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Predictive QSAR model confirms flavonoids 
in Chinese medicine can activate voltage‑gated 
calcium (CaV) channel in osteogenesis
Ki Chan1, Henry Chi Ming Leung2 and James Kit‑Hon Tsoi1*

Abstract 

Background:  Flavonoids in Chinese Medicine have been proven in animal studies that could aid in osteogenesis and 
bone formation. However, there is no consented mechanism for how these phytochemicals action on the bone-form‑
ing osteoblasts, and henceforth the prediction model of chemical screening for this specific biochemical function has 
not been established. The purpose of this study was to develop a novel selection and effective approach of flavonoids 
on the prediction of bone-forming ability via osteoblastic voltage-gated calcium (CaV) activation and inhibition using 
molecular modelling technique.

Method:  Quantitative structure–activity relationship (QSAR) in supervised maching-learning approach is applied in 
this study to predict the behavioral manifestations of flavonoids in the CaV channels, and developing statistical cor‑
relation between the biochemical features and the behavioral manifestations of 24 compounds (Training set: Kaemp‑
ferol, Taxifolin, Daidzein, Morin, Scutellarein, Quercetin, Apigenin, Myricetin, Tamarixetin, Rutin, Genistein, 5,7,2′-Trihy‑
droxyflavone, Baicalein, Luteolin, Galangin, Chrysin, Isorhamnetin, Naringin, 3-Methyl galangin, Resokaempferol; test 
set: 5-Hydroxyflavone, 3,6,4′-Trihydroxyflavone, 3,4′-Dihydroxyflavone and Naringenin). Based on statistical algorithm, 
QSAR provides a reasonable basis for establishing a predictive correlation model by a variety of molecular descriptors 
that are able to identify as well as analyse the biochemical features of flavonoids that engaged in activating or inhibit‑
ing the CaV channels for osteoblasts.

Results:  The model has shown these flavonoids have high activating effects on CaV channel for osteogenesis. In addi‑
tion, scutellarein was ranked the highest among the screened flavonoids, and other lower ranked compounds, such as 
daidzein, quercetin, genistein and naringin, have shown the same descending order as previous animal studies.

Conclusion:  This predictive modelling study has confirmed and validated the biochemical activity of the flavonoids 
in the osteoblastic CaV activation.
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Background
Flavonoids are polyphenol compounds that are cat-
egorized according to their chemical structures into 
distinct groups, namely flavonols, flavones, flavanones, 

flavan-3-ols, and isoflavones. In fact, these flavonoids 
are widely presented in various agricultural food, natural 
products and Chinese Medicine, and they can exert vari-
ous health promoting effects in the human body based on 
their chemical structures [1]. In particular, flavonols are a 
class of flavonoids, and some compounds, e.g. kaempferol, 
quercetin, quercetrin, rutin and myricetin are commonly 
found in Hippophae rhamnoides, Hypericum perforatum, 
and Cacumen platycladi [2]. In addition, from Fructus 
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viticis and Perilla frutescens, various flavones such as api-
genin, isovitexin, luteolin and vitexin could be obtained 
[3, 4]. Favones is another class of flavonoids that could be 
found easily in Radix scutellariae and Cuscuta chinensis. 
For example, naringenin can reduce cholesterol levels 
[5], hesperidin can reduce inflammation via its suppres-
sion pathways of lipopolysaccharide (LPS)-elicited and 
infection-induced Tumor necrosis factor alpha (TNF-α) 
production [6], and naringin can be used in bone graft 
material to induce osteogenesis [7]. Flavan-3-ols include 
the catechins and the catechin gallates. The major com-
pounds are catechin, epicatechin, catechin gallate and epi-
catechin gallate which are the active components of green 
tea leaves (Camellia sinensis) and have antimutagenic, 
antitumour, anti-inflammatory and free-radical scaveng-
ing activities [8]. Isoflavones has its main sources in soy 
cheese, soy flour, soybean and tofu, etc. Daidzein and gen-
istein are among several known isoflavones [9].

Some flavonoids, such as daidzein [10], quercetin [11], 
genistein [12] and naringin [7], have been proven in ani-
mal studies that could aid in osteogenesis and bone for-
mation. However, there is no consented mechanism for 
how these chemicals action on the bone-forming osteo-
blasts. Some evidences have shown bone resorption [13], 
cell proliferation [14] and cell signal transport [15] were 
related to activation of osteoblastic calcium channels. In 
particular, L-type calcium channels (e.g. CaV1.2) could 
mediate the change of Ca2+ inside the osteoblasts by some 
regulatory agents such as parathyroid hormone (PTH) 
[16] and vitamin D [17]. However, study also showed 
the inhibition of the channels might also promote osteo-
blast differentiation [18]. On the other hand, Saponara 
et  al. [19] has recently shown in the whole-cell patch-
clamp experiments that 24 flavonoids are either activa-
tors or deactivators of CaV1.2 channel current measured 
in artery myocytes of rat tail. Thus, it seems to that the 
actual physiological mechanisms are unclear [20].

To establish the correlation for the flavonoids with 
known biochemical activity of being a blocker or activa-
tors of Ca2+ channels, quantitative structure–activity 
relationship (QSAR) modeling might be useful to identify 
and screen the flavonoids, since QSAR could predict bio-
chemical activities for new or untested flavonoids of the 
same class via selected molecular characteristics (descrip-
tors) that has correlation with the biochemical activity of 
activating or blocking CaV channels. In fact, QSAR has 
been used in the fields of medicine, biochemistry, molecu-
lar biology and biomaterial science for more than three 
decades. QSAR is particular useful in screening and pre-
dicting the biochemical interaction between, for example, 
enzyme and complex phytocompounds [21]. Recently, 
predictive QSAR can be operated in either small, focused 
and good biochemical data (so-called supervised machine 

learning approach) that can easily map the biological 
responses with input feature parameters [22], or utilizing 
on big enough data for “black box” (so-called deep learn-
ing or descriptor-free approach) [23] that can assist in 
drug design even the chemicals are not existed [24].

Thus, to consider the specific effects of flavonoids on 
CaV channel current kinetics, a supervised machine 
learning QSAR model can be built based on chemical 
structures together with suitable biochemical data (molec-
ular descriptors), such as pKa and patch-clamp experiment 
data, of the flavonoids to provide a better understanding 
of the structure–activity relationship between the com-
pounds and CaV. These descriptors have been selectively 
chosen for the flavonoids since there have been increasing 
amount of molecular descriptors represented by quan-
tum-chemical and various classical parameters that were 
designed and tested as potential variables for QSAR mod-
eling. Quantum-chemical parameters represent a special 
class of molecular properties. They can be obtained from 
sophisticated ab  initio calculations or by means of rela-
tively inexpensive semi-empirical methods, but in the case 
of flavonoids, such calculations require more time and 
effort than those for one, two or three-dimensional clas-
sical parameters which can be computed from molecular 
structures of flavonoids within a few minutes. However, in 
contrast to most classical descriptors, quantum-chemical 
parameters are capable of expressing all the electronic and 
geometric properties of the flavonoids being analyzed as 
well as their interactions [25]. Therefore, the interpretation 
of quantum-chemical descriptors can provide much deeper 
insights into the nature of flavonoids’ biochemical and 
physicochemical mechanisms than that of classical descrip-
tors. The advantages of descriptors calculated by means of 
quantum-chemical approaches that account for specific 
and non-specific solvation effects are of prime importance.

This paper focuses on QSAR studies by applying the 
quantum descriptors based on the current literatures’ 
biochemical data in predicting the effects of flavonoids’ 
biochemical activities on the osteoblast’s CaV channel 
current in order to demonstrate its important biochemi-
cal and physicochemical properties on either activat-
ing or deactivating the CaV channel for osteogenesis. 
As such, we anticipate a novel selection and effective 
approach of flavonoids for CaV activation and inhibition 
could be developed.

Materials and methods
QSAR equation modeling attempted to calculate the math-
ematical correlations between the tested compounds’ 
chemical attributes and its biochemical response. Such 
attempt aimed to establish statistical formalism that was 
indicated as biochemical response of flavonoid = f (flavo-
noids’ biochemical attributes). The flavonoids’ biochemical 
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attributes and property were derived from the flavonoid’s 
chemical structure and property. Hence, the QSAR equa-
tion was expressed as:

To be stated in a simple way, the QSAR equation could 
be statistically expressed as:

where β0 was a constant; β1,β2,β3, . . . βn were the inputs 
of descriptors; X1,X2,X3, . . .Xn were different flavonoids’ 
structural features; and Y was biochemical response.

Steps of QSAR modeling
The four basic steps of QSAR study included (i) data prepa-
ration, (ii) data processing, (iii) data prediction and valida-
tion, and (iv) data interpretation. The first step was allowed 
to arrange the data in a convenient and usable form. Since 
biochemical responses of the flavonoids on CaV chan-
nel were considered as the dependent variable, the input 
data were the flavonoids’ rate of activation and inhibition 
that were retrieved from Saponara et al. [19]. The predic-
tor variables (i.e. molecular descriptors) could be obtained 
from chemical structure and property of the flavonoids. 
After the determination and computation of descriptors, a 
QSAR table was formed that was a two-dimensional (2D) 
array of numbers with the columns representing descrip-
tors and response and compounds were depicted in suc-
cessive rows. As QSAR was basically a statistical approach, 
the number of observations was higher than the number of 
descriptors used in the final models for achieving sufficient 
modeling reliability and robustness. By considering the 
presence of intercorrelated and redundant data, a pretreat-
ment procedure was also used in the data-processing step.

In each step of the QSAR model development, several 
statistical operations were involved right from the gen-
eration of descriptors which were encoding of informa-
tion to the pretreatment of data, classification of the data 
set, development of model, validation and reliability check 
of the model. Although the partial least squares (PLS) and 
multiple linear regression (MLR) were common statistical 
tools to develop QSAR models with genetic algorithm (GA) 
serving as variable selection methods, these techniques 
might be inappropriate if Xij is highly correlated or high 
dimensional, especially in comparison to sample size that 
might cause variable selection procedures to be unstable.

In these cases, it could find the way to reduce the 
amount of covariate information because the main focus 
was on future prediction.

Biochemical response

= f (flavonoid’s chemical structure and property).

Y = β0 + β1X1 + β2X2 + β3X3 + · · · + βnXn,

Yi = β0 +
∑

βjXij + εi.

Instead, ξj was the principle components (PCs) of Xi:

Then, the principle components regression (PCR) 
model was developed

for some p′ < p.

PCR had the advantages that αij were uncorrelated to 
strengthen the stability of estimates, and established 
stable variable selection through dimension reduction. 
By choosing p′ , enough PCs could be used to do vari-
able selection, capture higher percentage of variation, 
and maximize adjusted r2. The basic workflow of QSAR 
analysis along with the principal component regression 
(PCR) was depicted in Fig. 1. On successful runs of Prin-
cipal Component Regression (PCR) by the QSAR Mod-
ule of the VLifeMDS 4.3 software (VLife Technologies, 
Pune, India), the QSAR equations were generated to sta-
tistically analyze and determine the model.

Xi =

p
∑

j=1

αijξj .

Yi = β
′

0 +

p′
∑

j=1

β
′

jαij + εi,

Flavonoid
compounds

Ac�va�ng and
Inhibitory ac�vity

Biochemical
Informa�on

Sta�s�cal
valida�on

QSAR
Model

Interpreta�on of
informa�on

Design: be�er
Flavonoids

Fig. 1  Flowchart of the QSAR formalism
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Computation of molecular descriptors
First, the QSAR software was applied to align the 3D 
structural data of the flavonoids as shown in Fig.  2 in 
order to investigate the variation of molecular shape 
of each molecule. There had been 20 flavonoids to be 
included in the training set for deriving QSAR model 
whereas the chemical structures classified by subclass of 
flavonoids are shown in Table 1 and the acid dissociation 
constant (pKa) (i.e. − log10  Ka) values of the hydroxyl 
groups are shown in Fig. 2. Moreover, the data of the rate 
of activation and inhibition from Saponara et al. [19] are 
supplemented as the dataset in which the current evoked 
at 0  mV from a Vh of − 50  mV activated and inhibited 
with τ of activation ranging between 2.2 and 3.1 ms, and 
τ of inactivation between 92.0 and 127.9  ms are shown 
in Table  2. Molecular descriptors, which characterized 
specific information about a flavonoid, were the numeri-
cal value affiliated with the biochemical response for cor-
relation of chemical structures with various biochemical 
properties. In other words, the modeled response was 
represented as a function of quantitative values of struc-
tural features or properties that were termed as descrip-
tors for the QSAR model. Ab  initio derived electronic 
properties in combination with topological quantum-
chemical descriptors (i.e. “k2alpha”, “Id”, “IdwAverage”, 
“Most+vePotential”, “MomInertiaY” and “DeltaEpsi-
lonC”) were used to help to describe the electronic envi-
ronment of the flavonoids and locate molecular regions 
responsible for given bioactivity of flavonoids on the CaV 
channel [26].

The type of descriptors used and the extent to which 
they could encode the structural features of the mol-
ecules that were correlated to the response were criti-
cal determinants of the quality of the QSAR model. The 
ways of chemical structures used to calculate descrip-
tors for QSAR model were illustrated in Fig. 3. The data 
set of flavonoids constituted a group of small polyphe-
nol compounds which can both block and enhance 
Ca2+ current. Firstly, the half maximal activiting/inhib-
itory concentration (IC50) was regarded as the activa-
tory/inhibitory activity values. Then, [IC50(μM)] that 
was referred as the activity data was transformed into 
the logarithmic scale pIC50, i.e.  [− log IC50(μM)], that 
had been applied as the response variables to obtain 
the linear relationship in the QSAR equation. Secondly, 
the biochemical database of the study was randomly 
classified into two subsets that include 4 compounds 
of test-set and 20 compounds training-set (Table  3). 
Thirdly, the molecular descriptors were computed 
by the docking QSAR software for different types of 
theoretical descriptors for each flavonoid. Finally, two 
models, namely model A for CaV activation and model 
B for CaV inhibition, were generated by PCR after it 

screened for different combinations of descriptors by 
genetic algorithm. 

Validation on QSAR models
Although there are no confirmatory experiments per-
formed to validate simulation results, these in silico data 
could be confirmed by other QSAR methods such as 
comparative molecular field analysis and support vector 
machine. Validation for QSAR model was done based on 
the flavonoids for detecting the precision of predictions. 
The leave-one-out cross validation technique was mainly 
involved in validating the sample (n = 24). For check-
ing reliability of a QSAR model for prediction of the 
response property on the data, the original data set was 
classified into 6 subsets with each of size 4. The validation 
process was repeated by using 5 subsets as training set 
and the rest 4 as testing set. Training set was employed 
for model development while the ability of the model to 
predict response value of the flavonoids was done using 
the testing set. The developed models were subjected to 
statistical validation tests to establish its reliability. Steps 
of validation methods were indicated in Fig.  4. The fol-
lowing metrics for determination of QSAR quality, as 
well as internal and external validation were used: 

a.	 Metrics for determination of quality of QSAR model

Determination coefficient (r2):

Adjusted ra
2

Variance ratio (F)

Standard error of estimate (s)

b.	 Validation metrics for QSAR model

i.	 Internal validation

r2 = 1−

∑

(Yobs − Ycal)
2

∑
(

Yobs − Yobs
)2

.

r2a =
(N− 1)× r2 − p

N − 1− p
.

F =

∑

(Ycalc−Ȳ )2

p
∑

(Yobs−Ycalc)
2

N−p−1

.

S =

√

(Yobs − Ycal)2

N − p− 1
.
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Fig. 2  Predicted pKa values (in red colour) for the flavonoids used in this study (Source: PubChem)
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Leave-one-out (LOO) cross-validation

The r2m metric for internal validation

PRESS =

∑

(

Yobs − Ypred
)2
,

SDEP =

√

PRESS

n
,

q2 = 1−

∑
(

Yobs(train) − Ypred(train)
)2

∑
(

Yobs(train) − Ȳtraining
)2

=
PRESS

∑
(

Yobs(train) − Ȳtraining
)2

.

rm2 =

(

rm
2 + r′m

2
)

2
,

�rm
2
=

∣

∣

∣
rm

2
− r′m

2
∣

∣

∣
,

	 ii.	 Metrics for external validation

Predictive r2
pred 

r2m = r2 ×

(

1−

√

(

r2 − r20
)

)

,

r′m
2
= r2 ×

(

1−

√

(

r2 − r′0
2
)

)

,

Scaled Yi =

(

rm
2 + r′m

2
)

2
,

Scaled Yi =
Yi − Ymin(obs)

Ymax(obs) − Ymin(obs)
.

r2pred = 1−

∑
(

Yobs(test) − Ypred(test)
)2

∑
(

Yobs(test) − Ȳtraining
)2

.

Table 1  Chemical structure of flavonoids classified by subclass of flavonoids

Subclass Name Substitution

OH OCH3 Others

Flavonol Myricetin 3, 5, 7, 3′, 4′, 5′

Flavonol Quercetin 3, 5, 7, 3′, 4′

Flavonol Genistein 5, 7, 4′

Flavonol Isorhamnetin 3, 5, 7, 4′ 3′

Flavone Luteolin 5, 7, 3′, 4′

Flavone Apigenin 5, 7, 4′

Flavone Chrysin 5, 7

Flavonol Kaempferol 3, 5, 7, 4′

Flavonol Tamarixetin 3, 5, 7, 3′ 4′

Flavonol Rutin 5, 7, 3′, 4′ O-Rutinose

Flavanone (±)-Taxifolin 3, 5, 7, 3′, 4′

Flavonol 3,6,4′-Trihydroxyflavone 3, 6, 4′

Flavone 5,7,2′-Trihydroxyflavone 5, 7, 2′

Flavone Scutellarein 5, 6, 7, 4′

Flavanone Naringin 5, 4′ O-β-Neo-hesperidose

Flavone 5-Hydroxyflavone 5

Flavonol 3,4′-Dihydroxyflavone 3, 4′

Isoflavone Daidzein 7, 4′

Flavonol Morin 3, 5, 7, 2′, 4′

Flavanone (±)-Naringenin 5, 7, 4′

Flavonol Resokaempferol 3, 7, 4′

Flavone Baicalein 5, 6, 7

Flavonol 3-Methyl galangin 5, 7 3

Flavonol Galangin 3, 5, 7
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Root mean square error in prediction (RMSEP)

	iii.	 Molecular descriptor
“k2alpha” is descriptor indicating second order kappa 

alpha shape index (2kα or k2alpha):

“Id” and “IdwAverage” that are the type of informa-
tion theory based descriptors on distance equality, 
whereas the total information content on the distance 
equality (Id):

RMSEP =

√

∑
(

yobs(test) − ypred(test)
)2

next
.

k2alpha =
(A+ α − 1)(A+ α − 1)2

(P + α)2
.

where f is the number of distances with equal g val-
ues in the triangular D submatrix. D is an A × A matrix 
that contains the graph distances between atoms. The 
graph distances are calculated as 1/(the number of bonds 
between atoms)2

The mean information content on the distance equality 
(IdwAverage):

Id =
A(A− 1)

2
log2

(

A(A− 1)

2

)

−

G
∑

g=1

flog2
(

f
)

,

IdwAverage = −

G
∑

g=1

2f

A(A− 1)
log2

(

2f

A(A− 1)

)

.

Table 2  Rate of activation and inactivation of flavonoids on CaV channel under control conditions

ND not detectable

For myricetin, both τ1act and τ2act have been reported; data = mean ± SEM; * p < 0.05, ** p < 0.01, *** p < 0.001

Flavonoids τact (ms) τinact (ms) n

Control Drug Control Drug

Myricetin 3.1 ± 0.2 3.6 ± 0.4 116.6 ± 12.9 ND 10

29.0 ± 7.3

Quercetin 3.0 ± 0.2 6.2 ± 0.3*** 94.5 ± 7.7 75.9 ± 4.3* 6

Genistein 3.1 ± 0.4 3.8 ± 0.3* 112.0 ± 7.9 133.0 ± 11.5* 7

Isorhamnetin 2.4 ± 0.2 5.4 ± 0.4** 112.8 ± 11.4 89.1 ± 8.8* 5

Luteolin 2.5 ± 0.2 2.8 ± 0.3 115.8 ± 11.1 113.6 ± 15.3 5

Apigenin 2.9 ± 0.3 2.9 ± 0.3 100.2 ± 2.6 109.6 ± 8.2 6

Chrysin 3.2 ± 0.3 3.1 ± 0.2 97.0 ± 8.6 70.8 ± 3.2** 6

Kaempferol 2.5 ± 0.3 4.6 ± 0.3*** 106.7 ± 4.6 101.9 ± 7.0 6

Tamarixetin 2.3 ± 0.1 4.6 ± 0.3*** 97.1 ± 7.5 98.9 ± 10.3 9

Rutin 2.3 ± 0.2 2.4 ± 0.3 122.2 ± 11.2 117.4 ± 5.4 6

(±)-Taxifolin 2.7 ± 0.2 3.0 ± 0.3 117.2 ± 10.4 111.5 ± 5.5 6

3,6,4′-Trihydroxyflavone 2.7 ± 0.2 2.9 ± 0.3 116.7 ± 17.8 114.0 ± 15.7 5

5,7,2′-Trihydroxyflavone 3.2 ± 0.4 3.3 ± 0.3 104.6 ± 9.4 103.1 ± 4.7 5

Scutellarein 2.4 ± 0.2 2.7 ± 0.2 109.7 ± 8.7 114.0 ± 7.3 6

Naringin 2.8 ± 0.1 3.3 ± 0.3 122.4 ± 16.1 109.1 ± 14.1 4

5-Hydroxyflavone 3.0 ± 0.7 2.5 ± 0.4 92.0 ± 4.8 85.5 ± 1.4 4

3,4′-Dihydroxyflavone 2.7 ± 0.2 2.9 ± 0.3 100.8 ± 9.7 98.9 ± 10.4 5

Daidzein 2.9 ± 0.4 3.1 ± 0.2 92.2 ± 9.0 110.2 ± 12.9* 5

Morin 2.7 ± 0.2 3.2 ± 0.1* 127.9 ± 10.6 158.1 ± 16.8* 5

(±)-Naringenin 2.7 ± 0.2 2.9 ± 0.3 119.6 ± 13.5 98.5 ± 8.5* 5

Resokaempferol 2.6 ± 0.3 2.7 ± 0.4 114.4 ± 14.0 110.1 ± 9.6 5

Baicalein 2.6 ± 0.2 2.9 ± 0.4 102.9 ± 9.4 99.7 ± 5.7 6

3-Methyl galangin 2.6 ± 0.4 3.0 ± 0.5 114.9 ± 5.9 82.3 ± 10.0* 4

Galangin 2.2 ± 0.2 3.1 ± 0.5 99.3 ± 7.5 89.2 ± 5.1 5
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Fig. 3  Flowcharts describing the ways of chemical structures used to calculate descriptors for QSAR model
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Results
As listed in Table 4, for Model A, the QSAR model not 
only had internal predictive ability ( q2 = 6.93%) and 
external predictive ability ( r2pred = 95.86%), but also could 
explain 31.82% of the total variance ( r2 = 0.3182) in the 
training database. The F-test = 3.9664 showed that the 
Model A was statistically significant with p-value < 0.001 
for which it indicated the model had less than 0.1% prob-
ability of making an error. For Model B, although the 
QSAR model had only external predictive ability 
( r2pred = 52.27%) and could only explains 8.45% of the total 
variance ( r2 = 0.0845) in the training dataset, its internal 
predictive ability ( q2 = 11.48%) was relatively higher than 
that of Model A. Similarly, the F-test = 1.5682 also indi-
cated the Model B was statistically significant with 
p < 0.001 which meant that the Model B’s likelihood of 
committing an error was less than 5%. Therefore, both 
Model A and B were justified for their internal and exter-
nal predictive ability.

Tables  5 and 6 indicate the observed values and 
the predicted values of the activation (Model A) and 

inhibition (Model B) activity of flavonoids on CaV chan-
nel, respectively. Figure  5a shows the goodness of fit 
graph of observed activity and predicted activity of the 
flavonoids activating on CaV channel. Moreover, it indi-
cated how good the actual training dataset could be fit-
ted by the predicted PCR equation. From the Radar 
plots as shown  in Fig.  5b, c, the fitted PCR equation of 
the training data set could be predicted well by the test 
data set. Hence, the predictive ability of Model A could 
be confirmed. On the other hand, Fig.  6a indicates that 
the fitness plot of observed activity and predicted activity 
of the flavonoids inhibiting on CaV channel. In addition, 
it showed how well the actual training dataset could be 
fits by the predicted PCR equation. From Radar plots in 
Fig. 6b, c, it was also revealed that the fitted PCR equa-
tion of the training data set could be predicted well by the 
test data set. Therefore, the predictive ability of Model B 
could also be confirmed.   

Table  7 shows the ranking the order of activa-
tion of flavonoids on the CaV channels such that the 
descending order of flavonoids activation on the CaV 
channels are: scutellarein > morin > daidzein > myrice-
tin > apigenin > quercetin > (±)-taxifolin > 5,7,2′-trihy-
droxyflavone > genistein and so on.

Discussion
The results indicated in Table 7 has shown the molecu-
lar structures, contribution graphs and parameters of 
selected descriptors of flavonoids as predicted in the 
CaV activation model with QSAR equations (model A) 
The results were surprisingly consistent with the order 
of the flavonoids ranked by the percentage of increase 
in new bone formation, i.e. daidzein (602%) > quercetin 
(556%) > genistein (520%) > naringin (490%) as reported in 
series of in vivo animal studies by Wong et al. [7, 10–12]. 
This partial external validation, despite not a full set of 
comparison, gives a good guarantee for the present pre-
dictive supervised machine-learning QSAR model that 
can precisely ranks and predicts the flavonoids effects on 
osteogenesis based on the existing biochemical informa-
tion with CaV [19].

Activation and inhibition activities of flavonoids were 
investigated based on their ability to maintain the bal-
ance between activation and inactivation in the CaV by 
binding to the beta subunit receptor of CaV. In this case 
of activation, it was indicated that activating activity is 
mainly the outcome of electronic interactions between 
atomic charges within flavonoids and possible receptor-
like structures in the CaV. In the case of inhibition, it was 
shown that the binding affinities of selected flavonoids to 
the CaV receptor are highly dependent on physicochemi-
cal properties involved in the interactions. As such, statis-
tically the Model A presented the justified characteristics 

Table 3  Flavonoids classified by  its corresponding 
PubChem CID and training/test set

Flavonoids PubChem CID Training 
and test 
data set

5,7,2′-Trihydroxyflavone Structure2D_CID_21611827 Training set

Naringin Structure2D_CID_442428 Training set

(±)-Taxifolin Structure2D_CID_471 Training set

Quercetin Structure2D_CID_5280343 Training set

Apigenin Structure2D_CID_5280443 Training set

Luteolin Structure2D_CID_5280445 Training set

Rutin Structure2D_CID_5280805 Training set

Kaempferol Structure2D_CID_5280863 Training set

Genistein Structure2D_CID_5280961 Training set

Baicalein Structure2D_CID_5281605 Training set

Chrysin Structure2D_CID_5281607 Training set

Resokaempferol Structure2D_CID_5281611 Training set

Galangin Structure2D_CID_5281616 Training set

Isorhamnetin Structure2D_CID_5281654 Training set

Morin Structure2D_CID_5281670 Training set

Myricetin Structure2D_CID_5281672 Training set

Scutellarein Structure2D_CID_5281697 Training set

Tamarixetin Structure2D_CID_5281699 Training set

Daidzein Structure2D_CID_5281708 Training set

3-Methyl galangin Structure2D_CID_5281946 Training set

5-Hydroxyflavone Structure2D_CID_68112 Test set

3,6,4′-Trihydroxyflavone Structure2D_CID_688684 Test set

3,4′-Dihydroxyflavone Structure2D_CID_688715 Test set

(±)-Naringenin Structure2D_CID_932 Test set
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of molecular structure of flavonoid compounds that were 
required for activating CaV channel in which electrostatic 
fields were estimated using “k2alpha” that was descrip-
tor signifying second alpha modified shape index, and 
“Id” and “IdwAverage” that were the type of information 
theory based descriptors. On the contrary, the Model B 
showed different structural features that were required 
for flavonoids to inhibit CaV channel. Its electrostatic 

fields were estimated using “Most+vePotential” that was 
descriptor indicating the highest value of positive elec-
trostatic potential on the van der Waals  surface area of 
the flavonoids, “MomInertiaY” that was steric descriptor 
signifying moment of inertia at Y-axis, and “DeltaEpsi-
lonC” that was descriptor for electronegativity  signify-
ing differences between the frontier molecular orbital 
energies. Hence, from the six descriptors selected for the 

Dataset: A set of flavonoid molecules with biochemical activity values 

Molecular structure representation (conformational analysis) 

Division of dataset 

Training set Test set 

Chemometric tools 

External model validation 

Regression based QSAR (PCR) 

Internal validation parameters 
External validation parameters 

Whether the model is acceptable? 

Prediction 

Fig. 4  Steps of validation methods for the QSAR model
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principal component regression model, one was related 
to the electronic (i.e. “Most+vePotential”) or two were 
related to the physicochemical (“MomInertiaY” and 
“DeltaEpsilonC”) properties of the whole molecules and 
three (“k2alpha”, “Id”, “IdwAverage”) described electronic 
properties of individual atoms. All these selected descrip-
tors correspond to the analogous behavior in terms of 

tendency that was being also observed by the QSAR anal-
ysis on the CaV channel to be activated and inhibited by 
the flavonoids.

Furthermore, the QSAR model was chosen in accord-
ance with the parameter estimates of r2 , q2 , r2pred , F-stat 
and p-value. Since the r2 value = 0.3182 of Model A was 
higher than the Model B’s r2 value = 0.0845, and the q2 
value = 0.0693 of Model A was relatively lower than the 

Table 4  The QSAR model with the corresponding parameters of estimates

r2, determination coefficient; q2, internal predictive ability; r2
pred, external predictive ability; se, standard error; pIC50, concentration of flavonoids in logarithm scale 

required for 50% activation/inhibition of CaV channel activity

Model A (for activation activity)

pIC50 = − 0.0413 k2alpha − 0.0003 Id + 0.5530 IdwAverage − 3.1819

F-stat = 3.9664 p-value < 0.001

r2 = 0.3182 q2 = 0.0693 r2pred = 0.9586

r2(se) = 0.0933 q2(se) = 0.1090 r2pred(se) = 0.0204

Model B (For inhibition activity)

pIC50 = 0.3241Most+vePotential + 0.0000MomInertiaY − 0.3600DeltaEpsilonC + 1.9116

F-stat = 1.5682 p-value < 0.001

r2 = 0.0845 q2 = 0.1148 r2pred = 0.5227

r2(se) = 0.0804 q2(se) = 0.0887 r2pred(se) = 0.0387

Table 5  Observed and predicted activity of the flavonoids 
on the CaV activation (Model A)

Flavonoids Observed 
activity

Predicted 
activity

Residuals

5,7,2′-Trihydroxyflavone 0.519 0.518 − 0.001

Naringin 0.519 0.468 − 0.051

(±)-Taxifolin 0.477 0.584 0.107

Quercetin 0.792 0.590 − 0.202

Apigenin 0.462 0.490 0.028

Luteolin 0.447 0.539 0.092

Rutin 0.38 0.431 0.051

Kaempferol 0.663 0.547 − 0.116

Genistein 0.580 0.490 − 0.090

Baicalein 0.462 0.499 0.037

Chrysin 0.491 0.449 − 0.042

Resokaempferol 0.431 0.498 0.067

Galangin 0.491 0.512 0.021

Isorhamnetin 0.732 0.611 − 0.121

Morin 0.505 0.595 0.090

Myricetin 0.556 0.630 0.074

Scutellarein 0.431 0.534 0.103

Tamarixetin 0.663 0.602 − 0.061

Daidzein 0.491 0.431 − 0.060

3-Methyl galangin 0.477 0.552 0.075

5-Hydroxyflavone 0.398 0.389 − 0.009

3,6,4′-Trihydroxyflavone 0.462 0.484 0.022

3,4′-Dihydroxyflavone 0.462 0.447 − 0.015

(±)-Naringenin 0.462 0.484 0.022

Table 6  Observed and predicted activity of the flavonoids 
on the CaV inhibition (Model B)

Flavonoids Observed 
activity

Predicted 
activity

Residuals

5,7,2′-Trihydroxyflavone 2.013 2.003 − 0.010

Naringin 2.038 2.042 0.004

(±)-Taxifolin 2.047 2.026 − 0.021

Quercetin 1.880 2.023 0.143

Apigenin 2.040 1.999 − 0.041

Luteolin 2.055 2.012 − 0.043

Rutin 2.070 2.091 0.021

Kaempferol 2.008 2.010 0.002

Genistein 2.124 2.000 − 0.124

Baicalein 1.999 2.003 0.004

Chrysin 1.850 1.987 0.137

Resokaempferol 2.042 2.002 − 0.040

Galangin 1.950 1.997 0.047

Isorhamnetin 1.950 2.023 0.073

Morin 2.199 2.026 − 0.173

Myricetin 2.057 2.015 − 0.042

Scutellarein 1.995 2.029 0.034

Tamarixetin 2.042 1.991 − 0.051

Daidzein 1.915 1.995 0.080

3-Methyl galangin 1.932 1.976 0.044

5-Hydroxyflavone 2.057 2.008 − 0.049

3,6,4′-Trihydroxyflavone 1.995 1.994 − 0.001

3,4′-Dihydroxyflavone 1.993 2.007 0.014
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Model B’s q2 value = 0.1148, and r2pred = 0.9586 of Model 
A was higher than the Model B’s r2pred = 0.5227, Model A 
had justified values for being selected to be the better 
QSAR model to support the argument that CaV channel 
was more likely to be activated rather than being inhib-
ited by the flavonoids. From this point, the QSAR 
approach pursues its objective of understanding the bio-
chemical effects of the flavonoids on the CaV channel 
and providing practical suggestions for screening optimal 
flavonoids have been demonstrated in the investigations 
of its activating and inhibitory activity on CaV channel. 
Moreover, analogous behavior in terms of selected 
descriptors tendency was also observed by the QSAR 

analysis on the CaV channel to be activated and inhibited 
by the flavonoids. Activation and inhibition activity of 
flavonoids was investigated based on their ability to 
maintain the balance between activation and inactivation 
in the CaV by binding to the beta subunit receptor of 
CaV. In this case of activation, it was indicated that acti-
vating activity is mainly the outcome of electronic inter-
actions between atomic charges within flavonoids and 
possible receptor-like structures in the CaV. In the case of 
inhibition, it was shown that the binding affinities of 
selected flavonoids to the CaV receptor are highly 
dependent on physicochemical properties involved in the 
interactions.

Fig. 5  a Model A’s graph of goodness of fit indicating observed and predicted activity of polyphenols on CaV activation by QSAR equations along 
with the residuals, b Model A’s Radar plot depicting closeness between the actual and predicted activity of the flavonoid compounds of training 
set, c Model A’s Radar plot depicting closeness between the actual and predicted activity of the test set’s compounds
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Apparently, the electronic properties of the flavonoids 
were found to be significant after exploring the entire 
pool of the classical and electronic variables for screening 
a QSAR model which has thousands of parameters avail-
able from experiment and in silico calculations that could 
potentially serve as independent variables (descriptors) 
in statistical analysis. However, it has also been known 
from fitting this QSAR study that utilization of an exces-
sive number of descriptors leads to over-fitting of QSAR 
models and/or increases the risk of chance correlations. 
Despite the existence of rules for building successful and 
meaningful QSAR models, the increasing complexity 
of biochemical mechanisms the flavonoids on the CaV 

creates the need for considering a large variety of vari-
ables that makes the knowledge-based approach to the 
identification of the most significant descriptors for this 
particular case of investigating flavonoids’ biochemical 
activities on the CaV channel extremely difficult. There-
fore, this is the main reason to apply PCR to perform 
reduction of data by generating linear combinations of 
molecular descriptors [27]. The PCR method identifies 
correlated variables, groups them into linear combina-
tions, and generates uncorrelated orthogonal variables 
that are uncorrelated and called principal components. 
The process of data transformation is given by X = TPT , 
where X represents the initial data matrix, T is a score 

Fig. 6  a Model B’s graph of goodness of fit indicating observed and predicted activity of polyphenols on CaV inhibition by QSAR equation along 
with the residuals, b Model B’s Radar plot depicting closeness between the actual and predicted activity of the flavonoid compounds of training set, 
c Model B’s Radar plot depicting closeness between the actual and predicted activity of test set’s compounds
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matrix that defines the position of data points in a new 
coordinate system and P is a loadings matrix. The load-
ings indicate how much each original descriptor contrib-
utes to the corresponding PC. Scores and loadings allow 
the data points to be mapped into the new vector space 
defined by PCs [28].

The correlation between independent and dependent 
variables could statistically be determined to fit a PCR 
line to the data so as to obtain a best-fit equation. Then, 
the goodness of fit for a PCR equation was estimated by 
referring to its standard deviation and correlational coef-
ficient in which the level of statistical significance of the 
PCR equation was represented by the F-statistics with its 
corresponding p-value. By applying PCR analysis, enough 
PCs could be used to do variable selection by choosing 
p-value in order to maximize adjusted r2. We notice that 
the limitation of this study could be only ascribable to 24 
compounds, and the predictive power could be less using 
this small dataset. Indeed, various QSAR studies [29–31] 
have used 10–25 compounds to generate the predictive 
model that seems to be quite successful. On the other 
hand, regarding to the results, although it is gener-
ally recommended that r2 should be > 0.7, and q2 should 
be > 0.5,  these are not stringent guidelines. The predic-
tive power of QSAR should not solely rely on r2 and q2 

[32]. In particular, we have also cross-compared with the 
in  vivo animal studies (Table  7) for daidzein, quercetin, 
genistein and naringin [7, 10–12]. If necessary, further 
time-consuming in vivo studies could be done in order to 
completely validate the model.

In this study the combination of electronic and phys-
icochemical descriptors helped to identify molecular 
shape, hydrophobicity and electronic properties as three 
major factors responsible for these types of activation 
and inhibition activity of flavonoids on the CaV. The use 
of QSAR in screening the bioactive flavonoids for tissue 
engineering applications is relatively new. The success 
of this QSAR modeling in the accurate determination 
of electronic properties of biochemically significant fla-
vonoids may initiate QSAR studies in tissue engineer-
ing that focus specifically on the exploration of bioactive 
growth factors for cells. QSAR provides an invaluable 
tool for calculating quantum-chemical descriptors that 
demonstrate high potential in generating predictive 
QSAR models without the addition of a large number of 
descriptors for various groups of growth factors [33, 34]. 
Since osteogenesis is a very dynamic process, other fac-
tors that are related to CaV channel such as runx2 acti-
vation, ALP secretion, osteocalcin level, angiogenesis and 
mineralization can also be incorporated if appropriate 

Table 7  The order of the flavonoids ranked by relative contribution of individual descriptors using pIC50 in model A and 
the order of the compounds ranked by the proportion of increase in in vivo new bone formation

No. Name K2alpha Id IdwAverage % Increase in new 
bone formation 
in vivo

1 Scutellarein 5.334 790.386 7.774 –

2 Morin 5.67 798.763 7.77 –

3 Daidzein 5.67 811.449 7.762 602% [10]

4 Myricetin 5.109 710.672 7.646 –

5 Apigenin 5.109 717.251 7.641 –

6 Quercetin 5.253 717.251 7.641 556% [11]

7 (±)-Taxifolin 12.063 3184.03 9.445 –

8 5,7,2′-Trihydroxyflavone 5.232 622.413 7.523 –

9 Genistein 4.885 645.406 7.502 520% [12]

10 Rutin 4.885 655.079 7.493 –

11 Kaempferol 12.328 3499.12 9.59 –

12 Tamarixetin 4.885 660.411 7.488 –

13 Naringin 4.502 560.369 7.37 490% [7]

14 Isorhamnetin 4.661 561.775 7.371 –

15 Chrysin 4.661 576.201 7.357 –

16 Galangin 4.661 578.975 7.357 –

17 Luteolin 4.661 586.848 7.347 –

18 Baicalein 4.661 587.476 7.347 –

19 Resokaempferol 4.438 508.035 7.208 –

20 3-Methylgalangin 4.438 528.263 7.187 –
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in the future study. Nevertheless, cautious should be 
taken into account for QSAR studies because it is only 
an approximating method. When many physicochemical 
properties are involved, it is not always possible to vary 
one property without affecting another. Moreover, it does 
not provide an in-depth insight on the mechanism of bio-
logical action of flavonoids. Also, there may be some risk 
of inaccurate predictions of biological activity of this type 
of flavonoid compounds.

Through the QSAR study, we have established a predic-
tive molecular modeling method that allows one to esti-
mate the properties of flavonoids as bioactive compounds 
at a much lower cost and environmentally-friendly than 
that of actual laboratory screening. Since both the mod-
el’s predictive ability and the scientific insights into bio-
chemical activity in the CaV depend on the descriptors 
selected in the modeling process, this study has indicated 
that the use of quantum-chemical descriptors under 
supervised machine-learning  has an obvious advantage 
over other experimentally measured properties. Since 
they are reproducible in the framework of the chosen 
approximation, they allow meaningful interpretation of 
QSAR models in terms of the biochemical mechanism 
of flavonoids as activator of the CaV. Thus, it can offer 
a  clear guidance for molecule optimization or design of 
flavonoids as a growth factor for osteogenesis.

Conclusions
This predictive  QSAR study confirmed and validated 
the biochemical activity of the flavonoids in the CaV, 
such that flavonoids can activate CaV in osteogenesis. 
Scutellarein was predicted to rank the highest among the 
screened flavonoids.

Abbreviations
CaV: Voltage-gated calcium; LPS: Lipopolysaccharide; QSAR: Quantitative 
structure–activity relationship; TNF-α: Tumor necrosis factor alpha; PLS: Partial 
least squares; MLR: Multiple linear regression; GA: Genetic algorithm; PCs: Prin‑
ciple components; PCR: Principle components regression; IC50: Half maximal 
inhibitory concentration.

Acknowledgements
This work was done in partial fulfillment of the requirements of the degree 
of Ph.D. for the first author at the Faculty of Dentistry, The University of Hong 
Kong. Part of the data has been presented in 94th General Session and Exhibi‑
tion of the International Association of Dental Research (IADR), Seoul, Korea.

Authors’ contributions
KC analyzed and interpreted the data, and was a major contributor in writing 
the manuscript. JT was a major contributor in reviewing the manuscript, and 
handled the project supervision. HL provided resources in the simulation, and 
reviewed the manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets during and/or analysed during the current study available from 
the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dental Materials Science, Division of Applied Oral Sciences and Community 
Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, 
Hong Kong SAR PRC. 2 Department of Computer Science, Faculty of Engineer‑
ing, University of Hong Kong, Pokfulam, Hong Kong SAR PRC. 

Received: 12 January 2020   Accepted: 19 March 2020

References
	1.	 Kim KH, Tsao R, Yang R, Cui SW. Phenolic acid profiles and antioxidant 

activities of wheat bran extracts and the effect of hydrolysis condi‑
tions. Food Chem. 2006;95(3):466–73. https​://doi.org/10.1016/j.foodc​
hem.2005.01.032.

	2.	 Wang W, Lin P, Ma LH, Xu KX, Lin XL. Separation and determination of 
flavonoids in three traditional chinese medicines by capillary electropho‑
resis with amperometric detection. J Sep Sci. 2016;39(7):1357–62. https​://
doi.org/10.1002/jssc.20150​1287.

	3.	 Cao XC, Zou H, Cao JG, Cui YH, Sun SW, Ren KQ, et al. A candidate Chinese 
medicine preparation-fructus viticis total flavonoids inhibits stem-like 
characteristics of lung cancer stem-like cells. BMC Complement Altern 
Med. 2016. https​://doi.org/10.1186/s1290​6-016-1341-4.

	4.	 Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of api‑
genin: a review. Int J Food Prop. 2017;20(6):1197–238. https​://doi.
org/10.1080/10942​912.2016.12071​88.

	5.	 Lee SH, Park YB, Bae KH, Bok SH, Kwon YK, Lee ES, et al. Cholesterol-
lowering activity of naringenin via inhibition of 3-hydroxy-3-meth‑
ylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol 
acyltransferase in rats. Ann Nutr Metab. 1999;43(3):173–80. https​://doi.
org/10.1159/00001​2783.

	6.	 Kawaguchi K, Kikuchi S, Hasunuma R, Maruyama H, Yoshikawa T, 
Kumazawa Y. A citrus flavonoid hesperidin suppresses infection-induced 
endotoxin shock in mice. Biol Pharm Bull. 2004;27(5):679–83. https​://doi.
org/10.1248/Bpb.27.679.

	7.	 Wong RWK, Rabie ABM. Effect of naringin collagen graft on bone forma‑
tion. Biomaterials. 2006;27(9):1824–31. https​://doi.org/10.1016/j.bioma​
teria​ls.2005.11.009.

	8.	 Khalatbary AR, Tiraihi T, Boroujeni MB, Ahmadvand H, Tavafi M, Tam‑
jidipoor A. Effects of epigallocatechin gallate on tissue protection and 
functional recovery after contusive spinal cord injury in rats. Brain Res. 
2010;1306:168–75. https​://doi.org/10.1016/j.brain​res.2009.09.109.

	9.	 Laurenz R, Tumbalam P, Naeve S, Thelen KD. Determination of iso‑
flavone (genistein and daidzein) concentration of soybean seed as 
affected by environment and management inputs. J Sci Food Agric. 
2017;97(10):3342–7. https​://doi.org/10.1002/jsfa.8184.

	10.	 Wong RWK, Rabie ABM. Effect of daidzein on bone formation. Front 
Biosci. 2009;14:3673–9. https​://doi.org/10.2741/4079.

	11.	 Wong RWK, Rabie ABM. Effect of quercetin on bone formation. J Orthop 
Res. 2008;26(8):1061–6. https​://doi.org/10.1002/jor.20638​.

	12.	 Wong RW, Rabie AB. Effect of genistin on bone formation. Front Biosci. 
2010;2:764–70.

	13.	 Ritchie CK, Maercklein PB, Fitzpatrick LA. Direct effect of calcium-channel 
antagonists on osteoclast function—alterations in bone-resorption and 
intracellular calcium concentrations. Endocrinology. 1994;135(3):996–
1003. https​://doi.org/10.1210/En.135.3.996.

https://doi.org/10.1016/j.foodchem.2005.01.032
https://doi.org/10.1016/j.foodchem.2005.01.032
https://doi.org/10.1002/jssc.201501287
https://doi.org/10.1002/jssc.201501287
https://doi.org/10.1186/s12906-016-1341-4
https://doi.org/10.1080/10942912.2016.1207188
https://doi.org/10.1080/10942912.2016.1207188
https://doi.org/10.1159/000012783
https://doi.org/10.1159/000012783
https://doi.org/10.1248/Bpb.27.679
https://doi.org/10.1248/Bpb.27.679
https://doi.org/10.1016/j.biomaterials.2005.11.009
https://doi.org/10.1016/j.biomaterials.2005.11.009
https://doi.org/10.1016/j.brainres.2009.09.109
https://doi.org/10.1002/jsfa.8184
https://doi.org/10.2741/4079
https://doi.org/10.1002/jor.20638
https://doi.org/10.1210/En.135.3.996


Page 16 of 16Chan et al. Chin Med           (2020) 15:31 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	14.	 Riddle RC, Taylor AF, Genetos DC, Donahue HJ. MAP kinase and calcium 
signaling mediate fluid flow-induced human mesenchymal stem cell 
proliferation. Am J Physiol Cell Physiol. 2006;290(3):C776–84. https​://doi.
org/10.1152/ajpce​ll.00082​.2005.

	15.	 Jorgensen NR, Teilmann SC, Henriksen Z, Civitelli R, Sorensen OH, 
Steinberg TH. Activation of L-type calcium channels is required for gap 
junction-mediated intercellular calcium signaling in osteoblastic cells. J 
Biol Chem. 2003;278(6):4082–6. https​://doi.org/10.1074/jbc.M2058​80200​.

	16.	 Li W, Duncan RL, Karin NJ, Farach-Carson MC. 1,25 (OH)2D3 enhances 
PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ 
channels. Am J Physiol. 1997;273(3 Pt 1):E599–605.

	17.	 Bergh JJ, Shao Y, Puente E, Duncan RL, Farach-Carson MC. Osteoblast 
Ca(2+) permeability and voltage-sensitive Ca(2+) channel expression 
is temporally regulated by 1,25-dihydroxyvitamin D(3). Am J Physiol Cell 
Physiol. 2006;290(3):C822–31. https​://doi.org/10.1152/ajpce​ll.00403​.2005.

	18.	 Nishiya Y, Kosaka N, Uchii M, Sugimoto S. A potent 1,4-dihydropyridine 
L-type calcium channel blocker, benidipine, promotes osteoblast differ‑
entiation. Calcif Tissue Int. 2002;70(1):30–9. https​://doi.org/10.1007/s0022​
3-001-1010-5.

	19.	 Saponara S, Carosati E, Mugnai P, Sgaragli G, Fusi F. The flavonoid scaf‑
fold as a template for the design of modulators of the vascular Ca(v)1.2 
channels. Br J Pharmacol. 2011;164(6):1684–97. https​://doi.org/10.111
1/j.1476-5381.2011.01476​.x.

	20.	 Blair HC, Schlesinger PH, Huang CL, Zaidi M. Calcium signalling and 
calcium transport in bone disease. Sub-Cell Biochem. 2007;45:539–62.

	21.	 Gao H. Predicting tyrosinase inhibition by 3D QSAR pharmacophore 
models and designing potential tyrosinase inhibitors from traditional 
Chinese medicine database. Phytomedicine. 2018;38:145–57. https​://doi.
org/10.1016/j.phyme​d.2017.11.012.

	22.	 Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformat‑
ics and drug discovery. Drug Discov Today. 2018;23(8):1538–46. https​://
doi.org/10.1016/j.drudi​s.2018.05.010.

	23.	 Chakravarti SK, Alla SRM. Descriptor free QSAR modeling using deep 
learning with long short-term memory neural networks. Front Artif Intell. 
2019. https​://doi.org/10.3389/frai.2019.00017​.

	24.	 Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo 
drug design. Sci Adv. 2018. https​://doi.org/10.1126/sciad​v.aap78​85.

	25.	 Todeschini R, Consonni V. In: Mannhold R, Kubinyi H, Timmerman 
H, editors. Handbook of molecular descriptors. Methods and prin‑
ciples in medicinal chemistry. Hoboken: Wiley; 2008. https​://doi.
org/10.1002/97835​27613​106

	26.	 Fernandez M, Caballero J. Modeling of the inhibition of the intermediate-
conductance Ca2+ Activated K+ channel (IKCa1) by some triaryl‑
methanes using quantum chemical properties derived from Ab initio 

calculations. QSAR Comb Sci. 2008;27(7):866–75. https​://doi.org/10.1002/
qsar.20076​0157.

	27.	 de Molfetta FA, Angelotti WFD, Romero RAF, Montanari CA, da Silva ABF. 
A neural networks study of quinone compounds with trypanocidal 
activity. J Mol Model. 2008;14(10):975–85. https​://doi.org/10.1007/s0089​
4-008-0332-x.

	28.	 Kholodovych V, Smith JR, Knight D, Abramson S, Kohn J, Welsh WJ. 
Accurate predictions of cellular response using QSPR: a feasibility test of 
rational design of polymeric biomaterials. Polymer. 2004;45(22):7367–79. 
https​://doi.org/10.1016/j.polym​er.2004.09.002.

	29.	 Jain SV, Ghate M, Bhadoriya KS, Bari SB, Chaudhari A, Borse JS. 
2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacet‑
anilides analogues as potent HIV-1 non-nucleoside reverse tran‑
scriptase inhibitors. Org Med Chem Lett. 2012;2(1):22. https​://doi.
org/10.1186/2191-2858-2-22.

	30.	 Bhadoriya KS, Kumawat NK, Bhavthankar SV, Avchar MH, Dhumal DM, 
Patil SD, et al. Exploring 2D and 3D QSARs of benzimidazole derivatives as 
transient receptor potential melastatin 8 (TRPM8) antagonists using MLR 
and kNN-MFA methodology. J Saudi Chem Soc. 2016;20:S256–70. https​://
doi.org/10.1016/j.jscs.2012.11.001.

	31.	 Goyal M, Grover S, Dhanjal JK, Goyal S, Tyagi C, Grover A. Molecular 
modelling studies on flavonoid derivatives as dual site inhibitors of 
human acetyl cholinesterase using 3D-QSAR, pharmacophore and high 
throughput screening approaches. Med Chem Res. 2014;23(4):2122–32. 
https​://doi.org/10.1007/s0004​4-013-0810-2.

	32.	 Gramatica P, Sangion A. A historical excursus on the statistical valida‑
tion parameters for QSAR models: a clarification concerning metrics 
and terminology. J Chem Inf Model. 2016;56(6):1127–31. https​://doi.
org/10.1021/acs.jcim.6b000​88.

	33.	 Yu XL, Liu WQ, Liu F, Wang XY. DFT-based theoretical QSPR models of Q-e 
parameters for the prediction of reactivity in free-radical copolymeriza‑
tions. J Mol Model. 2008;14(11):1065–70. https​://doi.org/10.1007/s0089​
4-008-0339-3.

	34.	 Liu WQ, Yi PG, Tang ZL. QSPR models for various properties of polym‑
ethacrylates based on quantum chemical descriptors. QSAR Comb Sci. 
2006;25(10):936–43. https​://doi.org/10.1002/qsar.20051​0177.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1152/ajpcell.00082.2005
https://doi.org/10.1152/ajpcell.00082.2005
https://doi.org/10.1074/jbc.M205880200
https://doi.org/10.1152/ajpcell.00403.2005
https://doi.org/10.1007/s00223-001-1010-5
https://doi.org/10.1007/s00223-001-1010-5
https://doi.org/10.1111/j.1476-5381.2011.01476.x
https://doi.org/10.1111/j.1476-5381.2011.01476.x
https://doi.org/10.1016/j.phymed.2017.11.012
https://doi.org/10.1016/j.phymed.2017.11.012
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.3389/frai.2019.00017
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1002/9783527613106
https://doi.org/10.1002/9783527613106
https://doi.org/10.1002/qsar.200760157
https://doi.org/10.1002/qsar.200760157
https://doi.org/10.1007/s00894-008-0332-x
https://doi.org/10.1007/s00894-008-0332-x
https://doi.org/10.1016/j.polymer.2004.09.002
https://doi.org/10.1186/2191-2858-2-22
https://doi.org/10.1186/2191-2858-2-22
https://doi.org/10.1016/j.jscs.2012.11.001
https://doi.org/10.1016/j.jscs.2012.11.001
https://doi.org/10.1007/s00044-013-0810-2
https://doi.org/10.1021/acs.jcim.6b00088
https://doi.org/10.1021/acs.jcim.6b00088
https://doi.org/10.1007/s00894-008-0339-3
https://doi.org/10.1007/s00894-008-0339-3
https://doi.org/10.1002/qsar.200510177

	Predictive QSAR model confirms flavonoids in Chinese medicine can activate voltage-gated calcium (CaV) channel in osteogenesis
	Abstract 
	Background: 
	Method: 
	Results: 
	Conclusion: 

	Background
	Materials and methods
	Steps of QSAR modeling
	Computation of molecular descriptors
	Validation on QSAR models

	Results
	Discussion
	Conclusions
	Acknowledgements
	References




