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Introduction. Parkinson’s disease patients carrying a heterozygous mutation in the gene glucocerebrosidase (GBA-PD) show faster
motor and cognitive decline than idiopathic Parkinson’s disease (iPD) patients, but the mechanisms behind this observation are
not well understood. Successful dual tasking (DT) requires a smooth integration of motor and nonmotor operations. This study
compared the DT performances between GBA-PD and iPD patients. Methods. Eleven GBA-PD patients (p.N370S, p.L444P) and
elevenmatched iPD patients were included. Clinical characterization included amotor score (Unified PDRating Scale-III, UPDRS-
III) and nonmotor scores (Montreal Cognitive Assessment, MoCA, and Beck’s Depression Inventory). Quantitative gait analysis
during the single-task (ST) andDTassessmentswas performedusing awearable sensor unit.These parameters corrected forUPDRS
and MoCA were then compared between the groups. Results. Under the DT condition “walking while checking boxes,” GBA-
PD patients showed slower gait and box-checking speeds than iPD patients. GBA-PD and iPD patients did not show significant
differences regarding dual-task costs. Conclusion. This pilot study suggests that DT performance with a secondary motor task is
worse in GBA-PD than in iPD patients. This finding may be associated with the known enhanced motor and cognitive deficits in
GBA-PD compared to iPD and should motivate further studies.

1. Introduction

Heterozygousmutations in the glucocerebrosidase (GBA) gene
represent the most common genetic risk factor for PD so
far [1]. Moreover, it has been repeatedly shown that patients
with such mutations (GBA-PD patients) present with a
different phenotype than idiopathic Parkinson’s disease (iPD)
patients. For example, they suffer from an earlier age of
onset and more rapid disease progression, including motor
and nonmotor symptoms, such as cognitive, autonomic, and
neuropsychiatric impairment [2–6].

However, it is not yet clear whether GBA-PD patients
also differ from iPDpatients regarding dual-task (DT) perfor-
mance. Dual tasking—the performance of two tasks simul-
taneously—is accomplished multitudinously in one’s daily
routine. It is required, for example, when crossing a street

while observing the surrounding traffic orwhen talkingwhile
walking. Malfunction of this performance can impair safe
ambulation in complex natural environments and even have
fatal consequences, such as falls. Almost half of the falls of
PD patients are the result of trying to carry out two or more
tasks simultaneously [7]. Associations between impaired DT
and increased risk of a future fall in PD have been described
recently [8]. The simultaneous performance of two motor
tasks seems to be a valuable fall predictor, fitting well with
patients’ balance complaints when, for example, taking a cup
out of the cupboard.

DT performance has also been used to analyze deficits of
motor-cognitive interaction in PD [9]. As gait is not a fully
automatic motor task but requires attentional performance
and executive functioning [10], an analysis of gait under
DT conditions can help detect motor-cognitive deficits.
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The present work aimed to evaluate whether the known
differences in motor and nonmotor impairments between
GBA-PD and iPD are also reflected in differences in DT
performance.

2. Materials and Methods

2.1. Ethics. The study protocol was approved by the ethical
committee of the Medical Faculty of the University of
Tuebingen (number 49720091). All participants gave written
informed consent.

2.2. Mutational Screening. Of the PD patients from across
Germany who donated DNA to our biobank (https://
www.hih-tuebingen.de/ueber-uns/core-facilities/biobank/)
between 2006 and 2009 and agreed to genetic testing, the
two most common mutations of the GBA gene (p.N370S,
p.L444P) were screened. For detailed information, refer to
Brockmann et al. [2].

2.3. Patients. Thirty-three GBA patients with one of the
above-mentioned mutations were identified. All were con-
tacted via mail and/or telephone. Eventually, eleven patients
were included in this study. Twenty-two patients could not be
investigated due to a degree of clinical impairment that pre-
vented participation. To evaluate GBA-PD-specific features,
eleven idiopathic PD patients (controlled to have none of
the two GBA mutations) were matched for age, gender, and
disease duration and were included in this analysis.

2.4. Clinical Assessment. PD was diagnosed according to the
UK Brain Bank Society Criteria [11]. All assessments were
performed in the dopaminergic ON state. Actual medication
was assessed and Levodopa dose equivalency calculated [12]
(see Table 1). The severity of motor symptoms was assessed
using themotor part of theUnified PDRating Scale (UPDRS-
III) [13]. The Montreal Cognitive Assessment (MoCA) was
used to screen for cognitive deficits, and a score of <26
out of 30 points was interpreted as indicating the presence
of cognitive impairment [14]. By use of the Trail Making
Test, cognitive flexibility and working memory were assessed
[15]. Mood disturbance was assessed with Beck’s Depression
Inventory (BDI-II) [16].

2.5. Gait Analysis. All assessments were performed in a
straight corridor at least 1.5 meters wide to allow free 20-
meter walks. Gait analysis was performed using a wearable
sensor unit (DynaPort Hybrid�, McRoberts, The Nether-
lands) attached via belt to the lower back. The sensor unit
contained a triaxial accelerometer and a triaxial gyroscope.
Data were transferred to McRoberts for automated gait
analysis. Of the 20mwalked, the first and last 15% of the steps
were excluded from the analysis to analyze only steady-state
gait.

2.6. Single- and Dual-Task Procedure. All participants per-
formed three ST trials: walking at a fast speed, checking
boxes, and subtracting serial 7s. During the box-checking
task, participants were instructed to mark as fast as possible

Table 1: Demographics and clinical characteristics.

GBA-PD iPD 𝑝 value
Demographics

Male (female) [𝑛] 9 (2) 9 (2) 1.00
Age [years] 58 (41–70) 62 (41–70) 0.51
Age of onset [years] 50 (28–65) 54 (36–62) 0.22
Disease duration

[years] 6 (4–13) 6 (3–10) 0.46

Levodopa dose
equivalent 700 (100–1500) 400 (80–800) 0.27

Motor function
UPDRS-III (0–108) 35 (24–55) 27 (6–51) 0.01

Nonmotor function
MoCA (0–30) 25 (11–29) 28 (23–30) 0.06
TMT A [s] 45 (30–263) 37 (25–66) 0.31
TMT B [s] 95 (47–300) 86 (50–300) 0.37
ΔTMT [s] 44 (16–98) 39 (24–234) 0.89
BDI-II (0–63) 9 (5–27) 9 (1–31) 0.49

Mann-Whitney𝑈 test. Values are given in median (range). Significance level
was set at 𝑝 < 0.05. UPDRS-III = Unified Parkinson’s disease rating scale,
part III motor score; MoCA = Montreal Cognitive Assessment; TMT =
Trail Making Test; ΔTMT = TMT B − TMT A; BDI-II = revised version
of the Becks Depression Inventory; GBA-PD = Parkinson’s disease patients
carrying a heterozygous glucocerebrosidase mutation; iPD = idiopathic
Parkinson’s disease.

each of the 32 boxes with a pencil on a paper sheet fixed on
a clipboard held in their hand. During the subtracting task,
subjects were asked to subtract serial 7s from a randomly cho-
sen three-digit number until 10 subtractions were completed
as fast as possible.

All participants then performed two DT trials: walking
while checking boxes and walking while subtracting serial
7s. The following parameters were collected during the tasks:
the duration of the tasks, the number of checked boxes, and
the number of subtractions during DT. No instruction on
prioritization (either walking or secondary task) was given.

2.7. Statistics. Statistical analysis was performed using JMP
11 software (SAS Institute Inc.). Clinical and demographic
variables were compared nonparametrically using theMann-
Whitney 𝑈 test (Table 1). Due to slight clinical differences
between the GBA-PD and iPD groups (see Table 1), all
outcome variables were corrected for UPDRS-III and MoCA
by use of a multivariate regression model. Differences were
considered significant at 𝑝 < 0.05 (two-sided). Dual-task
costs (DTC) were calculated using the formula according to
[17, 18].

DTC = (ST − DT)
ST
∗ 100. (1)

DTC were defined as the percentage change between single-
and dual-task performance: ([single-task − dual-task]/single-
task) × 100. Therefore, DTC represent the relative difference
in performance between ST and DT.

https://www.hih-tuebingen.de/ueber-uns/core-facilities/biobank/
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Table 2: Single- and dual-task performance.

GBA-PD (𝑛 = 11) iPD (𝑛 = 11) 𝑝 value
Single-task condition

Walking speed [m/s] 0.85 (0.54–1.13) 1.07 (0.71–1.35) 0.038
Checking boxes [1/s] 1.03 (0.53–1.84) 1.56 (0.91–2.29) 0.059
Subtracting [1/s] 0.31 (0.05–0.49) 0.31 (0.16–0.71) 0.134

Dual-task condition
Walking speed while checking boxes [m/s] 0.75 (0.39–0.95) 0.97 (0.61–1.25) 0.024
Checking boxes while walking [1/s] 0.76 (0.00–0.95) 1.33 (0.95–2.17) <0.0001
Walking speed while subtracting [m/s] 0.75 (0.51–0.95) 0.88 (0.63–1.35) 0.115
Subtracting while walking [1/s] 0.40 (0.07–0.71) 0.42 (0.23–0.78) 0.979

Values are given in median (range). A logistic regression analysis, with the motor part of the Unified Parkinson’s Disease Rating Scale and the Montreal
Cognitive Assessment as covariables, including likelihood ratio was used to calculate 𝑝 values. Significance level was set at 𝑝 < 0.05. GBA-PD = Parkinson’s
disease patients carrying a heterozygous glucocerebrosidase mutation; iPD = idiopathic Parkinson’s disease.
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Figure 1: (a) Dual-task performance “walking while checking boxes (X) or while subtracting serial 7s (7s).” (b) Dual-task performance
“checking boxes (X) or subtracting serial 7s (7s) while walking.” A logistic regression analysis, with the motor part of the Unified Parkinson’s
Disease Rating Scale and the Montreal Cognitive Assessment as covariables, including likelihood ratio was used to calculate 𝑝 values.
Significance level was set at 𝑝 < 0.05. GBA-PD = Parkinson’s disease patients carrying a heterozygous glucocerebrosidase mutation; iPD
= idiopathic Parkinson’s disease.

3. Results

GBA-PD and iPD patients differed significantly regarding
UPDRS-III scores (higher in GBA-PD; 𝑝 = 0.01) and
showed a trend towards a significant difference in the MoCA
values (lower in GBA-PD, 𝑝 = 0.06). Clinical characteristics
are shown in Table 1. During the ST conditions, GBA-
PD patients walked significantly slower than iPD patients
(0.85m/s versus 1.07m/s, 𝑝 = 0.04). The groups did not
differ significantly regarding the speed of checking boxes and
subtracting serial 7s.During theDT condition “walkingwhile
checking boxes,” GBA-PD patients showed a significantly
slower box-checking speed (see below) and walking speed
(0.75m/s versus 0.97m/s, 𝑝 = 0.02) compared to iPD
patients. Remarkably, the box-checking task under the DT
condition showed a 100% separation of the groups (checking
boxes while walking GBA-PD: 0.76 boxes/sec. (0.00–0.95);
iPD: 1.33 boxes/sec. (0.95–2.17, 𝑝 < 0.0001)). In the DT con-
dition “walking and subtracting serial 7s,” walking speed and
subtraction speedwere not significantly different between the

groups. Details are given in Table 2 and Figure 1. Although
DT and ST differed between the groups, the DTC of all the
speeds were not significantly different between GBA-PD and
iPD. Detailed data are provided in Table 3. Sensor-based data
of gait (steps, step time, cadence, double support time, and
stride time variability) did not add relevantly to these findings
(Supplementary Table in Supplementary Material available
online at https://doi.org/10.1155/2017/8582740).

4. Discussion

GBA-PD patients are known to have more severe motor
and nonmotor impairments compared to iPD patients [5].
This phenomenon was also observed in this small study.
However, mechanistic aspects with respect to the specific
deficits sheading some light on this phenomenon are not well
investigated to date.Thismotivated us to investigate a specific
and highly daily-relevant function on the interface of motor
and cognitive performance, that is, multitasking. Results
from this pilot study suggest that GBA-PD patients have

https://doi.org/10.1155/2017/8582740
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Table 3: Dual-task costs.

GBA-PD (𝑛 = 11) iPD (𝑛 = 11) 𝑝 value
Walking while checking boxes [%] 11 (−11–48) 9 (−0.6–27) 0.88
Checking boxes when walking [%] 25 (−15–100) 12 (−10–44) 0.09
Walking while subtracting [%] 35 (27–59) 40 (33–52) 0.57
Subtracting when walking [%] −39 (−121–13) −16 (−78–39) 0.09
Values are given in median (range). A logistic regression analysis, with the motor part of the Unified Parkinson’s Disease Rating Scale and the Montreal
Cognitive Assessment as covariables, including likelihood ratio was used to calculate 𝑝 values. Significance level was set at 𝑝 < 0.05. GBA-PD = Parkinson’s
disease patients carrying a heterozygous glucocerebrosidase mutation; iPD = idiopathic Parkinson’s disease.

indeed deficits with respect to this. This group had slower
gait speed and box-checking speed under DT conditions (i.e.,
when performing two motor tasks), even after correction for
“general” motor and cognitive deficits.

Previous studies of iPD patients [19–23] have shown
that gait speed decreases when gait is simultaneously per-
formed with a secondary task. Secondary tasks involving
motor aspects may be more challenging than purely cog-
nitive tasks in particular in patients with parkinsonism [8,
24, 25]. The results of the present study are in line with
these findings: walking speed was reduced in both groups
under the DT condition. Most notably, also the speed of
checking boxes under DT was lower in GBA-PD than in
iPD, and it differentiated the groups without any overlap
(Figure 1). The findings and our conclusion should be
interpreted with caution due to sample size but can motivate
the investigation of the observed phenomenon in larger
studies.

Importantly, DTC were similar in GBA-PD and iPD
patients.The nature of DTC during gait is yet not fully under-
stood.The results of fMRI studies suggest that cortical activity
increases under DT conditions. Areas such as the cerebellum,
the premotor area, the precuneus, and the prefrontal and
parietal cortexes seem to be more active in iPD patients than
in healthy individuals under DT [26]. The present results
suggest that GBA mutational status does not have a relevant
influence on DTC because it is possible that similar networks
are activated under the DT condition in both PD groups.
It seems that clinically more severely impaired GBA-PD
patients show the capability to perform as well as iPD patients
under DT conditions, though on a lower level. Whether this
is due to pathophysiological differences or motor learning
abilities has to be examined in future studies.

There is some evidence that there is a structural and
even functional basis of our clinical finding. Cortical areas
including the inferior frontal sulcus, middle frontal gyrus,
and intraparietal sulcus have been reported to be involved
in dual-task performance with increased activation of these
areas under increased task complexity [27]. An MRI study
[28] found more white matter changes (associated with
more and more pronounced clinical deficits) in frontal
and interhemispheric corticocortical connections of GBA-
PD patients compared to nonmutation carriers and healthy
control subjects. Other functional studies using PET showed
hypometabolism in frontal and parietooccipital areas of
GBA-PD patients [29, 30]. It is thus intriguing to hypoth-
esize that the phenomenological deficit in dual-tasking

performance presented by the GBA-PD patients is associated
with the above-mentioned areas.

The effect observed while performing two motor dual
tasks was not observed while performing a motor and a
cognitive task (i.e., walking while subtracting serial 7s). This
lack of difference may be best explained by an insufficient
challenge ofmotor processing capacity. It has previously been
hypothesized that (only) the use of the same neural capacities,
for example, when performing two motor tasks, can exert
group-specific differences [31]. Oscillatory dysfunction in
basal ganglia due to dopamine depletion as well as reduced
action selection due to dopamine deficiency could to some
extent explain this phenomenon [32].

Strengths andLimitations.The small sample size is a limitation
of this pilot study, and the reproduction of results in an
independent and larger sample is required. Nevertheless, this
study is, to the best of our knowledge, the first to present
DT measures of GBA patients. All patients were carefully
screened, recruited, and examined by specialists in the field of
neurodegeneration. Furthermore, iPD patients, screened not
to have a GBA mutation, were matched for age, gender, and
disease duration to allow an adequate comparison between
the groups. GBA-PD patients are known for having a more
severe PDphenotype than nonmutation carriers do; therefore
comparison of disease groups is challenging even when
entirely new and daily-relevant parameters are assessed.
Thus, we corrected all experimental results for UPDRS and
MoCA scores. Further cognitive testing with, for example,
the frontal assessment battery, could have added information
about cognitive differences between the groups. We chose to
examine dual-task performance instead, as it goes beyond
the usual clinical investigation adding direct and daily-life-
relevant information to our understanding of GBA-PD. We
did not check for all pathologicGBAmutations due to logistic
reasons. However, any pathologicmutation in our iPD cohort
shouldweaken our results and thus does not argue against the
correctness of our results. The DT procedures in this study
have been successfully applied in previous work [33] and
include different types of secondary (motor and cognitive)
tasks.

5. Conclusions

GBA-PD show worse DT performance compared to iPD
patients when executing two motor tasks simultaneously. If
confirmed in larger studies, this pilot observation could be of
relevance for clinical counselling.
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