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Over the past few decades, drug discovery has greatly improved the outcomes for patients, but several
challenges continue to hinder the rapid development of novel drugs. Addressing unmet clinical needs
requires the pursuit of drug targets that have a higher likelihood to lead to the development of successful
drugs. Here we describe a bioinformatic approach for identifying novel cancer drug targets by performing
statistical analysis to ascertain quantitative changes in expression levels between protein-coding genes,
as well as co-expression networks to classify these genes into groups. Subsequently, we provide an over-
view of druggability assessment methodologies to prioritize and select the best targets to pursue.
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1. Introduction

Rapid scientific advances have enabled the development of life-
saving drugs, but modern-day drug discovery continues to be pla-
gued by high costs and high attrition rates. It has been estimated
that the cost for a new medicine to reach the market could be up
to 1.3 billion US dollars [1]. In addition, this cost varies across dif-
ferent diseases, with cancer being the most expensive ailment to
develop novel drugs for [2,3]. Parallel to the high cost, the success
rate for drug development programs is significantly low with over
90 % of the drugs failing during clinical trials [4]. The attrition rate
problem is particularly prevalent in cancer drug discovery as 95 %
of the drugs that enter Phase I do not obtain marketing authoriza-
tion [5].

A continuous scientific effort is put towards overcoming the
challenges of drug discovery and that requires the implementation
of insightful strategies throughout the development pipeline [6].
One of the critical points in developing a new drug is the preclinical
stage, whose design is often not adequate for the accurate predic-
tion of clinical efficacy and safety of a candidate drug. The reason
behind this reality is that the available animal models are incom-
plete in mimicking human disease fully, especially human cancer
[7]. Several reports have established the discrepancy between ani-
mal models and studies in humans which often results in reduced
translatability of preclinical findings [8]. In cancer drug develop-
ment, an intensified effort is put towards improving the in vitro
and in vivo preclinical models, which can be assisted by computa-
tional cancer models, to increase confidence in their clinical rele-
vance [9].

Another crucial point that is part of early drug discovery and
needs to be addressed is target identification. Identifying disease-
modifying targets and characterizing their role in the pathophysi-
ology of the disease is the first step in the development pipeline
[10]. Then, prioritizing the most promising therapeutic target min-
imizes the possibility of investing time and money in a poor drug
target. Therefore, it is pivotal to select disease-linked and drug-
gable targets [11]. One of the standard methods to identify novel
drug targets is the microarray technology. Microarrays enable gene
expression profiling and the analysis of disease versus healthy can
highlight target genes of interest [12]. Having identified and vali-
dated the function of a target gene in the context of disease,
another requirement is to assess the druggability of the target.
Druggable targets, that can be modulated by small molecule drugs
and/or biologics, are prioritized because they are more likely to
result in a successful drug development project [13,14].

The strategies and decision-making during target identification
can help accelerate drug development while reducing the associ-
ated costs. Identification and prioritization of the most promising
therapeutic target can provide confidence in achieving a favorable
outcome. In the current work, we review modern methods of pro-
cessing gene expression data through statistical analysis and data
mining to identify novel cancer targets. Then, we provide current
Fig. 1. Flowchart: The data analysis step
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methods of druggability assessment for the accurate prediction
that the target can be modulated by a drug.

2. Microarray experiments and data analysis

Microarrays, as a collection of DNA probes, are generally
oligonucleotides that are ‘ink-jet printed’ onto slides (Agilent
[15]) or synthesized in situ (Affymetrix [16]). Labeled single-
stranded DNA or antisense RNA fragments from a sample of inter-
est are hybridized into the DNA microarray under high stringency
conditions. The amount of hybridization detected for a specific
probe is proportional to the number of nucleic acid fragments in
the sample. An important design element in a microarray experi-
ment is whether to measure the expression levels of each sample
in separate microarrays (one-color arrays) or to compare the rela-
tive expression levels between a pair of samples in a single
microarray (two-color arrays). The Agilent platform is primarily
used to conduct the experiments, and although the Agilent panels
were originally optimized for two-color analysis, a single-color
protocol is now available, which includes a different panel of
spike-in reagents to better optimize single-color operation [17],
where each sample is labeled and hybridized to a separate
microarray to obtain an absolute fluorescence value for each probe.
The basic premise for microarray analysis is that relative levels of
gene expression are represented by fluorescence intensities. How-
ever, the comparison cannot be made before the necessary trans-
formations in the data have taken place to eliminate the low-
intensity measurements, so that reliable comparisons can be made
and differentially expressed genes can be identified with statistical
significance. A fundamental microarray data design standard is
governed by a respectable number of algorithms and statistical
approaches that must be implemented and includes the following:
quality control, probes pre-filtering, normalization, samples classi-
fication, differential expression analysis, genes clustering in combi-
nation with complex networks, and pathway analysis [18,19]
(see Fig. 1).

2.1. Preprocessing steps

2.1.1. Quality control
During mRNA preprocessing, data is paramount in the path that

starts from experimental design and leads to a reliable biological
interpretation. Taking into account all the relevant aspects of the
project, the following steps from data quality control to differential
analysis leads to trustworthy results, increasing the precision and
recall for prediction analysis.

Evaluation of data quality is a prerequisite before data normal-
ization to verify whether the quality of the experimental data is
acceptable for further analysis or whether any hybridization
should be reconsidered [20,21]. A variety of descriptive statistics
graphs is possible to identify problems with hybridization (or other
experimental structures) in the quality control evaluation process.
s used for a microarray experiment.
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Quality control charts are classified into diagnostic (i.e. MA-plots)
and spot statistics (i.e. box-plots, histograms for scaling differences
between different arrays or gene expressions) [21–23]. However,
data preprocessing as an object, including the most commonmeth-
ods of visualizing, normalizing, and converting data, remains an
active area of research to this day.

2.1.2. Probes pre-filtering
The accuracy of mapping microarray probes to genomic data is

critical to creating reliable biological findings, but microarrays usu-
ally have a very large number of probe sets, which creates many
problems in false discovery rate (FDR) control (the expected pro-
portion of rejected null hypotheses that are false positives). This
is because while biologically most sets of probes can be associated
with unexpressed genes, they can be detected as differentially
expressed, and therefore the measured values contain noise. Such
probes should therefore be filtered and discarded from the study
before further pretreatment [24].

2.2. Normalization

Microarray data tends to show high variability. Some of this
variability is to be expected, as it corresponds to the differential
expression of genes, but much of it arises from biases introduced
during the many techniques in the experimental process. For this
reason, the microarray data must first be corrected to obtain reli-
able intensities corresponding to the relevant level of gene expres-
sion so as to make accurate comparisons of gene expression
between samples. Normalization of microarray data is the appro-
priate way to control the technical variation between tests while
maintaining the biological variant [25]. More specifically, normal-
ization techniques are used to reduce the variance between gene
expression measurements in microarrays in order to improve data
quality and the power of statistical tests for differential expression
detection [26]. In essence, they are processes of scaling the raw
measurement values to take into account ‘‘uninteresting” factors,
for the expression levels to be more comparable both between
and within the samples. Since dealing mainly with single-
channel microarray data, gene expressions are normalized by
‘‘quantile normalization”, which is a between-array method that
seems to be most suitable for such a case [27,28]. This kind of nor-
malization is achieved by rescaling the data distributions and fit-
ting them to a mean distribution, in order to preserve the
ranking in which the genes are ranked by expression level in each
data set [29]. Another widely used preprocessing algorithm is the
RMA (Robust Multi-Array Average) method [30,31] where the
results are logarithmically scaled based on 2, including background
correction to fluorescence intensities, normalization, as well as
summary estimation of probes (since multiple probes correspond
to a single gene) using Tukey’s Median Polish algorithm [32].

2.3. Samples classification/clustering

Classification algorithms are generally used either to discover
new classes in a data set (unsupervised classification) or to assign
hypotheses to a given class (supervised classification). Here, since
all the raw data have already passed the preprocessing stage, the
sequence of steps includes cluster analysis with the main purpose
of detecting structures in data sets. This is to discover hidden pat-
terns in data, as well as information about which clustering tech-
nique is most suitable for distinguishing patients based on their
similarity. This is important because clustering algorithms can find
repeating patterns in patients that are difficult for doctors to find
[33]. Cluster analyses, such as principal component analysis [34]
(PCA) or hierarchical clustering [35], should be completed before
further downstream analysis to ensure that samples are collected
48
based on the experimental design. If a small number of samples
show divergent clustering, their removal may be a preferred option
when the sample is sufficient.

2.4. Differential expression analysis (DEA)

Subsequently, a particularly crucial step in the analysis of
mRNA data is the differential expression analysis of genes (DEGs),
which is a process that aims to identify those genes (that encode
proteins) that are expressed at different levels between cancer
states/stages and can thus provide a clearer biological picture of
the processes involved in the conditions of interest. However, an
additional important element for the analysis of differential gene
expression, especially when comparing expressions of multiple
genes and in multiple conditions for a given number of samples,
is the correction of multiple tests, as in such a case we can be led
to an increased probability of false-positive results, and therefore
the corresponding probability values must be corrected to have a
more realistic result [27]. These analyses can be achieved using
computational statistical packages such as R software [36], and
more specifically the Bioconductor limma package [37] which, by
using ordinary linear models or ANOVA models, estimates the
dependencies of covariates between samples as well as the vari-
ability of the data set. Specifically, it evaluates the differential
expression, creating, among other things, an ‘‘adjusted” p-value
that scores the statistical significance in order to avoid errors given
by the multiple testing procedure. The classical approach to control
for multiple testing is by familywise error rate (FWER), which
focuses on avoiding Type I errors in a very strict way. But because
it is a very conservative process for genomics, the most appropriate
method of adapting multiple tests is that of Benjamin and Hoch-
berg [38], which controls the false-discovery rate (FDR). In that
way, final reporting gives in output for every gene a fold change,
which explains how different the gene expression value between
the conditions is, and a p-value that explains how significant is that
difference. Beyond that, it is up to each researcher to set a limit on
the p-value and fold-change to identify the final set of differentially
expressed genes. The program also contains a variety of graphical
utilities (mean-difference plots for gene expression data, etc.) for
evaluating data quality, and is integrated into the Bioconductor
project [39]. In addition, common reference designs are treated
as single-channel for design and contrast matrices whereas empir-
ical Bayesian methods are used to provide more consistent results.
Especially, after adopting a linear model, standard errors are suffi-
ciently mitigated using a simple Bayesian empirical model [40]. For
each contrast, a moderate t-statistic and a log-odds probability of
differential expression for each gene are also calculated.

Also, another noteworthy observation is that replicates (techni-
cal or biological) are necessary for the reliable detection of differ-
entially expressed genes in microarray experiments. There are
several methods that have been proposed to deal with the optimal
number of replicates [41–43]. However, although there is no for-
mal position on which sample-size determination procedures are
best, there is an assumption that power analyses should be per-
formed and that more replicates generally provide more power.
Without repetition, statistically significant results are not possible,
in the sense that there is an increased number of false positives and
false-negative errors in the detection of differentially expressed
genes.

2.5. Genes clustering and network analysis

A standard method of visualizing the gene expression data after
the completion of the differential analysis process is to display
them as a heat map based on the similarity of the gene expression
pattern of the samples. This can be useful in identifying physiolog-



Fig. 2. A heatmap of the expression levels between treatment and controls in lung adenocarcinoma: Expression levels are shown for genes that have been identified as
differentially expressed (under the conditions |log2-fold change|>1.5 and q-value (adjusted p-value) < 0.05. Red and white colors indicate high and low expression levels of
normalized counts by limma R package and scaled by Z-scores for the up-regulated genes, while blue and white colors scaled also by Z-scores indicate high and low expression
levels for the down-regulated genes respectively. The corresponding commercial cell lines have been cultured in RGCC laboratories, from which the corresponding gene
expression information was obtained and transformed on a logarithmic scale.
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ically regulated genes or biological signatures associated with a
particular type of cancer. In heat maps, data is displayed through
hierarchical cluster analyses in a grid where each row represents
a gene and each column represents a sample (see Fig. 2).

Although diseases caused by a gene variant can be detected by
differential expression analysis as previously described, however,
since classical microarray data analysis is based on the identifica-
tion of differentially expressed genes, it is known that genes do
not act alone [44]. While network analysis, in this case, can be
applied to the study of gene correlation patterns in a biological sys-
tem [45,46], however, the case of cancer is a complex disease
caused by the variants of multiple genes and cannot be detected
with the above method. In contrast, differential co-expression
analysis takes into account both the interactions of multiple genes
and those of specific gene pairs that are dysfunctional in cancer, as
shown by a comparison of the difference in co-expression net-
works i.e. comparison of control vs disease [47]. Network-based
co-expression studies have been used, for example, to prioritize
cancer-related genes, as well as the subtype of each cancer, for
the stratification of patients [48].

As differential co-expression emerged based on the analysis of
gene co-expression network [49] (GCN) and assuming that related
or interacting genes can share the same biological function, algo-
rithms such as the WGCNA [45,50] that rely on the principle of
‘guilty by association [51]’ can be beneficial to identify co-
regulated genes. By constructing co-expression networks and using
normalized expression values, they can form co-expression clus-
ters (modules). Βy using such a tool, topological similarity adja-
cency matrices (TOMs) can be constructed for a set of
differentially co-expressed genes visualized as a network in order
49
to identify genes whose expression patterns are very similar to
each other and thus tend to show a coordinated expression pattern
in a sample [52]. In recent years, gene co-expression networks
have been mainly used to capture transcriptional patterns and pre-
dict gene interactions in functional and regulatory relationships, to
provide reliable information about underlying biological functions
[53]. In particular, by using these network construction tools, dif-
ferentially co-expressed genes can be narrowed down into smaller
gene subsets (modules) for functional term enrichment or
pathway-based analyses, which will be discussed in more detail
below.
2.6. Functional Annotation/ Pathway Analysis

The list of genes derived from differential expression and clus-
tering tools are used to extrapolate biological significance from the
input samples. Over-representation analysis (ORA) is a critical step
of functional analysis that assesses whether a particular function-
ally defined gene group is not randomly represented in a set of
genes that show differences in expression [54,55]. It works with
Fisher’s exact test [56,57], where p values represent the difference
between the observed and expected overlaps of the differentially
expressed genes in the experiment on the set of functional genes
as well as the number of genes involved. Multiple testing correc-
tion is performed to control for false results. But as Fisher’s exact
test assumes that differential expression of one gene does not
depend on the others (no inter-gene correlations), the test can give
spurious results with long gene lists. In addition, this method is not
reliable for relatively small differences.
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The above problems for a more valid interpretation of the
results of the transcriptomics experiments are corrected by the
Gene Set Enrichment Analysis [58] approach (GSEA), which is also
referred to as functional class scoring and is a rank-based
threshold-free method that does not rely on differentially
expressed genes to perform pathway analyses but uses all available
gene expression information. The benefits of the method include
the fact that it operates at the pathway level and thus, considers
biological complexity, by allowing the inclusion of low-level
changes that may not be detected in traditional analyses aimed
at identifying differentially expressed genes. This method draws
its strength by focusing on sets/groups of genes that share a com-
mon biological function. More specifically, when genetic analysis
finds a little resemblance between two independent studies of
patient survival in a particular type of cancer, then the GSEA
reveals many common biological pathways.

Gene ontology (GO) terms, which contain standard gene anno-
tation, are also widely used for this purpose, comparing the fre-
quency of individual annotations in the gene list with a reference
list [59,60]. Other main functional annotation databases are the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
[61] that are based on Entrez gene IDs, the Reactome database of
biological pathways by defining further the metabolic pathways
[62], the WikiPathways [63], the Human Phenotype Ontology as
a database of genes associated with human diseases [64], and the
MSigDB database of gene sets [65], which in their entirety are
high-performance functional genomic databases. Also, much of
the data is freely available in public repositories such as ArrayEx-
press [66], Gene Expression Omnibus (GEO) [67], and the Compar-
ative Toxicogenomics Database (CTD) [68]. Similarly, among PPI
databases, the STRING database (https://string-db.org) provides
information on the function of action and interaction at the protein
level, including direct (physical) as well as indirect (functional)
correlations [69]. In addition, several tools are available that repre-
sent enriched functional annotations from single pairwise compar-
isons, such as g: Profiler [70] and DAVID [71] where here the
probability of a certain number of genes from a pathway or cate-
Fig. 3. The presentation of the overrepresented biological process GO terms via dot pl
condition-related genes in our selected genes divided by the corresponding number of se
while the cut-off value is 0.05. The dot size represents the number of genes in the impo
adjusted p-values (BH). Visualization has been achieved via the clusterProfiler R packag
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gory in a gene list can be calculated via hypergeometric distribu-
tions [56] and Enrichr [72], but all these tools allow an analysis
of only one experiment at a time. Thus, since biological processes
usually involve more than one path, the result will be a network,
and in the case of microarray data, is a regulatory network [73].
The role of network analysis as complementary to path analysis
is to demonstrate how key elements of different pathways interact.
This can be useful in identifying regulatory events that affect mul-
tiple biological processes and pathways [74].

In recent years, pathway topology [75,76] has become the first
choice for extracting and explaining molecular biology for high-
performance measurements, and for this reason, a large number
of known knowledge path databases provide information for each
path. These knowledge bases also provide information about gene
products that interact with each other in a given pathway, as well
as how and where they interact.

To better interpret the enrichment results, the following are
examples of the most important bases for calibrating pathways
and existing biological functions. More specifically, R statistical
packages such as clusterProfiler [77,78], DOSE [79], ReactomePA
[80], and meshes [81] are used to visualize the enrichment results
accordingly (see Fig. 3).

Because dot plots show only the significantly enriched terms,
and because we likely want to see exactly which genes are associ-
ated with those significant terms, it is possible to display the cor-
responding gene interactions and biological concepts (e.g., GO
terms or KEGG pathways) in a network in order to account for
the potential biological complexities in which a gene may belong
to multiple annotation classes. In the following example in the
results visualization, the cores below represent the corresponding
biological concepts as a result of GSEA (see Fig. 4).

If the network of gene interactions becomes very complex,
which can happen when there is a large number of significant
terms, then a heat map is more useful in the sense that it can more
easily identify expression patterns (see Fig. 5).

An additional tool in the search for gene groups with reliable
biological functions is the enrichment map, which distributes
ots: The corresponding classification is derived from GeneRatio i.e. the number of
lected genes. The p-values are adjusted by the Benjamini-Hochberg correction (BH)
rtant DE gene list associated with the GO term, while the dot color represents the
e [77].

https://string-db.org


Fig. 4. The network of data relationships: The connections of genes and biological concepts (GO terms/ KEGG pathways) are depicted in the form of a network.

Fig. 5. The heat map for the functional classification terms used in the previous network analysis design.
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enriched terms in a network that edges connect overlapping gene
sets. Thus, mutually overlapping gene sets resulting in output tend
to cluster together, making it easier to identify functional units.
These results are obtained also via hypergeometric testing and
gene set enrichment analysis (see Fig. 6).

3. Assessing the druggability of cancer targets

For a small molecule to become a marketed drug it needs to
possess certain physicochemical and biological properties [82].
51
Therefore, the drug’s target must have a binding site with comple-
mentary properties to promote the association of the two, this abil-
ity is characterized as target druggability [83]. A druggable target is
most likely a protein since the great majority of FDA-approved
drugs have human or pathogen-derived proteins as their target
[84]. Among all the protein-coding genes in the human genome,
approximately 3,000 are druggable targets and thus can be modu-
lated by drug-like molecules [85]. Besides the experimental meth-
ods that can be deployed, various computational tools can reliably
assess the druggability of novel targets. Computationally, the drug-



Fig. 6. The graph results from the conclusions given by the hypergeometric test and the corresponding gene set enrichment analysis.
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gability can be assessed based on the target’s protein sequence, 3D
structure, known ligands, or any previously demonstrated drugga-
bility of the target’s family members.
3.1. Precedence-based assessment of druggability

A straightforward method to predict whether a protein target is
likely to be modulated by a small molecule drug is examining the
druggability of its family members. A protein family consists of
evolutionarily related proteins which translates into sequence,
structure, and functional similarities between the members [86].
Based on these similarities, the assumption is made that when
members of a protein family have demonstrated druggability,
other family members may also be druggable. In the case of
well-established drug targets like the major protein families of
kinases, G-protein-coupled receptors (GPCRs), and ion channels,
there are several reports to support the validity of a precedence-
based evaluation[87–89]. For example, the multifaceted roles of
GPCRs in carcinogenesis have given this protein family a prevalent
role in cancer drug discovery [90]. As a result, the design of novel
GPCR-based therapeutics is a plausible strategy to improve the
clinical outcomes for cancer patients [91].

For a newly discovered, disease-related protein target, there are
various databases that contain information on protein families and
can aid with the identification of family members. Databases such
as Pfam, PROSITE, CATH, and SCOP classify proteins into families
based on conserved sequences, structures, and/or functions [92–
95]. The collection of the target’s family members is followed by
searching published works and resources for any approved drugs
for the family members or the target itself. Information on
approved drugs and their target can be found on DrugBank and
other databases [96,97]. The existence of established drug targets
in the same protein family is a good indicator of druggability. If
no drugs have approved that target within the family, then candi-
dates that have reached clinical trials also provide confidence in
pursuing the target. Generally, candidate drugs in late-phase trials
signify that the target is safe and has an effective role in disease
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[98]. Information on clinical candidates can be found on Clini-
calTrials.gov or the EU Clinical Trials Register [99,100].

It should be noted that the precedence-based approach for
druggability assessment has limitations. The druggability of addi-
tional members of the same protein family as an existing drug tar-
get is not guaranteed. Furthermore, focusing only on traditional
drug targets fails to consider protein families that have not yet
been the target of drugs [101]. Expanding the so far identified
druggable space could give rise to new therapies and address
unmet clinical needs [102,103].

3.2. Ligand-based assessment of druggability

The ligand-based approach to assessing the druggability of a
protein target applies knowledge of endogenous ligands or small
molecules that bind with high affinity. Proteins naturally bind to
small-molecule ligands, like adenosine triphosphate (ATP), nicoti-
namide adenine dinucleotide (NAD) or S-adenosyl methionine
(SAM), that modulate the protein’s activity [104]. The existence
of such naturally occurring ligands for the target protein indicates
that there is a suitable binding site to accommodate the binding of
a small molecule drug [105]. Various online resources contain
information on the protein’s endogenous ligands such as UniProt
and PubChem [106,107].

In addition to endogenous ligands, compounds designed by
medicinal chemists or identified through high-throughput screens
offer some confidence in the druggability of the target. Ideally,
these compounds act as agonists or antagonists of their target
and have demonstrated a significant binding affinity [108]. Even
though they have not reached clinical trials to establish a safety
and efficacy profile, primary results of drug-like small molecules
can be suggestive of druggability. Information on the pharmacol-
ogy of known ligands can be found on databases such as ChEMBL,
BindingDB and IUPHAR/BPS Guide to PHARMACOLOGY [109–111].

A caveat of this approach is that a ligand-based assessment is
not useful for novel targets for which little is known about their
endogenous ligands and that have no compounds identified as bin-
ders with a promising binding affinity.

http://ClinicalTrials.gov
http://ClinicalTrials.gov


Fig. 7. 3D representations: (A) of ERK2 co-crystallized with an inhibitor (yellow) at the highlighted orthosteric pocket (PDB ID: 4qpa). (B) of SMYD3 co-crystallized with an
allosteric inhibitor (orange) and a ligand bound to the orthosteric site (yellow).
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3.3. Structure-based assessment of druggability

The availability of structural data for the protein target offers a
great advantage in the assessment of druggability. The three-
dimensional structure of a protein can be obtained from the Pro-
tein Data Bank (PDB), which presents important information
regarding structural features of the target and its interaction with
small molecules, peptides and other proteins [112]. The binding of
a drug-like compound to a target requires the existence of a drug-
gable pocket. Thus, the structure-based assessment inspects the
protein target to detect any pockets that can be exploited for
structure-based drug design [113]. The identification of a pocket
initiates the search for a drug-like molecule that will block this
pocket on a disease-related target therefore eliciting a therapeutic
response.

‘Druggable’ is a pocket characterized by shape and physico-
chemical properties complementary to those of drug-like mole-
cules [114]. There is no golden standard to define the most
acceptable properties for a binding site to be determined as drug-
gable. However, the general requirements are a large and deep cleft
that is relatively hydrophobic in nature [115]. An example of a
druggable pocket is shown in Fig. 7A, where a potent orthosteric
inhibitor is bound to the active site of kinase ERK2 (PDB ID:
4qpa) [116,117]. A lot of drugs are ATP-competitive inhibitors
and bind to the highly conserved ATP-binding pockets on kinases.
Databases, such as HKPocket and KLIFS, are a comprehensive
resource for kinase pocket structural information and kinase-
ligand interactions [118,119]. Similarly, there are several online
resources for the exploration of the pocketome, including Pock-
etDB which contains predicted pockets from PDB-derived struc-
tures and CavitySpace which contains potential pockets in
AlphaFold-predicted protein structures [120,121]. Additionally, a
druggable pocket is not always the orthosteric site of a protein
but allosteric sites have the potential to bind drug-like molecules
that regulate the protein’s activity [122]. A recent study by Talibov
et al. identified a druggable allosteric pocket on SMYD3, a protein
with implications for cancer progression (PDB ID: 6yuh, see Fig. 7B)
[123,124]. The Allosteric Database contains a plethora of informa-
tion that can aid with the use of allosteric druggable pockets for
drug design [125]. Targeting allosteric pockets alleviates the prob-
lems of specificity that may occur when small molecules target
highly conserved orthosteric sites. Finally, it should be emphasized
53
that despite the abundance of data and resources, predicted pock-
ets are not guaranteed to be druggable.

When there is no information on putative druggable pockets for
a target of interest, various methods can be applied for the
structure-based detection of suitable surface cavities on the pro-
tein. Most of the available methods are either geometry or
energy-based. Geometric methods scan the protein for cavities
guided by the shape and complexities of the surface whereas
energy-based methods calculate the interactions of probes to iden-
tify zones of favorable binding [115]. An example of the application
of several such methods, both public and commercial, is the study
of Tibaut et al. which utilized them to identify pockets on the bac-
teriolytic enzyme autolysin E [126]. Furthermore, there are evolu-
tionary methods that could be applied that use structure and/or
sequence alignments to identify conserved regions that are likely
to serve as binding pockets [115]. Examples of methods that incor-
porate evolutionary information include 3DLigandSite and FIND-
SITE [127,128].

The initial identification of binding pockets is followed by their
characterization, which is a crucial step in determining which one
is more likely to be druggable. Other than the search algorithm,
most of the methods incorporate a scoring that is used to estimate
the pocket’s druggability [129]. The scoring is based on evaluating
various pocket descriptors, among which the most common are
volume, hydrophobic properties, and solvent accessibility [130].
Each method calculates a different combination of descriptors
and the algorithm is trained on a set of known druggable targets.
The resulting model can predict the druggability of the identified
pockets, ideally with sufficient accuracy [131]. An example is the
DLID metric used by the ICM Pocket Finder method to quantify
the druggability of a protein target [132,133].

An interesting challenge that arises is that many proteins lack
an adequately sized pocket in their ligand-free forms. Therefore,
no pocket can be identified by the above methodologies and the
target is deemed undruggable. Nevertheless, several of these pro-
teins contain cryptic sites that only form after conformational
changes induced by ligand binding [134]. Cryptic sites have been
shown to bind drug-like molecules and there is significance in pur-
suing this type of targets for drug design [135]. Computational
methods have been successful in predicting the existence of cryptic
sites, with notable examples the machine learning algorithms of
CryptoSite and TACTICS [135,136]. Detecting a cryptic site on a
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protein target does not warrant that it is druggable, its modulation
must also have an effect on the protein’s function.

The structure-based assessment of druggability is limited by the
need for an experimental structure of the protein target. Despite
the scientific advances, only a small percentage of the proteome
has an experimentally determined structure available. The
machine learning algorithm of AlphaFold has contributed greatly
by providing a predicted structure for 98.5 % of human proteins
but only 58 % of the protein residues have a confident prediction
[137]. Also considering the dynamic nature of proteins and the
resulting pocket flexibility, structure-based pocket identification
may not be reliable in some cases [138].
3.4. Sequence-based druggability assessment

The sequence-based approach relies on an analysis of the pro-
tein sequence to determine if the target of interest is druggable.
Protein sequences can be retrieved from repositories such as
RefSeq and UniProtKB [106,139]. A study by Ghadermarzi et al.
identified key sequence markers that are present on drug targets
and possibly druggable targets that can facilitate with the identifi-
cation of novel druggable proteins [140]. These markers are
sequence-derived structural and functional characteristics such
as residue conservation, solvent accessibility, intrinsic disorder,
alternative splicing isoforms, etc [140]. Evaluation of these markers
provides a preliminary prediction of the target’s druggability.

Sequences can also be utilized by machine learning algorithms
to generate predictive models that can assess the druggability of
targets [141]. Machine learning provides a fast prediction and most
algorithms are sufficiently accurate in their performance [142].
Various sequence-derived protein features can be extracted that
the algorithm learns from. It is crucial to include the most discrim-
inatory features that can best differentiate drug targets from
undruggable proteins. Furthermore, the exclusion of redundant
features can help alleviate the computational cost of employing
such algorithms. Recent examples of accurate predictive models
include the deep learning classifier of Yu et al. and XGB-
DrugPred [143,144].
4. Summary and outlook

In this review, best practices in the preprocessing of transcrip-
tomics data derived from mRNA technologies were described. In
addition, the most basic methods for performing downstream
analysis were covered for single-channel microarrays that were
manufactured with Agilent Technology, including normalization,
differential expression analysis, and gene functional annotation.
In conclusion, this review article represents a ‘‘good training”
report on transcriptomics data analysis.

Potential new drug targets may include genes that are
expressed differently among individuals who use anti-cancer treat-
ment or genes that are expressed differently when a patient has
been exposed to medicine known to improve or aggravate the
symptoms of the disease. Also, possible targets may be genes that
are co-expressed with other genes that may already be known tar-
gets and that are supposed to participate in biological systems and
pathways under study. Any gene that belongs to any of these
classes may be a gene for which modifying its expression can affect
the cancer progression or its symptoms [145]. There are many
examples of identifying such key genes that play an important role
depending on each type of cancer resulting from the collection of
multiple data sets and in particular from data sets of cell or tissue
types most relevant to the biological target process. However, due
to the limited availability of such data sets in certain regions in dif-
ferent cancer types, disease-specific data sets from other cell or tis-
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sue types can also be used, as they will generally not worsen the
results. This is consistent with the idea of ensemble learning, in
which coupling several weak and independent classifiers will lead
to a strong classifier [146]. However, a more thorough evaluation
of existing techniques used in bioinformatics research areas, such
as classification and normalization algorithms, as well as false dis-
covery rate estimation, is necessary.

Furthermore, the establishment of additional microarray qual-
ity control assessment methods and other new or more refined
approaches to validate gene expression datasets would further
benefit precise calculations for gene target discovery. To this
end, reliable and well-maintained archives of datasets are
required to test the validity of both older and potential new
methods. These empirical data used as data for the performance
and accuracy of the relevant results are based on a relatively
small number of experiments, as well as a few model organisms.
Proper adjustment of data preprocessing is what ensures a
robust result for subsequent analysis. Therefore, special attention
should be paid to this aspect in order to make a careful final
decision to find and evaluate gene targets. Extensions to both
other situations and species are recommended, as well as more
research on how best to examine crossovers between sets of
findings. Bayesian approaches [147] as a cutting-edge tool for
statistical analysis could be a strong asset here, in the sense that
the result will be a probability distribution rather than a point
estimate. Especially when the number of replicates is small,
leading to noisy point estimates, or the number of genes is very
large and thus there is an extreme multiple testing problem,
empirical Bayesian analysis satisfactorily corrects these classes
of problems [148–150].

In addition, prioritizing and pursuing the most druggable tar-
gets contributes to successful drug discovery projects. Therefore,
the assessment of druggability is a pivotal step in every drug
design endeavor. Different approaches can be employed to assess
the druggability of a newly identified disease-modifying protein
target. Structure-based assessment yields the highest degree of
confidence, but the reliability of the prediction cannot surpass
the value of a ‘wet lab’ experiment. Thus, each prediction should
be followed by experimental validation. The available algorithms
and predictive tools have their strengths and limitations. The
researcher benefits from the ease of use and fast results of the
computational methodologies but there are caveats that need
to be addressed. For example, modern algorithms and tools need
to account for the intricate dynamics of drug-target interactions.
Hence it is important to focus on improving the existing algo-
rithms in terms of increasing accuracy and reducing bias. Ideally,
an integration of all the available methods can boost the reliabil-
ity of the prediction and the trust in pursuing the target of
interest.

The current review focuses on the identification of novel cancer
targets. However, the methods and resources presented can be uti-
lized to identify targets involved in any human disorder. A typical
example is the wide application of network analysis and especially
WGCNA to find gene targets, such as in Alzheimer’s disease or in
the determination that RNF181 may be a causal gene in coronary
heart disease [151,152]. A recent example where pocket prediction
algorithms were utilized to identify druggable pockets is that of
CRMP2. CRMP2 phosphorylation was found to be altered in various
neurodegenerative diseases and is an attractive therapeutic target
[153]. Another example involves the angiotensin II type 1 receptor
(AT1R) for which a cryptic allosteric site that is druggable was
identified through computational methods [154]. This novel allos-
teric pocket can be exploited to develop potent inhibitors for man-
agement of maladies like preeclampsia. These examples highlight
the wide applicability of the methodologies presented in the cur-
rent review.
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