules and, hence, resolution of a partition can be titrated by gamma values (see 

Material and Methods for details). Since information processing in the cerebral cortex relies on 

interactions among the distributed areas, the results of FP are subject to further exploration to 

disclose the constituent communities, which are compared with known brain networks [17–19,35].  

2. Materials and methods 

2.1. Subjects, MRI data acquisition and imaging data preprocessing 

For detailed information refer to Lee et al.’s previous paper [39], which is briefly summarized 

below. Thirty-three right-handed healthy subjects were selected from the dataset of the Rockland 

sample (Enhanced Nathan Kline Institute; NKI-RS), with a mean age of 26.6 years. The data source 

used by this study met the criteria of ―NKI-RS Neuroimaging Data Release‖. The institutional ethics 

committee approved this project. T1-weighted structural MRI (sMRI) and rs-fMRI were included in 

the analysis. All MRI images covered the whole brain and were acquired by a 3.0 Tesla Siemens 

Magnetom Trio Tim system, with 260 whole-brain echoplanar images (EPIs) and TR 2.5 seconds 

(first 5 images were discarded for equilibrium). 
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FreeSurfer was applied to the T1-weighted sMRI to segment gray matter and white matter and 

to parcellate the cortical mantle into 70 (Desikan-Killiany Atlas) ROIs [40,41]. The Analysis of 

Functional NeuroImages software package (AFNI) was used to process the rs-fMRI data [3], and the 

analytic streamline developed by Jo et al. was adopted to prepare the rs-fMRI images [4,5,42]. The 

pre-processing steps of rs-fMRI comprised despike, slice-time correction, realignment (motion 

corrected), registration to T1 anatomy, spatial smoothing (6 mm), and bandpass filtering to 0.01–0.1 

Hz. Several regressors were created and modeled as nuisance variables, comprising twelve 

movement parameters, tissue-based regressors of white matter (global and local) and ventricles, and 

third-order polynomials to fit baseline drift [42]. The tissue-based regressors were constructed with 

the help of the segmentation results obtained from FreeSurfer.  

2.2. MOSI scheme 

MOSI is an iterative process, and each iteration mainly comprises two steps to divide and to 

merge modules. It is notable that different FC maps were constructed by Pearson’s correlation for 

each step (i.e., regional and global, detailed below). In the division stage, the Louvain community 

detection algorithm was applied to each module derived from the preceding iteration. The first 

iteration starts from the ROIs of the cortex delineated from the Desikan-Killiany Atlas. In this stage 

of MOSI, the ―regional‖ correlation map of each module was generated as an input to the Louvain 

algorithm for community detection (see next section). Suppose a particular module has N voxels, 

then the correlation map is a matrix with dimension N × N, with each element being the correlation 

coefficient (CC) of a voxel-pair within that module. 

It is noteworthy that although several community detection algorithms can be applied directly 

to a huge network—the whole brain in this case—the resultant network patterns are inevitably 

composed of distant brain regions, which is in accord with the fact that the brain is an intensely 

interactive system [4,5,45]. However, what is more important for automatic FP is to emphasize 

local (neighboring) ―homogeneity‖ in terms of the BOLD dynamics. Another application of 

community detection in previous rs-fMRI research is to decompose a brain region into several 

sub-regions [39,46,47]. At this stage, MOSI is similar to the latter. If the voxels of a resultant 

sub-module form disconnected sub-groups, say 2 sub-groups, this disconnected sub-module is 

further separated into 2 smaller communities because only neighboring voxels are qualified to be 

grouped as a module in MOSI. Different resolutions were explored by setting gamma values from 

0.65 to 0.95 at an interval of 0.05. 

The second stage is to unite similar modules into a larger module. In this unification stage of 

MOSI, the mean time series of each module was calculated, which was correlated with the remaining 

modules to generate another correlation map (a vector). This FC vector carried the sampled 

information of the entire cerebral cortex that was used to define similarity, thus a ―global‖ FC map [6]. 

The similarity among the FC maps was computed for each pair of neighboring modules, which is the 

square root of the weighted square sum of the difference between two FC maps (weight reflects the 

voxel number). Similarity was indicated by the relative distance of two FC maps, which was 

calculated for each pair of neighboring modules. For a similarity index less than 0.05, neighboring 

modules were unified to become a new module. In other words, if the mean BOLD signals of two 
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neighboring modules showed a high correlation but their (whole-brain) FC vector looked different, 

they were regarded as separated and not unified, which was expected to possess higher 

differentiability. It is notable that the entire cortex information is sampled to define relative distance. 

A large relative distance means that two brain FC maps show substantial differences. 

The program ends when the modular structure is stable. Operationally, stop criteria can be 

evaluated from two perspectives: the output modular structures for two consecutive cycles are either 

exactly the same or their normalized mutual information is higher than 0.95, in which a 1 percent 

difference in modular number was allowed. The mean CCs of each resolution of the MOSI results 

were summarized (Table 1), and the mean CCs were compared across different resolutions and with 

those in the original ROIs (Table 2). Each hemisphere was treated separately. SUMA (AFNI 

associated software) was used to illustrate the MOSI partition results. 

There are several technical details worthy of mentioning. First, in the beginning of each 

iteration step, small/fragmented modules with a voxel number less than 10 were identified and united 

with neighboring modules that showed the strongest correlation strength of no less than 0.50. Tiny 

modules inherently had fewer neighbors and were believed to be part of a larger neighboring 

community because of the innate covariance structure of fMRI data and the applied smoothing 

procedure [2,3]. Considering the possible number of combinations between (sub-) modules, the 

computation time for each iteration increases drastically with modular number. This procedure may 

reduce the number of modules that are to be treated and hence save computation time. Second, for 

each iteration of MOSI, a permutation is introduced to the order of the modules before computation. 

Take modules A, B and C as an example. After partitioning, suppose that A is decomposed into A1 

and A2, B into B1 and B2, and C into C1 and C2. A1 shows the highest similarity to B2, while B2 

shows the highest similarity to C1. If changing the order does not occur, A1 will always be united 

with B2, and B2 will have no chance to unite with C1—this could not be the optimal solution. This 

permutation may facilitate the algorithm to converge. Last, since this algorithm works quite quickly 

for lower values of parameter gamma (e.g., ≤0.8), if the users wish to perform FP at a higher 

resolution, it is recommended to run MOSI at a lower gamma value to provide a good initial guess as 

a starting point. In other words, a finer FP is derived from a coarser FP instead of breaking the 

original ROIs into many small modules and repeating the splitting-unification cycles for the high 

gamma condition. In this study, the results of gamma 0.70 are based on the results of gamma 0.65, 

and the results of gamma 0.75 are based on the results of gamma 0.70 and so forth. This simple 

strategy may substantially decrease computation time.  

2.3. Community/module detection and comparison 

The Louvain method was employed to partition each module into composite sub-modules 

through optimization of Newman’s modularity metric Q [36–38], in which 

  
i,j j i,j

Q = 1/2m* [Aij - γ*ki*kj/2m]δ(ci,cj), ki = Aij, m = 1/2* Aij , Aij is the connectivity strength 

between nodes i and j, ci is the community that node i belongs to, δ is the delta function (if ci = cj, 

delta = 1, otherwise 0), and γ (gamma) is the resolution factor. The Louvain algorithm may 

accommodate different resolutions by adjusting gamma values and may decompose 
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parametric/weighted networks (in contrast to binary networks in which the connections are either 0 

or 1) [43,44]. A higher gamma value means that the resultant partitions are smaller in size (fewer 

nodes), and vice versa. The output partitions of MOSI can be compared by normalized mutual 

information; if two partitions are exactly the same, their mutual information will be one. The above 

computations of community detection and community comparison were performed using the brain 

connectivity toolbox (http://www.brain-connectivity-toolbox.net) [37]. The mathematical software 

Matlab was the platform used to execute the brain connectivity toolbox and was used to manage the 

MOSI pipeline (Mathworks, Natick, MA, USA). 

2.4. Exploration of MOSI results 

The BOLD time series of the voxels in each MOSI-derived module are expected to be more 

similar when compared with those in other modules. The validity was examined by an 

intra-individual analysis in which the mean CC between the voxels within each module was 

compared with the (averaged) CC between the mean BOLD signals of that module and other 

modules, with the former expected to be greater than the latter. The null hypothesis was that the CC 

within each module was the same as the CC between different modules (i.e., the mean difference is 

zero), and a t-test was performed for each subject. 

To assess the influence of resolution, grand mean CCs across seven gamma values for each 

participant were calculated by taking the mean of CCs from the BOLD dynamics of the voxels of the 

constituent modules. Similar calculations were applied to the initial partition of the 70 ROIs. Given 

that Louvain partition is based on the correlation strengths and the neighboring voxels of fMRI tend 

to be highly correlated, it is inferred that the MOSI-derived modules would show higher 

intra-modular similarity with finer resolution (i.e., with increasing gamma value, the derived 

modules shall be smaller in size and with more homogeneous content if MOSI works properly). 

The results of MOSI provide a novel starting point to identify networks of functionally coupled 

regions across the cerebral cortex. The mean representative BOLD dynamics were retrieved to 

achieve data reduction, and the module was shrunk to a neural node. A new set of FC maps (second 

level) were constructed accordingly, and the community detection algorithm was applied again to the 

simplified neuro-informatics to disclose underlying modular structures – large-scale networks. The 

number of output networks were arbitrarily assigned to 9 by adjusting the parameters of Louvain 

algorithm. The detailed modular structures derived across 7 gamma values were compared with 5 

commonly reported networks in previous rs-fMRI research [28,48], i.e., visuo-associative, 

cognitive/attentional fronto-parietal, default-mode, sensorimotor and limbic/paralimbic networks 

(note: the attentional fronto-parietal network is not a robust finding, which is not always mentioned 

in previous reports [6,30,45]). The results were visualized by AFNI and SUMA. 

3. Results 

The validity of MOSI was examined by t-tests for each subject (n = 33), hemisphere (n = 2) and 

gamma value (n = 7), and the P values were generally less than 10
-3

, and t-stats were greater than 

4.08 (414 out of the 33*2*7 [=462] conditions had P values < 10
-3

). The results verify that MOSI 
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reliably performs FP based on local homogeneity in terms of BOLD dynamics. It was discovered that 

the grand mean CCs increased with gamma values. The grand mean CC of the original partition 

informed by the Desikan-Killiany atlas was 0.33 (s.d. 0.034), which increased to 0.60 (s.d. 0.015) 

when gamma was 0.95. The resolution at gamma 0.65 was approximately 20 modules for each 

hemisphere, which increased to 170 modules when gamma reached 0.95; please see Table 1 and 

Figure 1 for details. 

 

Figure 1. The relationship between gamma values and the partitioned module number. 

Paired t-tests of the grand mean CCs across all of the gamma values showed that the grand 

mean CC for a higher gamma value was always significantly greater than that for a lower gamma 

value, with most of the P-values of the pair-wise comparisons less than 10
-4

 (Bonferroni correction 

of P-value 0.05 is 0.05/28 pairs = 0.0018); please refer to Table 2 for details. For the above statistical 

comparisons, Fisher’s transformation of CCs was also applied, and the conclusions remained the 

same (data thus not shown). It was found that MOSI worked efficiently, and the average calculation 

time was less than 6 minutes for gamma values no greater than 0.85 (Table 1; Memory 15.5 GiB, 

Processor Intel® Core™ i7-4700HQ CPU@2.40GHz, Disk capacity 1.0 TB). However, when 

gamma values were 0.90 and 0.95, the respective calculation time was approximately 8.5 and 26 

minutes, indicating that the computation time of MOSI increased drastically when the cortex of a 

hemisphere was partitioned into greater than 90 communities (ROIs). A partition derived from 

different gamma values is illustrated using SUMA in Figure 2.  

The MOSI results provide a novel start for data reduction of fMRI signals. Abridged (second 

level) FC maps were constructed accordingly (using the mean to represent all the voxels in a module 

and calculating the correlation matrix between the constituent modules). Another set of modular 

analyses were carried out consequently, revealing an interesting pattern. The authors attempted to 

identify the 5 commonly reported networks across the seven gamma values for each subject (i.e., 

visuo-associative, cognitive/attentional fronto-parietal, default-mode, sensorimotor and 

limbic/paralimbic networks); see an illustration by AFNI in Figure 3. There is inter-individual 

variation in terms of the spatial distribution of the constituent modules; however, the delineated 
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modular structures are consistent and prominent, which is summarized in Table 3. With respect to 

conventional large-scale brain networks, the results suggest that a gamma value between 0.8 and 

0.85 is reasonably good for individual analysis. 

Table 1. Across different resolutions (7 gamma values) for the 15 subjects, grand means 

and standard deviations (s.d.) of correlation coefficients (CCs) were derived from the 

averaged CCs between the voxels in the constituent modules. Number is the mean modular 

number (left/right), and time is the summed calculation time of both hemispheres. 

gamma mean s.d. number (L/R) time (sec) 

original 0.33 0.034 25/25 n/a 

0.65 0.40 0.036 20.2/19.5 124.0 

0.70 0.41 0.040 23.2/23.4 199.2 

0.75 0.41 0.036 26.9/26.9 317.8 

0.80  0.43 0.026 38.6/37.6 337.7 

0.85 0.47  0.022 55.3/54.2 359.5 

0.90 0.53 0.018 91.7/91.4 511.7 

0.95 0.60 0.015 169.3/169.3 1542.5 

 

Figure 2. Example illustration of MOSI partitions derived from different gamma values 

(only the left hemisphere is shown). Each module is represented by a different color.  
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Table 2. Group-level paired t-tests of pair-wise comparisons of grand mean CCs across 

different gamma values (mean difference, upper triangle; t-statistics, lower triangle). 

Degree of freedom is 32. 

gamma original 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

original  0.07 0.07 0.08 0.09 0.13 0.19 0.26 

0.65 12.8   0.01* 0.01* 0.03 0.06 0.14 0.21 

0.70 15.6 2.1*  0.00* 0.02 0.06 0.12 0.19 

0.75 17.4 2.8* 0.9*  0.02 0.05 0.11 0.17 

0.80 25.0 6.8 5.3 5.9  0.04 0.10 0.13 

0.85 31.4 13.7 12.3 14.5 14.8  0.06 0.07 

0.90 34.9 23.8 20.0 21.3 25.3 18.9   

0.95 47.8 36.2 31.0 33.7 43.6 41.9 31.0  

Note: the sign of the number is ignored because the grand mean CC for higher gamma values is always higher than that 

of the lower gamma values. For all the pair-wise comparisons, the P-values are lower than 10-4, except the pairs *.  

 

Figure 3. Example illustration of network components after the data-reduction procedure 

by MOSI (gamma = 0.8). Six networks are shown and labelled by colors: DMN, 

default-mode network; FP1, cognitive fronto-parietal network; FP2, attentional 

fronto-parietal network; LP, limbic-paralimbic area; SM, sensorimotor network; VA, 

visuo-associative network. 

Network Scoring: 1, present; 0.5, present but defective (e.g., showing only one side of network 

A, and the other side of network A being confluent with network B, etc.); 0, absent. This arbitrary 

scoring system obeys two simple rules. First, the priority follows the order SM > FP > DM > VA > 

LP. For example, if SM is confluent with DM, then DM is 0, and SM is 1. If DM is divided into two 

parts and one part is united with SM, the score of DM would be 0.5. Integrity is the second 

consideration. For example, if FP is divided into several small parts, then its priority over DM, VA 

and LP is lost. However, if with increasing gamma, DM is divided into anterior and posterior 

components and neither is merged with other networks, then the score of DM is still 1. 
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Abbreviation: visuo-associative, VA; default-mode, DM; sensorimotor, SM; fronto-parietal 

executive, FP; limbic/paralimbic, LP. 

Table 3. Identified networks by MOSI across 7 gamma values (expressed in percentage [%]). 

gamma VA DM SM FP LP 

0.65 83 79 87 80 62 

0.70 88 85 90 78 82 

0.75 89 89 99 77 88 

0.80 85 95 87 83 86 

0.85 87 95 98 83 81 

0.90 91 97 94 96 69 

0.95 86 96 94 95 64 

4. Discussion 

It is believed that brain tissues that perform similar functions tend to aggregate together. 

Homogeneous cortical regions have been described using various tools, such as cytoarchitecture, 

white matter bundles, and anatomical landmarks. Given that the voxel number is large in fMRI 

(whole brain scanning may involve tens to hundreds of thousands of voxels) and the BOLD 

dynamics of voxels are not totally independent, it is justifiable to partition the cortex into 

communities with the content voxels sharing similar neural features. This process of dimensionality 

reduction will result in simplified neuro-informatics that are more feasible for further inferences 

about brain network properties. Given their theoretical and clinical importance, the research field of 

automatic FP of the cortex has been versatile, and various innovations have been used to segment the 

cortex automatically based on the functional characteristics of scanned voxels [28,49–55]. Unlike 

previously proposed algorithms, MOSI utilizes the concordance in BOLD dynamics of the regional 

and neighboring voxels to parcellate the functional neuroimaging data. MOSI fulfills automatic 

segmentation of the cortex by combining modularity detection (dividing step) and similarity 

measurements (unifying step) that are repeated iteratively until convergence is reached. Using a 

Louvain community detection algorithm, the gamma value of the modularity formula may affect the 

resolution of the resultant parcellation [43,44]. This feature is welcome because it is acknowledged 

that the central nervous system is organized at multiple spatial scales, ranging from neuron, tissue, 

gyrus, and area to lobe (or from column and map to system) [31,56,57]. In opposition to previous 

parcellation schemes that tended to yield fixed partition [32–35], MOSI may provide graded 

multi-scale solutions to cortical FP contingent upon research interest. The mean partition number for 

gamma values of 0.65–0.95 ranges from 40–340 (see Table 1). Intra-subject analyses consistently 

verified that the BOLD signals in each parcellated module by MOSI are more homogeneous than 

those in other modules. As expected, the homogeneity in terms of BOLD similarity within each 

module increases with higher gamma values (see Table 2). 

A prerequisite for extracting reliable representative brain signals is to address the regional 

correlated BOLD signal structure. It is more comfortable to reduce the voxels with homogeneous 
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content into a neural node and to use the mean time series to represent the brain signals embedded in 

those voxels. The data reduction achieved by MOSI, i.e., shrinking similar voxels to a node, provides 

a new starting point for subsequent network analysis. It is well known that neural activities in 

different brain regions are not independent from each other, which is also true for the BOLD 

dynamics of fMRI data. Investigation into distant neural synchronization has elucidated several 

large-scale networks in the brain [7,39,58], i.e., the brain has stable patterns of spontaneous activity 

that are organized as modular structures even in the resting state. After MOSI, a community 

detection algorithm was used again to unveil the hidden organization of the network structure, 

similar to many previous reports [6,30,45,59]. It is noteworthy that under such a simplified scenario, 

community detection is used to categorize distantly linked neural nodes, which is in contrast to the 

analytic stream in MOSI where community detection is used to aggregate homogeneous and 

neighboring voxels. Regarding the 5 commonly reported large-scale networks, it was found that 

these network components can be identified at the individual level (except the attentional 

fronto-parietal network that may be confluent with the executive fronto-parietal network; see Tables 

3 and Figure 3). Based on these results, we suggest that gamma values of 0.80–0.85 are suitable 

resolution for FP of rs-fMRI data, which corresponds to segmenting the cortex into 76–110 patches. 

Lower gamma values may help to study the interacting features between the networks listed above, 

while higher gamma values may help to unveil the neural features of the constituent sub-networks. 

Referring to the anatomical delineation of the limbic-paralimbic system [60], it is interesting to note 

that the derived limbic/paralimbic component occupied a much smaller region in previous reports 

and in this report, which was restricted to the orbitofrontal cortex and temporal polar region (some 

research did not even mention this component, see [30]) [28]. However, the limbic system (defined 

by anatomy/histology) and the midline/default-mode system (defined by rs-fMRI) overlapped 

substantially, nicely agreeing with the speculation of a recent study [39]. Despite the consistency, it is 

noteworthy that there is individual variability in terms of the spatial distribution of the constituent 

modules, and there are interesting individual-specific network patterns; for example, part of the 

precuneus may unite with the cuneus, the somatosensory module may correlate with anterior portion 

of the cuneus or part of the anterior cingulate cortex, the default-mode network may be divided into 

two sub-networks, insula or cingulo-insular network may be isolated, and the attentional 

fronto-parietal network may correlate with the cuneus (beyond the scope of this study, and the details 

thus not shown), etc. The variation might reflect individual neuropsychological characteristics that 

manifest at the large-scale network level, an area largely unexplored in current rs-fMRI research. 

Given the importance of the FP topic in neuroimaging research, diverse analytic strategies have 

been developed and adopted to segment the cerebral cortex. It is appropriate to contrast our results 

with previous contributions to make the distinction of MOSI clear. There are three major categories 

of FP, briefly summarized below. The first class is the ROI-based approach that focuses on a 

particular structure. An ROI may be derived from the contrast of functional image analysis or, in an 

extreme case, may be reduced to a single voxel derived from the maximum activation of group-level 

analysis [39]. The second class is an atlas-based approach that pre-defines the cortex into tens to 

hundreds of regions and generally covers the whole brain [61,62]. However, there has been a concern 

that the FP (and other measures, such as modularity analysis) based on atlas information may be 

inaccurate because the correspondence among different methods to define a homogeneous 
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―functional‖ region is quite limited [10,11]. If the validity of the upstream stage is questionable, the 

subsequent inferences about network properties could be biased (see alternative interpretation by [6]). 

There has been harsh criticism on the validity of atlas-based definitions of neural nodes [12,13], 

which urges a data-driven approach to substantiate automatic whole-brain FP. The third class of FP is 

based on the features of brain signals per se, which provide a better representation of the brain 

dynamics. Various algorithms have been developed to serve the purpose of automatic whole-brain FP, 

such as sampling the brain via a regularly spaced grid and using whole-brain correlation information 

to guide FP or resorting to the trajectories of transition (abrupt changes in CC patterns based on each 

voxel) to define the parcellation boundaries [31,34]. Expectation-maximization framework, 

variational Bayes approach, clustering techniques, independent component analysis and principal 

component analysis have all been incorporated into diverse FP algorithms under several 

experimental conditions [28,49–55]. MOSI is different from all the above orientations in that local 

and neighboring homogeneity is the only pertinent consideration and constraint. Rather than 

extracting the ―edge‖ that represents the boundary, MOSI respects the original definition of a 

module—the intensely connected members (voxels) are grouped together. After decomposing a 

larger module into several more homogeneous sub-modules, the neighboring sub-modules showing 

high similarity are united to form a new module. The splitting and unifying processes are repeated 

iteratively until the mutual information between the partitions of two successive cycles does not 

change. MOSI works fast, obeys the fundamental rationale to achieve data reduction (i.e., similar 

voxels are compressed to a node) and may lay the foundation for further individual network analysis. 

For example, the outputs of MOSI may provide novel starting points for multi-resolution structural 

network construction (e.g., the ROIs across different scales for diffusion tensor imaging analyses). 

The derived multi-resolution networks are innately multi-layered and may enable the exploration of 

the cross-scale network relationship. At each resolution, the output of MOSI may also endorse the 

study of scale-specific, multi-level network.  

There are many clustering and community detection algorithms for FP of the brain but 

considering each of these algorithms is beyond the scope of this study. Nevertheless, it is well-known 

that different community detection algorithms may yield discrepant results (note: may also contribute 

to the individual variation in the network distribution described above) [6,38,63–65], which 

motivated Thirion et al. to examine the performance of different clustering algorithms for task-based 

fMRI datasets [66]. MOSI may provide a fair platform to enable the comparison of different 

community detection algorithms and to select the optimal algorithm/parameters tailored for 

resting-state brain network description. Other potential applications of MOSI include investigating 

the issue of hemispheric asymmetry [67], clarifying the debate on structural and functional 

concordance [45], characterizing network/graph properties, etc. It is also of interest to apply MOSI in 

neuropsychiatric populations and in the study of neural reorganization/plasticity. The authors expect 

that using MOSI as a data-reduction (pre-processing) procedure may enhance the consistency and 

comparability of network research in the field of rs-fMRI research.  

5. Conclusions 

A major challenge for FP of whole-brain fMRI data lies in the large voxel number; therefore, 
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data-reduction strategies are frequently applied, such as regularly spaced seeds and atlas-defined 

ROIs [4,34]. In contrast to previously proposed algorithms [31,34], MOSI utilized the concordance 

in BOLD dynamics of the regional and neighboring voxels to parcellate the functional neuroimaging 

data and to achieve data reduction. By titrating gamma values, MOSI may also adapt the partition to 

different resolutions. The validity was confirmed by intra- and inter-individual analyses. The 

empirical analysis suggested that gamma values of 0.80–0.85 seem to be suitable for FP of the cortex 

to commonly reported networks. MOSI may provide a novel starting point for subsequent network 

analysis of rs-fMRI data. 
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