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Abstract: The goal of this paper is to provide a Machine Learning-based solution that can be utilized
to automate the Chicago Classification algorithm, the state-of-the-art scheme for esophageal motility
disease identification. First, the photos were preprocessed by locating the area of interest—the precise
instant of swallowing. After resizing and rescaling the photos, they were utilized as input for the
Deep Learning models. The InceptionV3 Deep Learning model was used to identify the precise class
of the IRP. We used the DenseNet201 CNN architecture to classify the images into 5 different classes
of swallowing disorders. Finally, we combined the results of the two trained ML models to automate
the Chicago Classification algorithm. With this solution we obtained a top-1 accuracy and f1-score
of 86% with no human intervention, automating the whole flow, from image preprocessing until
Chicago classification and diagnosis.

Keywords: artificial intelligence; Convolutional Neural Network; Chicago classification; Esophageal
Motility Disorder Diagnosis; high-resolution esophageal manometry; machine learning

1. Introduction
1.1. Background

High-resolution esophageal manometry (esophageal HRM) is a valuable and sophisti-
cated diagnostic tool that revolutionized the functional evaluation of the esophagus and the
esophago-gastric junction. The main indications for performing esophageal HRM are the
evaluation of patients with non-obstructive dysphagia, non-cardiac chest pain, symptoms
of gastroesophageal reflux disease, and the evaluation of the peristaltic reserve prior to
anti-reflux surgery [1].

Esophageal HRM employs solid-state or water-perfused catheters with up to 36 cir-
cumferential pressure sensors, allowing for a simultaneous examination of the whole
esophagus, from the upper esophageal sphincter (UES) to the lower esophageal sphincter
(LES). Currently, esophageal HRM is the gold standard for diagnosing esophageal motility
problems (EMDs). Several numerical measures, such as the integrated relaxation pressure
(IRP) or the distal contractile integral, have been established and improved during the last
ten years for the diagnosis of EMD (DCI). These parameters are used to characterize the
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LES during resting and swallowing, or the integrity and the strength of the esophageal
peristaltic wave. In 2008, an international group of experts developed the first classification
algorithm for EMDs based on esophageal HRM, namely the Chicago Classification [1].

Until now, with Chicago v3.0, the examination was performed in supine position, and
at least 10 correct wet swallows were necessary for the final diagnosis. However, in clinical
practice, there are often patients with poor compliance, and the analysis is limited to 7 or
8 clear swallows, and in these cases, sometimes, one cannot establish a definite diagnosis.
To reduce the number of inconclusive diagnoses, a 4.0 version of the Chicago classification
was recently proposed [2]. The protocol of the examination is longer, including also upright
swallows and even solid food swallows, depending on whether or not a conclusion could
be established with a high degree of certainty.

1.2. Related Works

The current state of the art in the automatization process of EMDs diagnosis is repre-
sented by Deep Neural Networks in Deep Learning models which can perfectly deal with
non-textual data, in this case, esophageal manometry image recognition [3]. Unfortunately,
although AI adoption is continuing its steady rise, the applications in esophageal manome-
try are limited. Only a few studies exist [3–5], and thus far, these applications are not used
in a clinical setting.

In article [3] the authors used the variational auto-encoder model (VAE) as a generative
approach to learning and then to act as a features extractor. They used Convolutional Neural
Networks (CNNs) as encoder-decoder models and trained the model to automatically
extract important features from HRM images. In the end, they used linear discriminant
analysis (LDA) to map the selected features into a 2D space. This way they were able
to define new representative features, so the manually predetermined features and the
decision tree constructed by the Chicago Classification can be relaxed.

Authors from the article [4] used a more complex solution. They built a pipeline of
multiple CNN models and combined the results to obtain the final diagnosis. In the first
step of the pipeline, they used three CNN models to classify the images into three swallow
level classes, 6 swallow types, and to classify the integrated relaxation pressure into two
classes. The second step of the pipeline takes the results from these three CNNs as input.
In this step, the authors added multiple different algorithms, such as XGBoost, ANN, and
a rule-based model constructed based on the Chicago classification rules. Each of these
algorithms was considered as sub-models and in the last step, they created a weight-based
solution to combine these sub-results into the final HRM classification.

In article [5] we can see a different approach because the authors used Long-Short-
Term-Memory (LSTM) instead of CNN models to classify the swallow types automatically.
The accuracy of 83% obtained with this model is lower than in the case of solutions using
CNNs, which can be explained by the nature of the input dataset and the LSTM, which
works well mostly with time series.

Furthermore, we found two studies [6,7] that present a solution for automatic anal-
ysis of swallowing parameters of the pharynx and UES, without an automatic diagnosis
for EMDs.

We mention that in our previously published study we developed an automatic
classifier to assess whether the IRP is in the normal range or greater than the cut-off, and
to detect the probe placement failure, based simply on the raw pictures [8]. The previous
study was the first step in automating the Chicago classification process based on Machine
Learning that follows the same steps as a human expert. The photos were initially pre-
processed by locating the region of interest—the precise moment of swallowing [8]. Further,
the photos were scaled and resized such that deep learning models could utilize them as
input. To categorize the photos as successful or unsuccessful catheter positioning and to
establish the precise class of the IRP, we employed the InceptionV3 deep learning model [8].
For both challenges, the trained CNN’accuracy exceeded 90%.
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1.3. Research Gap

The Chicago scheme incorporates all the HRM parameters and is currently used
worldwide for the diagnosis of EMDs. Based on the Chicago classification v3.0 [9] there
are 3 main classes of EMDs: 1. Disorders with esophago-gastric junction (EGJ) outflow
obstruction; 2. major disorders of peristalsis and 3. minor disorders of peristalsis. The first
two classes have never been seen in asymptomatic controls. The disorders with EGJ outflow
obstruction are identified based on a bnl high IRP value. In these disorders (i.e., achalasia
and EGJ outflow obstruction), the LES fails to properly relax during swallows, and patients
might report dysphagia, chest pain, or regurgitation. Secondary to the obstruction of the
EGJ, there are also changes in the peristaltic waves. Therefore, the first diagnostic step is to
rule out a disorder with EGJ outflow obstruction. Afterward, based on the aspect of the
peristaltic waves (with or without breaks, spastic or not) and based on the vigor of each
contraction (determined by the DCI), the major disorders of the esophageal peristalsis can be
identified. If such pressure abnormalities cannot be identified, the manometry is considered
normal [2]. The application of this algorithm however is not automated and requires
manual analysis from the operator to correctly identify the motility pattern. This may lead
to different degrees of variability in the interpretation of the tracings and eventually to the
wrong diagnosis. Indeed, some studies showed that the inter-observer agreement in the
diagnosis of EMDs is ‘fair-moderate’ for any diagnosis, and it is ‘substantial’ for type I and
type II achalasia. In addition, the diagnostic accuracy increased with the experience of the
operator [9,10]. Repeating esophageal HRM in the same patients, yielded fair reproducible
results, slightly worse for peristalsis parameters [9–11].

Similarly, the use of artificial intelligence in esophageal HRM, could decrease the diag-
nostic discordance in the diagnosis of EMDs. For this reason, our study aimed to develop
an automated Chicago Classification for EMDs diagnosis system using Machine Learning.

1.4. Contribution

In this research, we provide a technique for automating the Chicago classification
process based on Machine Learning. Initially, we developed a classifier [8] based purely on
the raw pressure topography photos to automatically assess whether the IRP is within the
usual range or is over the cut-off. In the Chicago algorithm, determining the IRP type is one
of the most crucial tasks. In the second step, we created a classifier that can differentiate
between five swallowing disorders. In the last step, we implemented a simplified version of
the Chicago Classification algorithm using a decision tree. The input of the decision tree is
the IRP and the five different swallowing disorders and the output is the EMDs diagnosis.

The rest of this work is structured as follows: Section 2 will detail the solution we
used to establish the classification pipeline, Section 3 will give some experimental findings,
Section 4 will describe other methods, and Section 5 will summarize our study.

2. Materials and Methods
2.1. Raw Data Analysis

All esophageal HRM data from our manometry department were evaluated (from
October 2014 to February 2021). Patients with esophageal symptoms such as dysphagia,
chest discomfort, heartburn, or regurgitation were referred for manometry. We had a large
number of achalasia patients since our facility is a diagnostic reference center for achalasia.
The inspection process, algorithm, and categorization of EMDs were based on guidelines
from Chicago v3.0, which were in use at the time. A 2-min EGJ baseline recording was
followed by 10 wet swallows of 5 mL each separated by more than 30 s. Manometry was
carried out early in the morning, after at least six hours of fasting, in the supine posture
with the thorax angled at 30 degrees. The ISOLAB (Standard Instruments GmbH, Karlsruhe,
Germany) manometry system featured a solid-state catheter with 36 sensors (Unisensor®,
Zurich, Switzerland). This kind of catheter has an usual upper limit of IRP of 28 mmHg [2].
The catheter was inserted transnasally and at least three sensors were put in the stomach.
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The program indicated the moist swallows, commonly known as test swallows, with a
white vertical line during the exam.

The datasets were generated by two human specialists from Romania’s “Iuliu Hat-
ieganu” University of Medicine and Pharmacy Cluj-Napoca. Previous studies showed
that the best inter-observer agreement when interpreting esophageal-HRM studies is for
achalasia, while for other motility disorders the agreement is only ‘fair-moderate’ [3,4].
Therefore, the images were labeled by the Romanian specialists in collaboration with two
specialists from Italy. We used Chicago classification version 3.0 because all the images
included in our study were obtained between the years 2014 and 2021.

Using Chicago classification v3.0, we classified 192 esophageal HRM recordings, based
on their diagnosis in: type I (27.1%), type II (19.8%) or type III (2.1%) achalasia, EGJ outflow
obstruction (6.3%), absent contractility (6.8%), distal esophageal spasm (DES) (0.5%), hyper-
contractile esophagus (2.1%), ineffective esophageal motility (13%), fragmented peristalsis
(2.1%), and normal finding (20.3%). Based on these recordings, we created two datasets.

The initial dataset includes photos with IRP-related labels. It comprises of 1079 photos,
of which 140 had a normal IRP and 939 had an IRP greater than the threshold number.
Figure 1 demonstrates instances of both normal and abnormal IRP.
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white mark located around the image’s center. 

Figure 1. (a) Swallow with failed peristalsis and normal relaxation of the lower esophageal sphincter
(LES), as shown by the color shift (caused by the pressure drop)—the area of focus is the yellow
rectangle; (b) Swallow with failed peristalsis and lack of LES relaxation (there was no color change,
and the measured IRP was over the cutoff—red rectangle).

Both datasets included photos of moist swallows with simply a white vertical line
(placed during the recording) indicating the test swallow. The program enables the storing
of photos representing 60 s of the recording. We saved the photographs with the white
mark located around the image’s center.

The IRP was measured during the first ten seconds after the commencement of the
swallow, which was regarded as the white vertical line. More information about the dataset
and the IRP classification algorithm can be found in our previous article [8].
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The second dataset contains labeled images of six different swallowing patterns, that
can be used together with the IRP to automate the Chicago classification. This dataset
initially included 1535 images belonging to the following classes:

1. Panesophageal pressurization (n = 256)
2. Premature contractions (n = 27)
3. Weak contractions (n = 54)
4. Fragmented contractions (n = 58)
5. DCI (distal contractile integral) greater than 8000 mmHg·cm·s (n = 21)
6. Failed peristalsis (n = 1119)

The number of failed peristalsis images was very high, due to the high number
of patients with achalasia. The swallowing patterns mentioned above are presented in
Figure 2.
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In Figure 3 we can see an example of normal swallowing pattern.
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Figure 3. Normal swallowing pattern. The swallowing induced a strong and normal peristaltic wave.

2.2. Input Image Preprocessing

The raw picture contains more data than is required to train an artificial neural network,
and this surplus data is referred to as noise. We removed noise from the raw images by
trimming them as follows: we utilized the top, bottom, and right boundaries of the image,
while the left boundary was marked by a white vertical line before each test swallow.

To pinpoint the location of the white line that runs vertically, we first created a his-
togram of white pixels along the y-axis and then chose the index that had the greatest pixel
count. This value corresponds to the x-axis value that we wanted. The bottom section of
this picture was sent to the IRP classifier as input.

Since the CNN used for IRP classification has an input shape of 299 × 299 × 3 and
operates with values between −1 and 1, all pictures were rescaled and normalized to have
values within the [−1, 1] range.

To classify the images in the five swallowing patterns presented above, we used the
DenseNet201 CNN model [12]. This model requires 224 × 224 × 3 images this is why we
rescaled the original images to this resolution and also normalized them to [−1, 1] interval.
This way, from the original input dataset we obtained two different datasets, one for the IRP
classification, having two classes, and one for swallowing disorder classification, having
five classes.

The CNN model must be trained several times (using the training dataset) while
obtaining intermediate feedback on its quality using the test dataset to build the final
model. The intermediate input is used to enhance the model during the training phase.
After the model has been completed, the validation dataset is used to verify the results.
Having three distinct datasets guarantees that the validation set is never accessible by
the model, allowing for the generation of accurate assessment scores. The training set
comprises the majority of the data required to train the model. During training, the test set
is used to evaluate the model’s ability to analyze images it has never seen before. During
training, it is typical to continuously report metrics such as validation loss after each
training phase. Since the test set is actively employed in model development and training,
it is crucial to maintain a completely different collection of data. At the conclusion of the
study, evaluation measures were performed on the validation set to see how well the model
will perform in reality.

The final pseudocode for the Automated Chicago classification can be found in
Algorithm 1.
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Algorithm 1: Decision tree for HRM classification

1. If IRP > cut-off then:
2. If (no Panesophageal presurization images) then:
3. 0Return Achalasia Type I
4. Else If (at least 2 Panesophageal presurization images):
5. 0Return Achalasia Type II
6. 0Else If (at least 3 Premature contractions images):
7. 0Return Achalasia Type III
8. Else:
9. 0Return EGJ Outflow Obstruction
10. 0End If
11. Else:
12. If (at least 3 Premature contractions images) then:
13. 0Return Distal esophageal spasm
14. Else If (at least 2 DCI greater than 8000 images):
15. 0Return Hypercontractile esophagus
16. Else If (at least 5 Week images):
17. 0Return Ineffective esophageal motility
18. Else If (at least 5 Fragmented contractions images):
19. 0Return Fragmented persitalsis
20. Else:
21. 0Return Normal esophageal motility
22. 0End If
23. End If

As we can see in Figure 4, the main steps of the algorithm are the following:

1. Image pre-processing and input dataset preparation: in this step, we removed the
noise from the images by cropping out the unusable regions, selected the region
of interest, especially for the IRP classification and we scaled and normalized the
images to match the input requirements of the two CNN architectures, namely the
DenseNet121 and the InveptionV3 models.

2. Feature extraction: in this step we used the DenseNet121 model for extraction of the
features for the swallowing disorder classification task and the InveptionV3 model
for extracting the features for the IRP classification.

3. Classification of the images: the custom fully connected layers that we added to the
DenseNet121 and to the InceptionV3 models. More information can be found in the
next paragraphs.

4. Decision tree for the Chicago classification: a custom-made decision tree that works
on batches of images (10 images per batch) and accepts as input the class for the IRP
and the class for the swallowing disorder. The output of this decision tree is the actual
class of the esophageal disorder. A detailed description of this decision tree can be
found in the pseudocode below.
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3. Results
3.1. Solution Pipeline

Similar preprocessing procedures were used as in our prior work [11]. A simplified
view of the final solution can be seen in Figure 4.

This algorithm is a continuation of our previous solution for IRP classification [8]. We
extended the solution with the swallowing disorders classification part (yellow rectangles
from Figure 4) and with the custom decision tree for the final step, for the classification of
the esophageal disorder (blue rectangle from Figure 4).

A more detailed view can be seen in Figure 5. As shown in these figures, in the first
step, we eliminated the noise by removing the top, left, and bottom margins. The image is
then binarized using 128 pixels per pixel as the threshold. In this fashion, the white vertical
line defining the moist swallow becomes more evident. Using the greatest value of the
histogram of the white pixel described in the previous section, the x-axis location of the
vertical white line is then computed.
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Figure 5. Solution pipeline.

In the subsequent picture preprocessing phase, we utilized the previously determined
x coordinate to crop the original image, therefore locating the specific portion of the image
that depicts a single wet swallow. This picture will be the input for the CNN classification
model for swallowing difficulties. In addition, based on this picture and the binarized
image, we identified the image portion that reflects the IRP for a single wet swallow.
This IRP picture will serve as the input for the CNN model used to classify IRP images.
After preprocessing the raw picture, we downsized the IRP images to 299 × 299, since
the InceptionV3 [13] supports images of this size as input. The inputs for the swallowing
disorders classifier will be adjusted to the DenseNet201 [14] CNN model’s acceptable size
of 224 × 244. Next, we normalized all pixel values to the range [−1, 1], and passed the
resulting matrix to the feature extraction section.

The InceptionV3 CNN model and DenseNet201 model were utilized without the
final classification layer and trained on the Imagenet dataset [15,16] to extract features for
the IRP classification and swallowing disorders classifier [15,16]. For IRP classification
and swallowing problems classification, we developed two distinct models. To minimize
overfitting issues, we chose a Global Average Layer with a 20% dropout in the final fully
connected layer for the IRP classification since we only have two accessible outputs/classes
and five neurons for the five swallowing disorders. A batch size of 32 pictures was used, and
the data was randomized every epoch during training utilizing the Adam optimizer [17].
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The results of the two trained models were used in the final part, to obtain the final
diagnosis and to automate the Chicago Classification algorithm (see the Pseudocode from
the previous section). The classes generated by the IRP classifier were used in the first step.
If the IRP is higher than the cut-off, then we can reduce the possible esophageal disorders
to 4 classes, namely Achalasia Type I, Type II, Type III, and EGJ Outflow Obstruction. In the
original Chicago Classification, in the case of normal IRP, we have six different disorders,
but we used only a subset of five disorders because in the case of Absent Contractility our
neural network made too many mistakes, lowering the overall performance of the algorithm.
In the case of normal IRP, we treated the following classes: Distal Esophageal Spasm,
Ineffective Esophageal Motility, Fragmented Peristaltis, Hypercontractile Esophagus, and
Normal Esophageal Motility.

In the second step/layer of the decision tree, we used the results of the second model,
to classify the different swallowing disorders. To find the final result, the exact esophageal
disorder, we used the following rules:

In case of IRP higher than the cut-off:

1. Achalasia Type I: if no images were classified with panesophageal pressurization
2. Achalasia Type II: if at least 2 images were classified with panesophageal pressurization
3. Achalasia Type III: if at least 3 images were classified with premature contractions
4. EGJ Outflow Obstruction: if none of the above rules were present

In case of normal IRP:

1. Distal esophageal spasm: if at least 3 images were classified as premature contractions
2. Hypercontractile esophagus: if at least 2 images were classified as DCI greater than

8000 mmHg·cm·s
3. Ineffective Esophageal Motility: if at least 5 images were classified as week
4. Fragmented peristalsis: if at least 5 images were classified as fragmented contractions
5. Normal esophageal motility: None of the above rules can be applied

A change in our algorithm compared to the Chicago classification v 3.0 is that for the
Achalasia Type I we made the classification based solely on the aspect of panesophageal
pressurization. We had to exclude the failed peristalsis class, because in this case, our neural
network made too many mistakes, lowering the overall performance of the algorithm.

3.2. Metrics

To perform a thorough examination of our solution, we used many assessment criteria:

1. Accuracy: The proportion of correct classifications to the total number of instances.
The automatic classification made by the neural network was compared with the
diagnosis of human experts.

2. Precision: The percentage of correctly recognized positives relative to the total number
of positive classifications.

3. Recall: The fraction of positives accurately detected relative to the total number of
positives in the dataset.

4. F1-Score: The median between Precision and Recall.
5. Confusion Matrix: A confusion matrix summarizes the results of categorization

problem prediction. The number of accurate and incorrect predictions is summed
using count values and then split by class.

To appropriately compute these metrics, it is necessary to note that in the IRP classi-
fication issue, the positive class is the normal IRP class, but in the swallowing disorders
classification problem, the positive class in each instance was the current disease class.

3.3. Integrated Relaxation Pressure Classification Results

After preprocessing the whole picture dataset and locating the IRP area of interest
in each image, we trained our CNN model to categorize images as normal or high IRP.
With the following assessment ratings, the outcomes of the trained Neural Network are
highly encouraging:
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• Accuracy—96.87%
• Precision—100.00%
• Recall—80.00%
• F1-score—88.88%

Figure 5 from our earlier work [8] depicts the confusion matrix we obtained on the
test set. This matrix reveals that just one out of thirty-two photos was incorrectly identified,
which is an excellent result. In our earlier research [8] we can see samples from the test
set together with the anticipated label. With green, we’ve shown the correct labels, while
red indicates that the CNN model misclassified the picture. Similarly, in another figure of
our earlier work [8] we showed the results of the test set, with green representing accurate
classification and red representing mistakes.

3.4. Swallowing Disorders Classification

After running the photos through the pipeline described in the preceding section
and training our CNN model, we received the confusion matrix shown in Figure 6. As
shown in this matrix, the model misclassified just two of 62 photos, and we achieved the
following metrics:
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3.5. Esophageal Motility Disorders Classification

After acquiring the classification results for the IRP and the swallowing disorders the
decision tree that we build for the Chicago Classification algorithm obtained the confusion
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matrix presented in Figure 7. The outcomes of the trained Neural Network were quite
encouraging, as shown by the assessment ratings listed below:
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As we can see in Figure 7, in the case of Ineffective Esophageal Motility and Frag-
mented Peristalsis patterns the evaluation metrics were lower than in the case of other
disorders, which can be explained by the nature of these images. In case of the Fragmented
Peristalsis we looked at the Fragmented Contractions swallowing pattern class and in the
case of Ineffective Esophageal Motility we took into consideration the Week swallowing
pattern class, but these two swallowing patterns were very similar (see Figure 8), leading
the trained model to make some mistakes when trying to classify them (the inter-class
similarity was very high, again explaining some of the mistakes recorded).

Without these two disorder classes, we had higher evaluation scores. As you can see
below, we obtained an overall accuracy of 86% which, as we know, is the best top-1 accuracy
so far for the fully automated Chicago classification algorithm. The final confusion matrix
(with the removed swallowing classes) can be seen in Figure 9.
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4. Discussion

In our study, a machine learning algorithm for automated diagnosis of EMDs using
data extracted from esophageal HRM images is presented. A strong correlation between
automatic diagnosis and the human expert diagnosis was observed, demonstrating the
accuracy of the algorithm. We were able to automate the Chicago Classification method
using our approach. This indicates that the final solution can categorize EMDs based on the
raw photos without any input from the observer. The IRP is the most essential parameter
in the Chicago Classification, thus our first goal was to assess, based purely on the raw
photos, whether the IRP was within the normal range or above the cut-off. The second job
was to categorize the photos into five distinct categories to differentiate between various
swallowing patterns and regular patterns. In addition, we suggested a streamlined version
of the Chicago Classification algorithm version 3.0 employing a decision tree structure.

The final results were affected by the inter-class similarity problem, which in some
swallowing disorder classes was very high, which resulted in a lower evaluation score
for some of the esophageal motility disorder classes. In the case of Ineffective Esophageal
Motility and Fragmented Peristalsis patterns, the evaluation metrics were lower than in the
case of other disorders, which can be explained by the nature of these images. In case of
the Fragmented Peristalsis we looked at the Fragmented Contractions swallowing pattern
class and in the case of Ineffective Esophageal Motility we took into consideration the Week
swallowing pattern class, but these two swallowing patterns were very similar, leading
the trained model to make some mistakes when trying to classify them (the inter-class
similarity was very high, again explaining some of the mistakes recorded).

In the future, we will try to solve the inter-class similarities issue as we can see in the
study of Li et al. [18], by adding a problem-specific feature optimization step between the
feature extraction and classification layer.

There is limited research [3–5,19–24] that explored automated diagnosis of EMDs and
pharingeal swallows utilizing AI-based methods or automation of the Chicago Classifica-
tion system, Table 1. In addition, the most relevant research in this sector is discussed below.

Table 1. Comparative results of previous studies.

Author
(Year)

Number
of

Patients
Characteristics Main Purpose Outcomes Technology

Kou
et al. [3];
(2021)

2161

A generative model using
the approach of
variational auto-encoder
was developed, for an
automatic diagnosis of
raw esophageal
manometry data
The purpose was to model
and understand
swallow-level data, that
would be further used to
develop study-level
models for automatic
diagnosis

To identify the swallowing
type There were 6 swallow
types: normal, weak,
failed, fragmented,
premature, or
hypercontractile, and 3
pressurization types:
normal, compartmental
pressurization,
panesophageal
pressurization

The overall accuracy for
the train/validation/test
dataset was 0.64/
0.63/0.64 for predicting
the 6-class swallow
type
Overall accuracy for train/
validation/test dataset
was
0.87/0.86/0.87 for
predicting the 3-class
swallow pressurization

DL
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Table 1. Cont.

Author
(Year)

Number
of

Patients
Characteristics Main Purpose Outcomes Technology

Kou
et al. [4];
(2022)

1741

Swallow-level stage:
3 models based on
Convolutional Neural
Networks (CNNs) were
developed to predict
swallow type, swallow
pressurization (classifi
cation model) and
integrated relaxation
pressure (regression
model)
At the study-level stage,
the models were: the
rule-based model
(combined with
probabilities), xg-boost
model and arti
cial neural network
(ANN)

To diagnose esophageal
motility disorders
Model-predicted
swallow-level outcomes
formed the input data of
study-level models, in
training and validation
The blended models were
weighted by precision
scores.

The best performance on
the test dataset, in blended
models, was 0.81 in top-1
prediction, and 0.92 in
top-2 prediction
(xgb+ann-1)

Combines DL
and
ML

Kou
et al. [5];
(2021)

1741

An AI-based system that
automatically classifies
swallow types based on
raw data from HREM

To automatically classify
swallow types: normal,
hypercontractile,
weak-fragmented, failed,
and premature

Swallow type accuracies
from the
train/validation/test
datasets of 0.86/0.81/0.83

DL

Frigo
et al. [20]
(2018)

226

Created a
physio-mechanical model
of esophageal function,
and a database with
parameters from healthy
subjects, and different
motility disorders
In the first step, the
relationships between the
identified model
parameters and
pathologies were found
In the second step, a
decision support system
was developed

Patients parameters are
compared with the
database and the group
with the highest similarity
index is chosen

Correct diagnosis in 86%
of cases

Rule-based
model

Wang
et al. [21];
(2021)

229

A DL computational
model, which leverages
three-dimensional
convolution and
bidirectional
convolutional
long-short-term-memory
models were used for
HREM automatic
diagnosis

To identify whether the
esophageal function was
normal, or there was a
minor or major motility
disorder.
No final diagnosis of
motility disorders was
performed

Overall accuracy of the
proposed model was
91.32% with 90.5%
sensitivity and 95.87%
specificity.

DL

AI: artificial intelligence; ANN: artificial neural networks; CNNs: Convolutional Neural Networks; DL: deep
learning; ML: machine learning; HREM: high-resolution esophageal manometry.

Beginning with swallow-level raw data, Kou et al. [3] proposed an unsupervised
deep learning method for automatically discovering unique esophageal motility diagnostic
features and properties. In addition, the scientists constructed and trained a variational
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auto-encoder to categorize images into six swallow types (normal, weak, failed, fragmented,
premature, and hypercontraction) and three pressurization types (normal, compartmental,
panesophageal pressurization). The researchers employed a database of over 30,000 raw
images of swallows, a linear discriminant approach, and then principal-component analysis
to reduce the dimensionality of the data and identify the most important traits, which they
then used to classify the images [3].

Another study performed by Kou et al. [4,5] on automated detection of EMDs using
raw multi-swallow pictures collected from esophageal HRM, showed good accuracy by us-
ing machine learning techniques and deep-learning models with a dataset of 1741 patients.

Jell et al. [19] developed an AI-based system to test the feasibility of autonomous
processing of ambulatory long-term esophageal HRM utilizing pictures from more than
900 swallows that arise during a 24-h HRM. Forty patients with suspected EMDs were
recruited for the training and testing of a supervised machine learning system for automated
swallow identification and categorization. The evaluation time for the whole tape was
reduced from three days to eleven minutes for automated swallow detection and clustering.

In article [20] the authors extracted the pressure values measured by each transducer
of the probe and they manually defined mathematical functions to interpret different
physiological and mechanical phenomena. Based on these functions they built a rule-based
model to classify the HRM images. With this approach, they obtained 86% accuracy, which
is lower compared to our solution or other DL-based solutions.

In [21] we can read about a slightly different problem and solution. The authors of this
article built a solution for real-time esophageal motility function tracing. They combined
a three-dimensional CNN (Conv3D) with a bidirectional convolutional long-short-term-
memory (BiConvLSTM) this way making the predictions in real-time.

It is essential to keep in mind that only a small number of studies could be compared
to our inquiry, since in some studies just pharyngeal alterations and swallowing patterns
were analyzed, without a comprehensive automated diagnosis of EMDs [22–24].

Several classification algorithms, including artificial neural networks (ANNs), multi-
layer perceptron (MLP), learning vector quantization (LVQ), and support vector machines,
were evaluated to detect improper swallowing of the upper esophageal sphincter by Mie-
lens et al. [22]. (SVM). The research revealed that MLP, SVM, and LVQ all exhibited high
average classification accuracies, with MLP scoring 96.44%, SVM scoring 91.03%, and LVQ
scoring 85.39% [22].

Talking about the limitations of our algorithm, in a real-life scenario, sometimes
our algorithm confuses the Achalasia Type I class with the EGJ Outflow Obstruction class
because we only used the panesophageal pressurization swallowing pattern to discriminate
between these two classes. We did not use the failed peristalsis swallow pattern, because
in this case, the example images had a high overlapping degree with other classes, which
lowered the overall performance of the final algorithm. Therefore, some patients with
ineffective esophageal motility and with absent contractility would be classified as normal.
In addition, this issue will be addressed in the future by using more images, because
currently, the number of images per class is imbalanced, which can introduce bias in the
training of the CNN model.

We consider that our study represents a novelty compared to previous knowledge:
this is the first study for automatic recognition of esophageal manometry images, which
follows the same steps as a human expert.

5. Conclusions

This article presents a completely automated solution for the Chicago Classification
method that may be used to automate the diagnosis of EMDs. In the first section, we
described the preprocessing processes required to prepare input datasets. Then, we demon-
strated and detailed the two distinct CNN models that we developed to categorize the IRP
as normal or high and the pictures into five distinct swallowing classes. These two models
were inputs for the decision tree we constructed for the Chicago classification algorithm.
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Achieving accuracy and an f1-score of 86% for the diagnosis of EMDs, the final findings
were excellent. By automating the diagnosis of EMDs, this study may assist doctors and
motility labs in their everyday work, minimize the variability between observers and save
money and time on repeated duties.
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