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Abstract: Haemoparasites of the genus Babesia infect a wide range of domestic and wild animals.
Feline babesiosis is considered endemic in South Africa, while data on Babesia spp. infection in felids
in Europe is scarce. Using samples from 51 wild felids, 44 Felis silvestris and 7 Lynx lynx, the study
aimed to determine the presence and genetic diversity of Babesia spp. in wild felids in Romania by
analyzing the 18S rDNA and two mitochondrial markers, cytochrome b (Cytb) and cytochrome c
oxidase subunit I (COI) genes. By 18S rDNA analyses, Babesia spp. DNA was detected in 20 European
wild felids. All sequences showed 100% similarity to B. canis by BLAST analysis. Conversely, Cytb
and COI analyses revealed the presence of two Babesia spp., B. pisicii n. sp., which we herein describe,
and B. canis. The pairwise comparison of both mitochondrial genes of B. pisicii n. sp. showed a
genetic distance of at least 10.3% from the most closely related species, B. rossi. Phylogenetic analyses
of Cytb and COI genes revealed that B. pisicii n. sp. is related to the so-called “large” canid-associated
Babesia species forming a separate subclade in a sister position to B. rossi.

Keywords: Babesia pisicii n. sp.; European wild felids; piroplasmids; 18S rDNA; mitochondrial genes

1. Introduction

The genus Babesia is composed of apicomplexan tick-transmitted haemoparasites with
a remarkable economic, medical, and veterinary impact on domestic and wild animals [1–3].
Moreover, Babesia species are gaining increased interest as potential etiological agents of
zoonotic diseases [4,5]. Since the first description of the microorganism in erythrocytes of
Romanian cattle by Victor Babeş, at the end of the 19th century, more than 100 new species
have been described [6,7]. The growing number of available mitochondrial sequences
suggests that species diversity of piroplasmids in European wildlife is highly underesti-
mated [8,9]. Robust species differentiation and understanding of their hosts spectrum are
necessary for the identification of the parasite in endangered wild species, and for proper
diagnostic of the clinical cases in domestic animals.

Feline babesiosis is considered endemic in South Africa, although Babesia spp. have
been sporadically reported from various countries from Europe, Asia, or America [10].
In the previous century, several Babesia spp. have been described based only on mor-
phological characteristics or host specificity, including B. felis, B. cati, B. herpailuri, and
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B. pantherae [11–14]. However, only B. felis has been molecularly characterized there-
after [15]. Based on molecular data, B. leo, B. lengau, and Babesia species cat Western
Cape were also documented in South Africa [15–17]. In Asia, B. canis presentii and B.
hongkongensis have been reported and molecularly characterized in domestic cats [18,19].
Additionally, B. microti as well as dog-related species such as B. canis, B. gibsoni, and B.
vogeli have been identified in felids based on molecular data [20–23]. The vast majority of
deposited sequences are represented by small ribosomal RNA subunit gene (18S rDNA)
sequences, while few internal transcribed spacer, 5S rRNA, 28S rRNA, or beta tubulin-like
gene sequences are available. However, only one mitochondrial sequence is accessible for
comparison (cytochrome b (Cytb) of B. hongkongensis, accession number JQ867357), which
may limit phylogenetic analyses of feline specific Babesia spp.

In Europe, data on Babesia spp. infections in felids are sporadic and inconsistent.
In European wild felids, Babesia was reported in one individual from Bosnia and Herze-
govina and it was molecularly characterized as identical to Babesia sp. previously found
in badgers [24]. The presence of intraerythrocytic merozoites compatible with small
Babesia/Cytauxzoon spp. was documented in a wild cat in northern Greece; however, the
results are not supported by molecular data [25]. In domestic cats, molecular findings of B.
canis, B. vogeli, or B. microti were reported in Spain, Portugal, Poland, and Italy [20,22,26,27].
This is in high contrast with numerous reports of Babesia infection in domestic dogs in
Europe during the last decades, with prevalence rates ranging from 0.1 to 88.0% [28].

The present study was driven by the lack of relevant data on Babesia in European
wild felids and by our findings of B. canis in felids in the course of other studies on feline
piroplasms [9]. Therefore, we aimed to understand the diversity of feline Babesia in wild
felids in Romania using the 18S rDNA and subsequent molecular characterization by
analyzing two mitochondrial markers, Cytb and cytochrome c oxidase subunit I (COI)
genes.

2. Materials and Methods
2.1. Samples

Between February 2011 and February 2020, 51 wild felids carcasses (44 Felis silvestris
and 7 Lynx lynx) were examined at the Department of Parasitology and Parasitic Diseases of
the University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania.
The animals were found as road kill or died of natural causes. During necropsy, blood,
spleen, liver or heart samples were collected and stored at −20 ◦C, until further processing.
Samples from 42 animals were included in previous studies [9,29], focusing on Cytauxzoon
spp. detection and characterization. The wild felid species identification was carried out
based on different morphological and pelage characters [30]. If available, data on origin
was recorded for each animal (Figure 1). The study area was divided into five ecoregions:
continental, steppe, alpine, Pannonian, and Pontic, as previously described [31].
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Figure 1. Geographical distribution of the samples included in the study and their positivity to Babesia sp. (samples that 
yielded a positive result in the assay targeting 18S rDNA fragment of 376 bp), B. canis, and B. pisicii n. sp. (confirmed by 
mitochondrial genes analysis). 

2.2. DNA Isolation, PCR Amplification, and Phylogenetic Analyses 
Genomic DNA was extracted from 200 μL of whole blood or 20 mg of tissue using 

Isolate II Genomic DNA Kit (Bioline, London, UK), according to manufacturer’s instruc-
tion. 

A partial fragment of the 18S rDNA of B. canis was amplified using a species-specific 
nested PCR protocol. Subsequently, all the samples that yielded a positive result were 
screened by PCR assays targeting a longer fragment of the 18S rDNA, mitochondrial Cytb, 
and COI genes. Primers, annealing temperatures, and expected length of amplicons are 
listed in Table 1. Amplification of the first-round reactions were performed in 15 μL reac-
tion mixture, containing 400 nM of each primer, 7.5 μL of 2× PCRBIO Taq Mix Red (PCR 
Biosystems, London, UK), and 1 μL of template DNA. The second-round reactions were 
carried out in a total volume of 25 μL, consisting of 400 nM of each primer, 12.5 μL of 2× 
PCRBIO Taq Mix Red (PCR Biosystems, London, UK), and 1 μL of primary product. PCR 
products were visualized by electrophoresis on 1.5% agarose gels stained with ECO Safe 
Nucleic Acid Staining Solution (PacificImage Electronics, New Taipei City, Taiwan). 

PCR products of expected size were excised from gels, purified using Gel/PCR DNA 
Fragment Extraction Kit (Geneaid Biotech, New Taipei City, Taiwan), and sequenced bi-
directionally (Macrogen, Amsterdam, the Netherlands) using the amplification primers. 
Sequence chromatograms were edited using Geneious 9.1.2 [32] and compared with rep-
resentative sequences available in the GenBank database by NCBI Basic Local Alignment 

Figure 1. Geographical distribution of the samples included in the study and their positivity to Babesia sp. (samples that
yielded a positive result in the assay targeting 18S rDNA fragment of 376 bp), B. canis, and B. pisicii n. sp. (confirmed by
mitochondrial genes analysis).

2.2. DNA Isolation, PCR Amplification, and Phylogenetic Analyses

Genomic DNA was extracted from 200 µL of whole blood or 20 mg of tissue using
Isolate II Genomic DNA Kit (Bioline, London, UK), according to manufacturer’s instruction.

A partial fragment of the 18S rDNA of B. canis was amplified using a species-specific
nested PCR protocol. Subsequently, all the samples that yielded a positive result were
screened by PCR assays targeting a longer fragment of the 18S rDNA, mitochondrial
Cytb, and COI genes. Primers, annealing temperatures, and expected length of amplicons
are listed in Table 1. Amplification of the first-round reactions were performed in 15 µL
reaction mixture, containing 400 nM of each primer, 7.5 µL of 2× PCRBIO Taq Mix Red
(PCR Biosystems, London, UK), and 1 µL of template DNA. The second-round reactions
were carried out in a total volume of 25 µL, consisting of 400 nM of each primer, 12.5 µL of
2× PCRBIO Taq Mix Red (PCR Biosystems, London, UK), and 1 µL of primary product.
PCR products were visualized by electrophoresis on 1.5% agarose gels stained with ECO
Safe Nucleic Acid Staining Solution (PacificImage Electronics, New Taipei City, Taiwan).

PCR products of expected size were excised from gels, purified using Gel/PCR DNA
Fragment Extraction Kit (Geneaid Biotech, New Taipei City, Taiwan), and sequenced bi-
directionally (Macrogen, Amsterdam, the Netherlands) using the amplification primers.
Sequence chromatograms were edited using Geneious 9.1.2 [32] and compared with repre-
sentative sequences available in the GenBank database by NCBI Basic Local Alignment
Search Tool (BLAST) analysis. Alignments of 18S rDNA sequences were generated using
ClustalW algorithm.
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Table 1. Primer pairs, annealing temperatures, and expected length of amplicons.

Genetic
Marker

Primers
(Forward,
Reverse)

Nucleotide Sequence (5′–3′) Annealing
Temperature

Product
Size Reference

18S rDNA

Bc_F1 CGTAGTTGTATTTTTGCGT
50 ◦C ≈430 bp

[33]
GR2 CCAAAGACTTTGATTTCTCTC

Bc_F2 CATTTGGTTGGTTATTTCGTTTT
53 ◦C 376 bp

Bc_R1 GTTCCTGAAGGGGTCAAAAA

18S rDNA

BT1F GGTTGATCCTGCCAGTAGT
65 ◦C–55 ◦C ≈1730 bp

Modified
after [8]

BT outer R GGAAACCTTGTTACGACTTCTC

Piro0F2 GCCAGTAGTCATATGCTTGTCTTA
65 ◦C–55 ◦C ≈1670 bp

BT inner R TTCTCCTTCCTTTAAGTGATAAG

Cytb

Bc_cytb_F1 TGGTCWTGGTATTCWGGAATG
50 ◦C ≈700 bp

[34]
Bc_cytb_R1 AAGMYARTCTYCCTAAACATCC

Bc_cytb_F2 RATKAGYTAYTGGGGAGC
48 ◦C ≈580 bp

Bc_cytb_R2 GCTGGWATCATWGGTATAC

COI

Bab_For1 ATWGGATTYTATATGAGTAT
45 ◦C 1250 bp

[34]
Bab_Rev1 ATAATCWGGWATYCTCCTTGG

Bab_For2 TCTCTWCATGGWTTAATTATGATAT
49 ◦C 980 bp

Bab_Rev2 TAGCTCCAATTGAHARWACAAAGTG

The phylogenetic trees of Cytb and COI genes were based on sequences acquired in
this study and all available sequences of corresponding genes from Babesia sensu stricto
species [35] from GenBank longer than 300 nt (sequences containing premature STOP
codon in the open reading frame were excluded from the analyses). Four Cytb and
three COI gene sequences of Theileria spp. from GenBank were used as an outgroup.
The alignments on nucleotide level were guided by amino acid translation (TransAlign,
Geneious 9.1.2), restricted to protein coding regions only. The resulting alignments were
built from 80 sequences (1440 nt) for COI and 60 sequences (1098 nt) for Cytb. For chosen
closest species, alignments were also prepared as described above and their p-distances
were computed by Geneious 9.1.2.

All phylogenetic trees were inferred by maximum likelihood method using IQ-TREE
v. 1.6.5 [36]. The best-fit evolution models (K3Pu + F + G4 for Cytb gene and GTR + F + I +
G4 for COI gene) were chosen based on the Bayesian information criterion (BIC) computed
by ModelFinder [37]. Branch supports were assessed by the ultrafast bootstrap (UFBoot)
approximation [38] and by SH-like approximate likelihood ratio test (SH-aLRT) [39]. Trees
were visualized and edited in FigTree v1.4.4 and Inkscape 0.94.

2.3. Sensitivity of the Assay Targeting 18S rDNA Fragment of 376 bp

The sensitivity of detection of the PCR protocol targeting the 376 bp region of the
B. canis 18S rDNA was assessed as described elsewhere [34]. The concentration and
purity of the linearized plasmids was evaluated in triplicates by NanoDrop ND-1000
spectrophotometer analyzer (NanoDrop Technologies, Inc., Wilmington, DE, USA). The
number of molecules were calculated using the formula:

number o f DNA copies = (dsDNA× NA)/(lenght× 662), (1)

where dsDNA is the amount of DNA [g/µL], NA is the Avogadro’s number
[
6.022× 1023 mol−1

]
,

length is the length of target sequence including vector [bp], and 662 is the average molecular
weight of a base pair [g/mol]. Ten-folds dilution series were prepared by combining
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linearized pGEM®-T Easy plasmid containing insert with DNA isolated from Babesia spp.
negative wild cats. The final aliquots, with a concentration of 1 to 105 copies/µL, were
used as template in the nested PCR protocol described above. From both PCR rounds,
10 µL of the final product was visualized on 1.5% agarose gels stained by ECO Safe Nucleic
Acid Staining Solution, purified and submitted for sequencing on both strands (Macrogen,
Amsterdam, The Netherlands).

3. Results
3.1. 18S rDNA Sequence Analyses

Babesia spp. infection was detected by amplification and sequencing of the 376 bp
fragment of the 18S rDNA in 20 wild felids (39.2%; 95% CI: 27.0–52.9). All obtained
sequences were identical to each other, and the BLAST analysis showed 100% similarity
to B. canis isolated from dogs from Lithuania, Iran, or Bosnia and Herzegovina, or red
foxes from Poland, etc. (GenBank accession numbers: MN078319-MN078323, MN173223,
MN134074, MK107806). All the positive samples originated from European wild cats, while
none of seven Eurasian lynxes were found positive. The geographical origin of the samples
included in the study and their positivity are shown in Figure 1.

From the 20 positive F. silvestris samples, 14 (27.5%; 95% CI: 17.1–41.0) yielded an
amplicon in the assay targeting the 1670 bp fragment of the 18S rDNA gene. However,
the presence of B. canis was confirmed only in two samples by direct sequencing (100%
identity to B. canis from Romania and Estonia; GenBank accession numbers: KX712122,
HQ662634, KT008057). The other amplicons represent members of the genus Cytauxzoon
and Hepatozoon, co-amplified by the assay.

3.2. Evaluation of Assay Sensitivity Targeting the 376 bp Fragment of the 18S rDNA

The sensitivity of the nested PCR assay targeting the 376 bp fragment of the 18S rDNA
was established to a single molecule in a reaction after the second round of PCR. In the
first PCR round, the detection limit was 102 copies of template DNA (Supplementary file:
Figure S1). Direct sequencing confirmed the presence of B. canis 18S rDNA in all PCR
products that yielded visible bands from both PCR rounds.

3.3. Mitochondrial Genes Analyses

To assess the genetic variability of Babesia spp. present in wild felids, sequence analyses
of two mitochondrial genes (Cytb and COI) were performed. Amplification of the Cytb
gene fragment was successful in four out of the 20 18S rDNA positive samples (7.8%;
CI: 3.1–18.5). Direct sequencing yielded high-quality Babesia spp. consensus sequences
of 556–582 nt for all these four samples. The sequence from sample 3569 showed 99.8%
identity to B. canis from USA (accession number KC207822) by BLAST analysis. The closest
relative of the remaining three sequences (100% identical to each other) was B. rossi with
87.2–89.7% identity (accession number KC207823). All these three sequences originated
from wild cats from the steppe ecoregion (Figure 1).

The mitochondrial COI marker was amplified from the same four samples. The
sequence from sample 3569 showed 99.7% identity to the aforementioned B. canis isolate
from USA (accession number KC207822). The other three sequences (99.9–100% identical
to each other) also showed an identity of 84.3–89.7% to the same B. rossi (accession number
KC207823).

The pairwise comparison of the mitochondrial genes of this new Babesia genotype
showed a genetic distance of at least 10.3% in both Cytb and COI genes from the most
closely related species, B. rossi. Even higher nucleotide sequence distances were obtained
between the new genotype and B. canis or B. vogeli (Table 2, sequence distances on amino
acid level are available in the supplementary file: Table S1).
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Table 2. Pairwise nucleotide sequence identities (%) of Cytb (lower left) and COI (upper right) genes for B. canis, B. vogeli, B.
pisicii n. sp., and B. rossi.
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Phylogenetic analyses of both mitochondrial genes were based on GenBank available
sequences of Babesia sensu stricto species (clade X sensu Jalovecká et al. [35]) and sequences
obtained during the current study. All the new Babesia genotype sequences formed a
distinct and highly supported subclade in both Cytb and COI phylogenies, in a sister
position to B. rossi (Figures 2 and 3). Furthermore, this subclade is placed more distantly
from the sequences representing the B. vogeli and B. canis clade. The B. canis sequences from
this study, clustered together with other published Cytb and COI sequences of B. canis.
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All the unique sequences obtained in this study were deposited in GenBank database
under the accession numbers MW939359 (18S rDNA), MW938761 (Cytb gene), MW938763
(COI gene) for B. canis and MW939360 (18S rDNA), MW938762 (Cytb gene), MW938764-
MW938765 (COI gene) for the new Babesia genotype.

Based on these data, we herein describe this genotype as a new species of Babesia.

3.4. Taxonomic Summary and Species Description

Order Piroplasmida Poche, 1913.
Family Babesiidae du Toit, 1918.
Genus Babesia Starcovici, 1893.
Babesia pisicii n. sp. Panait, Hrazdilová, and Mihalca.
Diagnosis: the organism is a species of piroplasmid protist of the genus Babesia,

distinctive from congeners from other carnivores based on DNA sequences and forming a
separate clade sister to B. rossi.

Type-host: Felis silvestris Schreber, 1777 (Carnivora: Felidae).
Type-locality: Mila 23, Tulcea (45.22◦ N, 29.24◦ E).
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Type-material: tissue extract and the total DNA isolated are deposited at the “Grigore
Antipa” Natural History Museum, Bucharest, Romania under collection numbers BAB 001
(the tissue) and BAB 002 (the DNA). In correspondence with the ICZN code (Arts 72.5.4,
73.3) [40], the material deposited is considered a hapantotype by its character.

DNA sequences: DNA sequences amplified from the type material are deposited in
GenBank under the accession numbers: MW939360 (18S rDNA), MW938762 (Cytb gene),
MW938764 (COI gene).

Other localities: Romania: Cataloi, Tulcea (45.10◦ N, 28.72◦ E), Somova, Tulcea
(45.19◦ N, 28.67◦ E).

Prevalence: 3/51 (5.9%)
Etymology: the specific epithet pisicii derives from the Romanian term used for cats.

The name is given as a genitive noun, according to the ICZN rules and recommendations.

4. Discussion

Historically, Babesia spp. differentiation was based on the assumed host specificity
and phenotypic characteristics, such as the size of intraerythrocytic stages and the number
of merozoites observed during microscopic visualization of the blood smears [2]. Currently,
the development of molecular techniques and the availability of extensive molecular data
have questioned host specificity and allowed species identification [34,41,42].

In Europe, intraerythrocytic parasites of the genus Babesia were molecularly identified
in a wide range of mammalian hosts, including bovines [43,44], small ruminants [45,46],
different deer species [8], equines [47], swine [48], laboratory rodents [49], hares [50],
moles [51], bats [52], and various carnivores such as dogs [34,53], wolves [54], jackals [55],
foxes [56], cats [26,27], and mustelids [57].

The frequent use of universal primers detecting the 18S rDNA of a wide range of
apicomplexan parasites (Babesia–Theileria–Hepatozoon–Cytauxzoon) [24,58–60] may often
lead to amplification of other parasites than Babesia spp. in samples co-infected with other
blood apicomplexans, such as Cytauxzoon spp. [9,61] and Hepatozoon spp. [24,62]. As a
consequence, there is a single report of Babesia sp. in a wild cat [24] in Europe.

Although B. canis is typically considered a canid-associated species, during the last
decades, its presence was reported also in non-canid hosts such as bats [63], horses [64], and
domestic cats [20,26]. However, all of these reports are based on 18S rDNA detection, which
has limitations in distinguishing very closely related Babesia species due to the insufficient
sequence variation [2,34,65]. Moreover, the DNA of B. canis was recently demonstrated to
be detectable in mice experimentally fed with naturally infected Dermacentor reticulatus
ticks [66]. Thus, the detection of B. canis using 18S rDNA assays in felids could be related to
non-specific detection of closely related species or to a possible ingestion of B. canis sensu
stricto from prays or their ticks.

Piroplasmid species delineation based on mitochondrial sequences has been recently
demonstrated and applied for description of closely related species [9]. Even if sequences
from 39.2% of the tested samples showed 100% similarity to B. canis after the short fragment
of the 18S rDNA analysis, the results obtained in mitochondrial markers assays confirmed
the presence of B. canis in only one sample, while B. pisicii n. sp. was identified in three
individuals. Therefore, an accurate specific identification of piroplasms should be followed
by species confirmation by mitochondrial markers. However, protocols used to amplify
mitochondrial genes have 100 to 1000 times lower sensitivities than the specific assay
targeting the 376 bp fragment of the B. canis 18S rDNA, as demonstrated by Hrazdilová
et al. [34].

In this study, fresh blood was not available for allowing the intraerythrocytic stages
examination. However, as previously shown [67], description of new species without
morphological identification is becoming a more and more common practice and has
been also applied for other piroplasms [9,68], as morphological differences among the
intraerythrocytic stages of piroplasms are mostly negligible. Moreover, low parasitemia in
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naturally infected wild hosts is unlikely to yield microscopically positive blood smears in
the future.

The phylogenetic analysis of the mitochondrial genes showed that B. pisicii n. sp. is
related to the so called “large” Babesia of dogs, forming a separate subclade in a sister
position to B. rossi. The phylogeny based on the 18S rDNA sequences [42] showed that
most feline-associated Babesia cluster in separate clades from B. canis, with the exception of
B. canis presentii, B. hongkongensis, and Babesia sp. Western Cape. However, the 18S rDNA
sequence analysis is able to distinguish between these three Babesia isolates and B. canis,
which is not the case for B. pisicii n. sp.

Further studies are needed to clarify the host spectrum of B. pisicii n. sp., mainly its
presence and clinical significance in domestic cats. Additionally, the elucidation of its life
cycle and tick vector requires future attention. Ixodes ricinus and I. hexagonus were the only
species found on wild felids in Romania [69] and both species are present in the area where
B. pisicii n. sp. was found. Therefore, the vectorial competence of ticks in transmitting this
new Babesia sp. remains to be investigated.

5. Conclusions

The current study indicates that European wild cats from Romania carry at least two
Babesia species: B. canis and B. pisicii n. sp. Based on available genetic data, our recommen-
dation is to avoid using the 18S rDNA detection for piroplasmid species differentiation
and positive samples identified only based on this gene should be reported as Babesia sp.
We encourage the implementation of molecular assays using mitochondrial genes, which,
despite their lower sensitivity are able to clearly distinguish even between closely related
piroplasm species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9071474/s1, Figure S1: Sensitivity of the nested PCR assay targeting the 18S
rDNA fragment of 376 bp. Table S1: Pairwise amino acid sequence identities (%) of Cytb (lower left)
and COI (upper right) genes for B. canis, B. vogeli, B. pisicii n. sp. and B. rossi.
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62. Hodžić, A.; Alić, A.; PraŠović, S.; Otranto, D.; Baneth, G.; Duscher, G.G. Hepatozoon silvestris sp. nov.: Morphological and
molecular characterization of a new species of Hepatozoon (Adeleorina: Hepatozoidae) from the European wild cat (Felis silvestris
silvestris). Parasitology 2017, 144, 650–661. [CrossRef] [PubMed]

63. Corduneanu, A.; Sándor, A.D.; Mihalca, A.D.; Hrazdilová, K.; Modrý, D.; Hornok, S. Molecular evidence of canine pathogens
in tissues of European bats. In Proceedings of the 17th International Bat Research Conference, Durban, South Africa, 31 July–5
August 2016; pp. 50–51.

64. Zanet, S.; Bassano, M.; Trisciuoglio, A.; Taricco, I.; Ferroglio, E. Horses infected by Piroplasms different from Babesia caballi and
Theileria equi: Species identification and risk factors analysis in Italy. Vet. Parasitol. 2017, 236, 38–41. [CrossRef]

65. Uilenberg, G.; Gray, J.; Kahl, O. Research on Piroplasmorida and other tick-borne agents: Are we going the right way? Ticks
Tick-Borne Dis. 2018, 9, 860–863. [CrossRef] [PubMed]

66. Corduneanu, A.; Ursache, T.D.; Taulescu, M.; Sevastre, B.; Modrý, D.; Mihalca, A.D. Detection of DNA of Babesia canis in tissues
of laboratory rodents following oral inoculation with infected ticks. Parasites Vectors 2020, 13, 166. [CrossRef]

67. Jörger, K.M.; Schrödl, M. How to describe a cryptic species? Practical challenges of molecular taxonomy. Front. Zool. 2013, 10, 59.
[CrossRef]

68. Greay, T.L.; Zahedi, A.; Krige, A.-S.; Owens, J.M.; Rees, R.L.; Ryan, U.M.; Oskam, C.L.; Irwin, P.J. Endemic, exotic and novel
apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasites Vectors 2018, 11,
197. [CrossRef]

69. D’Amico, G.; Dumitrache, M.O.; Matei, I.A.; Ionică, A.M.; Gherman, C.M.; Sándor, A.D.; Modrý, D.; Mihalca, A.D. Ixodid ticks
parasitizing wild carnivores in Romania. Exp. Appl. Acarol. 2017, 71, 139–149. [CrossRef] [PubMed]

http://doi.org/10.1016/S0304-4017(02)00112-7
http://doi.org/10.1016/j.ttbdis.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24507435
http://doi.org/10.1186/s13071-017-2110-z
http://doi.org/10.1017/S0031182017001536
http://www.ncbi.nlm.nih.gov/pubmed/28835291
http://doi.org/10.3389/fvets.2019.00269
http://www.ncbi.nlm.nih.gov/pubmed/31555669
http://doi.org/10.1016/j.vetpar.2011.07.025
http://doi.org/10.1016/j.ttbdis.2016.04.003
http://www.ncbi.nlm.nih.gov/pubmed/27150590
http://doi.org/10.1186/s13071-017-2056-1
http://doi.org/10.1371/journal.pone.0004744
http://doi.org/10.1017/S0031182016002316
http://www.ncbi.nlm.nih.gov/pubmed/27938443
http://doi.org/10.1016/j.vetpar.2017.01.003
http://doi.org/10.1016/j.ttbdis.2018.03.005
http://www.ncbi.nlm.nih.gov/pubmed/29567148
http://doi.org/10.1186/s13071-020-04051-z
http://doi.org/10.1186/1742-9994-10-59
http://doi.org/10.1186/s13071-018-2775-y
http://doi.org/10.1007/s10493-017-0108-z
http://www.ncbi.nlm.nih.gov/pubmed/28124749

	Introduction 
	Materials and Methods 
	Samples 
	DNA Isolation, PCR Amplification, and Phylogenetic Analyses 
	Sensitivity of the Assay Targeting 18S rDNA Fragment of 376 bp 

	Results 
	18S rDNA Sequence Analyses 
	Evaluation of Assay Sensitivity Targeting the 376 bp Fragment of the 18S rDNA 
	Mitochondrial Genes Analyses 
	Taxonomic Summary and Species Description 

	Discussion 
	Conclusions 
	References

