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Abstract

The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been
characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic
landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-
friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucle-
osome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35
ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation
range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-
characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range
of DNA preparation types than previously thought, including when no particular experimental procedures have been
used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA asso-
ciated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be
reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that
limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that
epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX,
opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic
changes during major evolutionary, environmental, socioeconomic, and cultural shifts.
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Background

In the last decade, ancient DNA (aDNA) research has been
truly revolutionized as the information retrieved is no more
limited to the sole mitochondrial DNA (mtDNA) or few nu-
clear fragments carrying SNPs of interest. Complete genomes
and up to several millions of SNPs can now be characterized
instead (see, Orlando et al. 2015, for a review). This is because
our ability to retrieve traces of genetic material has tremen-
dously improved following the development of High-
Throughput DNA Sequencing (HTS) technologies (Metzker
2010) and experimental methods tailored to the recovery and
manipulation of ultrashort and damaged DNA molecules
(Meyer et al. 2012; Dabney et al. 2013; Gansauge and Meyer
2013, 2014; Gamba et al. 2016). As a result, the time barrier for

genome-scale analyses has been pushed backwards into the
Middle Pleistocene (Dabney et al. 2013; Orlando et al. 2013;
Meyer et al. 2014, 2016) and samples that were previously not
amenable to DNA analyses are becoming so (Hofmanov�a
et al. 2016; Lazaridis et al. 2016).

In addition to recovering genome-scale genetic informa-
tion from ancient individuals, it has also become possible to
analyze their epigenetic profiles (see, Orlando et al. 2015;
Gokhman et al. 2016, for reviews). The first analysis of cytosine
methylation patterns at the single-base resolution was per-
formed on a �26,000-year-old bison bone using bisulfite al-
lelic sequencing (Llamas et al. 2012). Bisulfite conversion of
unmethylated cytosines into uraciles, however, is not per-
fectly suited to aDNA material, which is generally degraded
and available in very limited amounts. Minimum DNA
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concentration requirements, thus, apply before consistent
measures of cytosine methylation can be recovered with
this technology (Smith et al. 2015). Other direct approaches,
such as enrichment procedures based on methylated binding
domains (MBD), have been used (Seguin-Orlando, Gamba,
et al. 2015) but their performance is generally limited given
the extensive fragmentation of aDNA templates. In contrast,
indirect approaches exploiting the chemical degradation re-
actions affecting DNA post-mortem are particularly suited to
the chemical nature of aDNA. Such methods track in silico
the signatures of nucleosome protection and the natural con-
version of unmethylated cytosines into uraciles that take
place after death. They recently delivered the first genome-
wide methylation and nucleosome maps (Gokhman et al.
2014; Pedersen et al. 2014), providing the first insights at
how the regulation of gene expression changed in evolution-
ary times.

The evidence supporting such genome-wide methylation
and nucleosome maps is, however, limited to only three
individuals. These include a 4-kyr-old Palaeo-Eskimo
(Pedersen et al. 2014), a �50-kyr-old Neanderthal and a
�40-kyr-old Denisovan (Gokhman et al. 2014). Analyses of
a larger number of specimens, spanning a wider temporal
range, tissue types and preservation conditions, are thus
essential to establish the true potential (and limitations)
of ancient epigenomics.

Albeit limited, previous work has suggested that gene ex-
pression levels and the age at death of ancient individuals might
be inferred based on ancient epigenetic signatures (Pedersen
et al. 2014). Additionally, potentially key DNA methylation
changes for the differentiation of closely related lineages have
started to be unveiled (Gokhman et al. 2014). These pioneering
studies, and the growing evidence supporting epigenetic differ-
entiation between major human population groups (Heyn
et al. 2013; Fagny et al. 2015), open for wider research on
how epigenetic signatures have changed on a temporal scale
in the face of important environmental and cultural changes,
such the Neolithic transition and/or responses to major disease
outbreaks (Orlando and Willerslev 2014).

With exponentially increasing sequence data sets from
ancient individuals (reviewed in Orlando et al. 2015), an au-
tomated tool is required to facilitate and standardize the
analysis of ancient epigenomes. RoAM (Reconstruction of
Archaic Methylation; http://carmelab.huji.ac.il/software/
RoAM/roam.html; last accessed September 1, 2016) provides
the first of such tools, allowing the reconstruction of genome-
wide ancient methylation maps, but its current implementa-
tion is restricted to archaic hominins (AH). In this article, we
present epiPALEOMIX, an open-source and user-friendly soft-
ware package that automates the characterization of ancient
epigenomes. The epiPALEOMIX pipeline implements all the
methods used to characterize the first ancient epigenome,
that from the hair of a 4-kyr-old Palaeo-Eskimo (Pedersen
et al. 2014), including methylation mapping, nucleosome call-
ing and phasogram analyses. It can be readily applied to any
BAM alignment file obtained from ancient specimens. We
apply epiPALEOMIX to the shotgun sequence data underly-
ing a large subset of ancient genomes characterized with an

average depth-of-coverage >2-fold (2.19- to 42.0-fold). Our
study thus represents the largest ancient epigenomic study,
including 35 samples from AH, ancient anatomically modern
humans (AMH), horses and aurochs. Compared with previ-
ous analyses, the samples considered here significantly in-
crease the temporal resolution (from 100 years to over
50 kyr) and geographical (Africa, North America, Central
Asia, Europe, Greenland, and Siberia) range of epigenomic
profiling.

New Approaches
In this study, we present epiPALEOMIX, a new open-source
package for the analysis of ancient epigenomes, which en-
closes one optional and three main modules. The
MethylMap module (fig. 1A) implements the methodology
from Pedersen et al. (2014) and Gokhman et al. (2014) to
calculate methylation scores (Ms) and reconstruct methyl-
ation profiles within regions provided by users as BED coor-
dinate files. Such files can correspond to genomic regions of
interest, such as promoters, gene bodies, CpG Islands (CGIs)
(fig. 2), but also to sliding genomic windows (fig. 10). The
methodology exploits the relative number of CpG!TpG
read mis-incorporations found within a given region, which
is assumed to mostly reflect post-mortem deamination
events at methylated epialleles (Seguin-Orlando, Hoover,
et al. 2015). The MethylMap module can accommodate
single-stranded and double-stranded DNA library types
and can also restrict the analyses to specific read positions,
which proves useful in cases where particular read positions
show inflated error rates. These features, and the direct ap-
plicability of the methodology to nonarchaic hominin se-
quence data, represent important increments over RoAM.
As specifically developed for the analysis of epigenomic sig-
natures from aDNA data, epiPALEOMIX also fills a niche that
is presently not covered through the multiple Bioconductor
tools tailored to the detection of methylation and nucleo-
some regions (Gentleman et al. 2004; Huber et al. 2015).

In addition to MethylMap, epiPALEOMIX provides two
modules to reconstruct patterns of nucleosome positioning
along the genome. The first module, called NucleoMap, im-
plements the methodology from Pedersen et al. (2014) to
map peaks of nucleosome occupancy (fig. 1B). It builds on
the natural DNA decay taking place post-mortem, resulting in
an over-representation of nucleosome-protected DNA re-
gions post-sequencing (Dong et al. 1997; Pedersen et al.
2014). More specifically, NucleoMap exploits patterns of cov-
erage variation along the genome, where nucleosomes are
inferred at positions maximizing depth variation within 147
nucleotide blocks, reflecting the size of a nucleosome dyad,
and their flanking regions. The analysis can be performed
genome-wide or within pre-defined genomic regions (as
shown on fig. 7). The second module implements the phaso-
gram analyses from Valouev et al. (2011) and aims at detect-
ing periodicity patterns between DNA fragments and from
adjacent nucleosomes (fig. 1C).

We also provide an optional module, GCcorrect, that builds
on previous methodology (Benjamini and Speed 2012) to
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estimate depth-of-coverage observed at the single nucleotide
level, corrected for local %GC content. This can prove critical
to account for sequence bias introduced during DNA library
amplification (Dabney and Meyer 2012).

The epiPALEOMIX package is written in Python 2.7 and
builds on the implementation of the PALEOMIX pipeline
(Schubert et al. 2014). It supports multi-threading and requires
a simple makefile as input indicating the location of sequence

alignment files (BAM format) and the parameters of the anal-
yses to be run. The epiPALEOMIX package is compatible with
the analysis of HTS data generated from shotgun and capture-
enrichment experiments. Analyses restricted to a single or a
minimum number of loci are typically performed within min-
utes while up to half an hour is necessary to investigate ap-
proximately half a million loci scattered along the genome
(supplementary table S1, Supplementary Material online).
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FIG. 1. Three main methods implemented in epiPALEOMIX. (A) The MethylMap module exploits the deamination of cytosines naturally taking
place post-mortem at CpG sites and resulting in the conversion of unmethylated CpGs epialleles into UpGs and methylated CpGs epialleles
(mCpGs) into TpGs. CpG (green) to TpG mis-incorporations observed when aligning sequencing reads against a reference genome (top sequence)
will mostly indicate the presence of mCpG epialleles, which can be summed over regions of interest to estimate regional methylation scores (Ms).
For single-strand library construction methods (Meyer et al. 2012), TpGs at both read starts (blue) and ends (red), as well as their reverse
complementary CpAs, are used. For other library construction methods based on the ligation of adapters to double-stranded templates, TpGs
(and their reverse complementary CpAs) are only considered towards starts (ends). Nucleotide mis-incorporations found in other dinucleotide
contexts are ignored. (B) The NucleoMap module calls nucleosomes through patterns of depth-of-coverage variation along the genome. The size of
the sliding window was selected to reflect the average size of nucleosomal DNA (147 bp; Luger et al. 1997). Whenever the center of a given window
displayed maximal local read depth, the nucleosome score is calculated as the coverage at the center (green) minus the mean read depth of the two
25-bp flanking regions (red). These were defined with a 12-bp offset (blue) from 147-bp nucleosome window coordinates, following Pedersen et al.
(2014). (C) Phasogram analyses are based on the distribution of distances between sequencing starts for reads located within 1,500-bp genomic
blocks, following Valouev et al. (2011). Further work could take advantage of epiPALEOMIX to explore whether considering blocks of larger sizes
could improve the sensitivity. Here, analyses were restricted within blocks of 1,500 bp, which are known to be sufficient to reveal short-range
(�10 bp) and long-range (�200 bp) periodicities in regions showing strongly phased nucleosome occupancy patterns.
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FIG. 2. Ms profiles of 16 ancient samples in four genomic regions. The genomic regions considered include the following: (1) CpG islands (CGI) as
well as their neighbouring shores (flanking 2,000 bases) and shelves (2,000 bases flanking CGI shores) (green), (2) three classes of promoters (low,
medium, and high) categorized by CpG density (blue), (3) Exon and intron splice sites (purple), and (iv) mtDNA (red). Note that the Ms range (y
axis) shows large variation across samples. See supplementary fig. S1, Supplementary Material online, for an analysis on the entire set of 35 ancient
specimens.
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The epiPALEOMIX package is available at https://bitbucket.org/
khanghoj/epipaleomix (last accessed September 1, 2016), to-
gether with an extensive companion manual, running exam-
ples, BED files, and mappability maps to ensure reproducibility
of all analyses presented in this study.

Results and Discussion

Preliminary Notes
In the following sections, we applied epiPALEOMIX to HTS
data generated following three main experimental procedures
to explore the presence of genome-wide epigenetic signatures

in a wide range of ancient samples, including different tissue
types (hair, bones and teeth), geographic origins and DNA
preservation conditions. In the first experimental procedure,
aDNA extracts were treated with USER (New England Biolabs),
a commercial DNA repair mix containing Uracil DNA
Glycosylase (UNG) and Endonuclease VIII (EndoVIII) (method
1-USER, orange figure header backgrounds). This treatment
breaks DNA strands 30 of uracil residues and eliminates most
C!T nucleotide mis-incorporations post-sequencing (Briggs
et al. 2010; Gokhman et al. 2014), except at template termini
(Meyer et al. 2012) and methylated cytosines. The next two
approaches do not involve USER-treatment prior to library
construction. In method 2-Regular (gray figure header back-
grounds), aDNA libraries are amplified using DNA polymerases
that can bypass uracil residues, such as AmpliTaq Gold
(Thermo Fisher). In method 3-Phusion (purple figure header
backgrounds), aDNA libraries are amplified using DNA poly-
merases that cannot bypass uracil residues, such as Phusion.
Both methods 1 and 3 have been shown to provide a way to
estimate regional methylation levels through Ms (Pedersen
et al. 2014; Seguin-Orlando, Hoover, et al. 2015).

Our sample set includes 28 ancient human samples and 2
AH (table 1). We also included five nonhuman organisms,
including four ancient equine specimens (�0.1–42 kya;
Schubert et al. 2014; Der Sarkissian et al. 2015; Librado et al.
2015) and a single aurochs (�6.7 kyr old) (Park et al. 2015).

Regional Methylation Patterns
We stratified the human genome into four main genomic
classes expected to show strong differential methylation
levels but low cross-tissue variation (Ziller et al. 2013). We
first investigated CGIs, including their up- and downstream
flanking shores (0–2 kb) and shelves (2–4 kb). CGIs are well-
known hypomethylated genomic regions, showing gradually
increasing methylation levels from shores to shelves (Deaton
and Bird 2011). We next focused on three categories of
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promoter regions showing High, Intermediate and Low CpG
density and %GC content, which are known to be inversely
correlated with methylation levels (Ball et al. 2009). We then
contrasted Ms in exons, introns and their splice sites, as 50

(30) exonic DNA shows higher methylation levels than 50 (30)
intronic DNA (Laurent et al. 2010). Finally, we examined
mtDNA as this locus shows minimal, if any, methylation
(Rebelo et al. 2009).

Almost all ancient HTS data sets investigated displayed
the expected methylation patterns, regardless of the molec-
ular tools used for generating data (fig. 2 and supplementary
fig. S1, Supplementary Material online). This was in line with
previous work for all specimens prepared following USER
treatment (method 1-USER) and Phusion amplification
(method 3-Phusion) (Gokhman et al. 2014; Pedersen et al.
2014). However, this had never been observed in the ab-
sence of such experimental procedures (method 2-Regular),
as CpG!TpG mis-incorporations are introduced at both
methylated and unmethylated CpGs. That expected re-
gional methylation levels are found with this method cor-
roborates experimental evidence (Dianov et al. 1994; Seguin-
Orlando, Gamba, et al. 2015) that post-mortem cytosine
deamination rates are significantly faster in methylated
CpG contexts (relative to nonmethylated CpG contexts).
As a result, samples such as the CGG10397 horse specimen
that lived in the 19th century AD show expected methyla-
tion profiles at CGIs, CGI shores and shelves and promoters,
despite its relative young age (fig. 2).

We note that in method 1-USER and method 3-Phusion
data, mtDNA Ms levels are, as expected, reduced in compar-
ison to those observed in hypomethylated regions of the
nuclear genome. However, for all samples prepared with
method 2-Regular where mitochondrial sequencing data
were available, such mtDNA Ms levels were found compara-
ble, and even greater, to those observed in the nuclear ge-
nome. This is in agreement with the expected accumulation
of C!T mis-incorporations at nonmethylated sites, and

recent analyses showing higher deamination rates in
mtDNA than nuclear DNA (Kistler et al. 2015).

Finally, we repeated the same analyses on MBD-capture
sequence data that we generated from USER-treated DNA
extracts of the Palaeo-Eskimo Saqqaq individual. Even though
only 622,650 high-quality reads were found to map uniquely
against the human genome, we recovered expected methyl-
ation signatures at CGIs, promoters and mtDNA (supplemen
tary fig. S2, Supplementary Material online). This demon-
strates the applicability of epiPALEOMIX to capture data.

Tissue-Specific Methylation Profiles
We next used epiPALEOMIX to investigate whether the se-
quence data underlying the 30 ancient AMH and AH indi-
vidual genomes (table 1) showed tissue-specific methylation
profiles. To achieve this, we compared Ms to 101 Reduced
Representation Bisulfite Sequencing (RRBS) profiles obtained
from 45 tissues and cell types (Meissner et al. 2008). We also
included 61 450K Illumina array profiles of 22 tissues
(Sandoval et al. 2011; Slieker et al. 2013) to also represent
hair methylomes, which were absent from the RRBS data.
Ms values were calculated within 2-kb windows centered at
each position present on the RRBS and/or 450K Illumina array
data sets (Pedersen et al. 2014). We then built linear models
to identify the modern tissues showing methylation profiles
most similar to ancient samples (fig. 3 and supplementary fig.
S3, Supplementary Material online).

Ms in the high-coverage Palaeo-Eskimo hair sample
showed maximal correlation (R-squared¼ 0.65–0.66) against
the five hair tissues (fig. 3), in line with earlier analyses
(Pedersen et al. 2014). Modern methylation profiles of osteo-
blasts showed the strongest correlation with the�45-kyr-old
Ust.Ishim individual out of the 101 methylomes tested (R-
squared¼ 0.74–0.76). This profile also showed the second
highest correlation observed in both the Neanderthal (R-
squared¼ 0.69–0.72) and Denisovan (R-squared¼ 0.66–
0.69), in line with earlier analyses (Gokhman et al. 2014)

Table 1. Hominin Samples Used in This Study.

Time period/culture Type Number References

Iron age (1.4 kya) AMH 1 Allentoft et al. (2015)
Bronze age (3–4.7 kya) AMH 15 Gamba et al. (2014)

Allentoft et al. (2015)
Günther et al. (2015)
Cassidy et al. (2016)

Early Neolithic (7–7.25 kya) AMH 2 Gamba et al. (2014)
Lazaridis et al. (2014)

Mesolithic (7–9.5 kya) AMH 4 Lazaridis et al. (2014)
Olalde et al. (2014)
Jones et al. (2015)

Upper Paleolithic (13.5–45 kya) AMH 3 Fu et al. (2014)
Seguin-Orlando et al. (2014)
Jones et al. (2015)

Saqqaq (4 kya) AMH 1 Rasmussen et al. (2010)
Clovis (12 kya) AMH 1 Rasmussen et al. (2014)
pre-Bantu African (4.5 kya) AMH 1 Gallego Llorente et al. (2015)
Upper Paleolithic (�40 kya) AH (Denisovan) 1 Meyer et al. (2012)
Upper Paleolithic (�50 kya) AH (Neanderthal) 1 Prüfer et al. (2014)

NOTE.—AMH, anatomically modern human; AH, archaic hominin.
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(fig. 3 and supplementary table S2, Supplementary Material
online). Interestingly, the correlation with the osteoblast
profile was still strong for the Upper Paleolithic K14 indi-
vidual (R-squared¼ 0.58–0.63; 5th highest R-squared, sup
plementary table S2, Supplementary Material online), al-
though sequenced to only 2.42� depth-of-coverage. The
same was true for all bone samples prepared with method
2-Regular (0.22–0.47), except ATP2, which showed distinc-
tively lower R-squared values across all modern profiles
investigated (fig. 3 and supplementary table S2 and fig.
S3, Supplementary Material online). This is in accordance
with the limited difference in Ms found for this sample
within expected hypo- and hyper-methylated regions (sup
plementary fig. S1, Supplementary Material online), and
provides an example where ancient methylation signatures
are not fully exploitable.

USER-treated Stuttgart and Loschbour teeth samples
showed maximal correlation with a methylation profile re-
trieved from modern gingival, a tissue naturally in contact
with teeth (R-squared¼ 0.76–0.78 and 0.65–0.70, respec-
tively) and second highest for the tooth Motala sample (R-
squared¼ 0.43–0.57). We also found strong correlation levels
between the �9.5-kyr-old Kotias tooth methylation profile
and that from modern gingival tissues (R-squared¼ 0.27–
0.51). This contrasts with the �7.5-kyr-old LaBrana sample
and a series of Bronze Age teeth (RISE395, RISE493, RISE495,

RISE496, RISE497, RISE505, RISE511 and RISE523), which were
not USER-treated and showed relatively low R-squared values
at maximal coverage (�0.20) across all modern profiles in-
vestigated (supplementary fig. S3, Supplementary Material
online).

Altogether, we found that for aDNA data prepared with
methods 1-USER and 3-Phusion, ancient methylation profiles
were reminiscent of the modern methylomes of similar tis-
sues or cell types for the majority of the samples investigated.
HTS data generated with method 2-Regular showed lower
correlation levels, which also significantly dropped with in-
creasing coverage thresholds. We thus do not recommend
this method for investigating ancient methylomes, especially
for samples similar to ATP2 and RISE395, both sequenced to
an average 4.08- and 3.54-fold coverage-of-depth, even
though they show relatively high expected numbers of cyto-
sine deaminations at overhangs (0.70–1.53; see below).
Interestingly, we noticed that tooth gingival and bone RRBS
methylation profiles were the most correlated (0.95, supple
mentary fig. S4, Supplementary Material online) but also
showed high correlation levels (>0.90) with samples from
other tissues types, such as blood, brain and muscles. In the
future, this will help researchers test whether the observed
methylation changes were tissue-specific or also likely affected
other tissues. This may also provide opportunities to infer
ancient methylation profiles for soft tissues, despite the large
majority of ancient subfossils consisting of calcified material.

To investigate whether methylation levels could reflect
different gene expression profiles across tissues, we consid-
ered 19,270 human gene models and calculated Rs ratios as
proposed by Pedersen et al. (2014). These correspond to ra-
tios of Ms between gene bodies and promoters, and are
known to correlate with gene expression in human cell cul-
tures, with housekeeping genes showing maximal Rs ratios
(Ball et al. 2009). Using Rs ratios, samples sequenced at high
average depth-of-coverage (>19�) and prepared with meth-
ods 1-USER and 3-Phusion were found to cluster according to
the fossil material extracted, with three main groups repre-
sented by hair (Palaeo-Eskimo Saqqaq), teeth (Loschbour and
Stuttgart) and bones (Neand.Altai, Denisovan and Ust.Ishim)
(fig. 4).

Interestingly, the top 95th quantile of Rs ratios for the
three ancient bone methylomes included genes encoding
collagen proteins (I, II, III, V, and XI), suggesting constitutive
expression levels in agreement with their structural role in the
extracellular matrix of bones and other connective tissues
(Niyibizi and Eyre 1994). These genes were not part of the
top 95th quantile in the hair Palaeo-Eskimo individual, which
instead returned Keratin 17, 32, 33a, Periplaktin, and Plectin, all
representing proteins related to hair and hair follicle, in line
with findings by Pedersen et al. (2014). Unfortunately, we
could not investigate genes highly expressed in tooth enamel
(AMELX, TUFT1, and AMBN) (Delsuc et al. 2015) and tooth
dentine (Oc and Dspp) (Hoffmann et al. 2001), as they did not
pass our filtering thresholds. Altogether, these analyses plead
in favor of the tissue-specificity of Rs scores.

However, when investigating whether changes in either
bone (Neand.Atlai, Denisovan and Ust.Ishim) or tooth
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FIG. 5. Nucleosome occupancy patterns at a well-phased nucleo-
some array. (Left) GC-corrected read depth profiles across a subre-
gion of an alpha-satellite repeat region encompassing positions
34,439,733–34,559,733 on chromosome 12 (hg19). (Right) power
spectral density plot across uniquely mappable regions of the nucle-
osome array. A vertical dashed line is shown at 200 bp to facilitate
readability. Note that the periodicity power (y axis) shows large var-
iation across samples. See supplementary fig. S5, Supplementary
Material online, for an analysis on the entire set of 30 ancient AMH
and AH.
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(Loschbour and Stuttgart) expression levels could be detected
through time, we only found genes involved in high-level
biological functions (data not shown). We believe that this
reflects the combination of gene expression reprogramming
for ubiquitous proteins common to a range of tissues as well
as the presence of limited coverage at gene bodies for a ma-
jority of the genes considered. Further work is, thus, needed
before ancient proxies of gene expression, such as Rs ratios,
could be interpreted biologically.

Nucleosome Occupancy and Phasing
We first investigated whether patterns of read depth variation
reflected nucleosome occupancy, focusing on an alpha-
satellite repeat region on the human chromosome 12 show-
ing well-phased nucleosome arrays across a whole range of
tissues after Micrococcal Nuclease (MNase) treatment
(Gaffney et al. 2012). We found that for a majority of ancient
hominin samples (25/30, representing all samples but Motala,
Loschbour, Neand.Altai, Denisovan and Ust.Ishim), GC-
corrected depth-of-coverage profiles were highly correlated
to lymphoblastoid cell MNase profiles (Valouev et al. 2011;
Gaffney et al. 2012) (Pearson correlation coefficient,
PCC)¼ 0.29–0.68, P values< 1e-16) (fig. 5 and supplemen

tary figs. S5 and S6, Supplementary Material online). These
samples, except RISE98, showed a predominant distance of
�200 bp between consecutive peaks of read depth, in line
with the MNase treated profile and the length of nucleosome
and linker regions (representing 147 and �50 bp, respec-
tively) (fig. 5, right column and supplementary fig. S5, right
column, Supplementary Material online). Importantly, we
found no or negative correlation when comparing the an-
cient samples to the sequence data of a modern human in-
dividual from the 1,000 human genome project that we used
as negative control (PCC¼�0.26–0.08, P values< 1e-5).

Secondly, we used epiPALEOMIX to carry out a phasogram
analysis on our entire panel of samples, including the four
equids and the aurochs. Phasograms display the distribution
of distances between read start positions on the same strand
(Valouev et al. 2011) and can help detect fragmentation
periodicities. In regions where nucleosomes are well phased,
such as gene bodies (Jiang and Pugh 2009), one nucleotide
residue is expected to be more exposed to hydrolysis for every
DNA helix turn (Wang et al. 2008; Jiang and Pugh 2009;
Pedersen et al. 2014; Orlando et al. 2015), leading to short-
range (�10 bp) periodicity patterns in ancient HTS data
(Pedersen et al. 2014). Strong nucleosome phasing is also
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FIG. 6. Phasogram analysis of gene bodies. (A) Short-range phasograms (Left) and their respective spectral density plots (Right). Vertical dashed line
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expected to introduce long-range periodicity patterns reflect-
ing the distance between consecutive nucleosomes, on aver-
age every �200 bp (Valouev et al. 2011). We found short-
range periodicity patterns for the same set of individual ge-
nomes displaying �200 bp periodicity in the alpha-satellite
repeat region used above (fig. 5 and supplementary fig. S5,
Supplementary Material online), with the addition of Motala,
Loschbour, Ust.Ishim, and three horses (CGG10022, Batagai,
CGG10397), summing up to 30/35 samples. Most of these
samples, excepting Loschbour, Motala, RISE511 and RISE495,
but with the addition of the horse Paratype and Aurochs also
showed strong long-range periodicity patterns (totaling 27/35
samples). Neand.Altai, Denisovan and Ust.Ishim showed
more noisy�200 bp periodicity signals. Of note, our modern
negative control showed no short-range periodicity (fig. 6 and
supplementary fig. S7, Supplementary Material online) but a
�144-bp long-range density peak, in line with phasogram
analyses on modern data (Valouev et al. 2011).

Thirdly, we investigated nucleosome occupancy patterns
around TSS, where strong nucleosome phasing is found in
Saccharomyces cerevisiae house-keeping genes (Jiang and

Pugh 2009) and to some extent, in humans (Ozsolak et al.
2007). To achieve this, we called nucleosomes and looked for
long-range periodicity patterns within the three promoter
categories described above (fig. 7 and supplementary fig. S8,
Supplementary Material online). We found consistent�190-
bp periodicities from TSS for the High promoter category
across the same set of samples that showed long-range peri-
odicity signals in previous phasogram analyses, with the single
exception of the horse Paratype, which is amongst the most
recent samples (fig. 7 and supplementary fig. S8,
Supplementary Material online). For the remaining two pro-
moter categories (Low and Intermediate), we find 3- to 200-
fold weaker signal powers of Fourier periodicity, in line with
their known, less pronounced, nucleosome occupancy and
phasing patterns in living cells (Hesson et al. 2014).

We next followed Snyder et al. (2016) and binned human
TSS in five increasing expression quantiles. For 21 out of the
30 hominin samples investigated, we found a much stronger
periodicity in nucleosome positioning for high expression
categories relative to low expression categories. Therefore, a
majority of the ancient samples support the known relation-
ship between nucleosome occupancy and phasing around
TSS and gene expression (supplementary fig. S9,
Supplementary Material online).

Finally, we note that we systematically failed retrieving the
expected signatures of nucleosome protection from the
Neand.Altai, Denisovan, Loschbour, Paratype, Motala and
RISE98 sequence data. Given that (1) these samples encom-
pass the full temporal range investigated here, and (2) short-
range periodicities have been described in cell-free DNA cir-
culating in the blood of living individuals (Snyder et al. 2016),
the presence of such signatures therefore does not appear to
be age-dependent but rather damage dependent.

NucleoMap versus WPS
The Windowed Protection Score (WPS) method has been
recently developed to call nucleosomes in DNA fragments
circulating freely in the blood of living individuals (Snyder
et al. 2016). Cell-free DNA fragments generally show strong
patterns of nucleosome protection and a short-range period-
icity in phasogram analyses. We thus investigated whether
the WPS method could complement epiPALEOMIX in char-
acterizing ancient nucleosome maps. We restricted our anal-
yses to the well-phased nucleosome array found within the
alpha-satellite repeat region on chromosome 12, running
WPS on a wide range of possible window protection sizes
(10, 20, 30, 50, 80, 120 bp). Firstly, we found that, regardless of
the sizes considered, the WPS method called fewer peaks (50–
480) than the 586 nucleosomes found in the conserved nu-
cleosome array following MNase treatment. The NucleoMap
method from epiPALEOMIX consistently called a larger num-
ber of peaks, except for the Saqqaq sample for which similar
nucleosome counts were found in both epiPALEOMIX and
WPS (protection windows 30–80 bp; supplementary fig. S10,
Supplementary Material online). Secondly, nucleosome dyads
from the MNase treated sample were found to be physically
closer to those called with epiPALEOMIX than those called
with WPS (supplementary fig. S11, Supplementary Material
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FIG. 7. Sliding nucleosome score of GC-corrected read-depth varia-
tion around TSSs. (Left) Promoters were stratified following Ball et al.
(2009) in three classes according to their CpG density and %GC
content (Low: green, Intermediate: red, High: blue). (Right) Power
spectral density plot from TSS and 1-kb downstream. A vertical
dashed line is shown at 190 bp to facilitate readability. See supple
mentary fig. S8, Supplementary Material online, for an analysis on the
entire set of 35 ancient specimens.
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online). This was true across all protection windows. Notably,
WPS nucleosome calls with the smallest protection windows
(�30 bp) were closest to epiPALEOMIX and MNase called
peaks, which is dramatically smaller than the 120 bp or higher
used to identify nucleosome positioning in cell-free DNA
(Snyder et al. 2016). Therefore, our results suggest that
NucleoMap should be preferred to the WPS method when
analyzing aDNA data, probably due to the implicit assump-
tion in WPS that no secondary fragmentation takes place
after initial fragmentation by apoptosis.

Ancient Methylation and Nucleosome Profiles at
CTCF Binding Sites
In the following, we focused on the 2-kb regions surrounding
CTCF binding sites, as such regions are known to exhibit
strong and inversely correlated methylation and nucleosome
patterns whenever bound to the CTCF protein (Fu et al. 2008;
Kelly et al. 2012). We limited our analyses to ancient AMH
and AH individuals in the absence of known coordinates for
occupied and un-occupied CTCF regions in horse and cattle.
No particular nucleosome patterns were found at unoccu-
pied CTCF regions (fig. 8, dashed lines and supplementary fig.
S12, Supplementary Material online), suggesting that DNA
fragmentation is largely random in the absence of nucleo-
some protection. This contrasts with the strong�180 bp and
out-of-phase periodicities found for both methylation and
nucleosome occupancy within occupied CTCF regions (fig.
8, solid lines and supplementary fig. S13, Supplementary
Material online). Two samples (Loschbour, RISE98) stand as
exceptions, as no clear �180-bp periodicity in nucleosome
occupancies were found, in line with the analyses above

showing no obvious nucleosome protection patterns for
these samples. Four of the Bronze Age individuals prepared
with Method 2-Regular showed the expected pattern of nu-
cleosome occupancy but lacked the methylation signature
(RISE523, RISE511, RISE495, RISE395; supplementary fig. S13,
Supplementary Material online, blue). These were thus ex-
cluded from the following analyses.

Using a downsampling procedure, we found that a mini-
mal number of 200,000–1,600,000 reads on occupied CTCF
regions are generally sufficient to recover the expected out-of-
phase periodicity signature (supplementary table S3,
Supplementary Material online). This minimal number of
reads appears to be inversely correlated with the expected
number of deamination-driven nucleotide mis-
incorporations found at overhangs (fig. 9, method 1-USER
and method 3-Phusion, R-squared correlation coeffi-
cients¼ 0.86, P value¼ 0.0016; method 2-Regular, R-squared
correlation coefficients¼ 0.35, P value¼ 0.0070). This sug-
gests post-mortem degradation levels as the main driving
factor, and that rather than absolute minimal read number
requirements, degradation parameters should be considered
when checking for such patterns at occupied CTCF regions.
We recommend that these patterns can be used as a further
authentication criterion for aDNA when a sufficient number
of deamination-driven nucleotide mis-incorporations are
found at overhangs. Pending further data, we note that no
out-of-phase profiles could be recovered for RISE511, RISE495,
RISE497, and RISE98, which all show low mis-incorporation
rates at overhangs (0.39–0.49) (supplementary table S3,
Supplementary Material online). We thus recommend the
sequencing depth reported above and a minimum number
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of�0.48 mis-incorporations per overhang should be required
for samples prepared with method 2-Regular. That the ex-
pected out-of-phase signal between nucleosome occupancy
patterns and methylation levels was detectable for Bichon,
albeit this sample only showed 0.24 mis-incorporations per
overhang, is not incompatible with the recommended
threshold as the sequencing data were trimmed for the
two starting and ending read positions, where cytosine de-
amination rates are maximal (Jones et al. 2015). We should,
however, caution that CTCF epigenetic patterns should not
substitute the other authentication proxies currently used,
for example, based on other features of nucleotide mis-
incorporation and DNA fragmentation (Briggs et al. 2007;
Krause et al. 2010) and/or direct estimates of contamination
levels (Green et al. 2010; Rasmussen et al. 2010; Fu et al. 2013;
Renaud et al. 2015: 20; Racimo et al. 2016). In contrast to the
latter, but similar to the former, CTCF methylation and nu-
cleosome occupancy patterns can indeed be expected in the
case of a mixture of modern DNA contaminants and aDNA
templates, as long as a sufficient number of deamination-
driven nucleotide mis-incorporations are found at overhangs.

Exploiting Ancient Epigenetic Profiles
Previous work has exploited ancient methylation signatures
to (1) infer the age at death of ancient individuals (Pedersen
et al. 2014) and (2) identify regions differentially methylated
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between AH and modern human individuals (Gokhman et al.
2014). In the next section, we implemented such analyses on
our larger data set.

Firstly, we used DNAmAge and Ms within 2-kb windows
surrounding 353 CpG-clocks found to correlate with age to
infer the age at death of all ancient AMH and AH individuals
(excepting K14, ATP2, Motala and RISE523 due to insufficient
read depth) (Horvath 2013). This analysis implicitly assumes
that the statistical model relating clock-CpG methylation
levels throughout the life of modern individuals (Horvath
2013) is valid for ancient populations showing different life-
styles and health conditions. This remains to be tested, al-
though at least some CpG-clock sites are common to humans
and apes (Horvath 2013). We found that a large majority of
the individuals investigated were estimated to have lived over
50 years (up to 90 years) (supplementary table S4,
Supplementary Material online), which is at minimal optimis-
tic for past populations. Additionally, although DNAmAGE
estimates of BR2 (15 years) and Mota (24 years) matched
the morphological expectations of a European child and an
Ethiopian young adult, the Amerindian Clovis child was esti-
mated to be 34 years old when he died. Further methodo-
logical improvements, for example, restricting analyses to
clock-CpGs specifically identified in bones and teeth—two
tissues not originally represented in the CpG-clock discovery
panel (Horvath 2013), are thus needed before this method
could be reliably applied.

Secondly, we investigated five particular regions within the
HOXD cluster and TBX15 locus, which were part of the
�2,000 differentially methylated regions (DMRs) identified
by Gokhman et al. (2014) between AHs and modern osteo-
blast cells. Given their role during limb development (Zakany
and Duboule 2007), these regions were proposed to poten-
tially be involved in the strong anatomical differences be-
tween AHs and AMHs. The AH methylation profiles
recovered by epiPALEOMIX are largely consistent with those
reported by Gokhman et al. (2014) (fig. 10). However, we
found similar methylation profiles for both Neand.Altai and
the ancient AMH Ust.Ishim at the HOXD10 and HOXD9 pu-
tative DMRs, except within the �500-bp region from the
promoter. The same was true at the putative TBX15 DMR.
This illustrates how epiPALEOMIX can be used to refine pu-
tative DMRs between AMHs and AHs.

Conclusions
In this article, we have developed epiPALEOMIX, the first
computational package dedicated to the reconstruction of
genome-wide methylation and nucleosome maps in ancient
individuals. We applied epiPALEOMIX to the largest panel of
genome-scale sequence data from ancient mammals and
have shown that genome-wide epigenetic landscapes can
be reconstructed over a considerable geographical and tem-
poral span. For all ancient samples showing significant levels
of DNA damage and prepared using USER treatment or
Phusion amplification, inferred methylation profiles are rem-
iniscent of modern methylomes, and show some level of tis-
sue specificity. Importantly, this was also true (although less

pronounced) for some samples that had not been USER
treated or Phusion amplified due to the faster post-mortem
deamination rate at methylated cytosines. By contrasting oc-
cupied and nonoccupied CTCF binding regions, we further
demonstrate that aDNA fragmentation patterns are driven
by nucleosome protection. Nucleosome protection patterns
are, however, not found across all samples investigated and
do not appear to be age-dependent.

Our epigenome is increasingly acknowledged for partici-
pating in gene regulation, and thereby for shaping pheno-
types. It can be affected by inherited genetic variation (Heyn
et al. 2013) and, during our early embryonic life, by the envi-
ronmental conditions experienced by our mother, with pos-
sible long-term phenotypic and health consequences (Lim
and Brunet 2013). Furthermore, epigenetic differences have
been found between populations from different continents
(Heyn et al. 2013) or exhibiting different lifestyles (Tobi et al.
2009). The epiPALEOMIX package opens for further investi-
gation of epigenetic changes in evolutionary times, in partic-
ular during major environmental and cultural transitions
(Orlando and Willerslev 2014).

Methods

Methylation Scores, Ms
Regional methylation scores (Ms) were calculated following
the methodology presented by Pedersen et al. (2014) (fig. 1A).
The calculation of Ms depends on the molecular tools used to
prepare aDNA. In method 1-USER, DNA extracts have been
USER treated prior to library construction (Briggs et al. 2010)
while in method 3-Phusion, aDNA libraries based on ligation
at A-overhangs are amplified with the Phusion Polymerase
(Pedersen et al. 2014), a DNA Polymerase which hampers
DNA elongation through UpGs (method 3-Phusion). Both
types of procedures make it possible to track mCpG epialleles
through CpG!TpG conversions, and complementary
GpC!GpT conversions (Gokhman et al. 2014; Pedersen
et al. 2014; Seguin-Orlando, Hoover, et al. 2015). In the third
type of experimental procedure (method 2-Regular), DNA
extracts have been directly constructed into aDNA libraries,
which have been amplified with a DNA polymerase that can
elongate through UpG dinucleotides. Here, Ms is expected to
reflect both contributions of CpG!UpG and mCpG!TpG
conversions, resulting in higher Ms levels than for method 1-
USER and method 3-Phusion. However, as post-mortem de-
amination is faster at methylated cytosines than unmethy-
lated ones (Dianov et al. 1994; Palkopoulou et al. 2015; Seguin-
Orlando, Gamba, et al. 2015), Ms can still be expected to
reflect methylation levels.

As the type of DNA library preparation is known to affect
nucleotide mis-incorporation patterns (Meyer et al. 2012;
Seguin-Orlando, Hoover, et al. 2015), we accounted for the
type of DNA library prepared when counting CpG!TpG
mis-incorporations. For DNA library types prepared from
double stranded DNA templates, we only considered the 50

end of each read, representing the first 15 positions se-
quenced. In contrast, for DNA libraries prepared from single
stranded DNA templates (Meyer et al. 2012), the 15 positions
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from 50 and 30 were considered (Gokhman et al. 2014).
Relevant details about the molecular procedures used for
each sample, including USER treatment, DNA library type,
DNA polymerase, and number of trimmed bases, are sum-
marized in supplementary table S5, Supplementary Material
online. Additionally, for a subset of USER-treated samples, we
discarded bases showing high C!T rates at read termini as
USER-treatment shows poor efficacy at read termini (Meyer
et al. 2012).

Ms was calculated by summing the number of CpGs and
TpGs present in the sequencing reads aligned against the plus
strand of the reference genome, at genomic positions where
the latter displayed a CpG dinucleotide. For sequencing reads
aligning against the minus strand, we tracked the presence of
CpGs and CpAs in the sequencing reads at positions where
the reference genome showed CpGs. Since post-mortem de-
amination is random and is not expected to affect all genomic
mCpG sites, sites for which more than half the reads exhibit
CpG!TpG conversion with a minimum coverage of five
were disregarded. Similarly, genomic sites described as poly-
morphic within dbSNP142 (http://genome.ucsc.edu/; last
accessed September 1, 2016) were disregarded as these can
reflect sites where the ancient individual and the reference
genome differed. We acknowledge that, in situations where
ancient polymorphic sites are unlikely to be represented
within dbSNP (e.g., AH and ancient populations with no ob-
vious present-day surrogates), masking procedures specifically
accounting for the phylogenetic distance between ancient
and present-day populations would be preferable.

Regional Methylation Levels
We used Ms to investigate methylation levels within genomic
regions with known methylation patterns, including pro-
moter regions (defined following Ball et al. (2009) as the re-
gion comprising the 400-bp upstream and 1,000-bp
downstream of TSSs), mtDNA, introns, exons, splice sites,
and CpG islands as well as their neighboring shores (flanking
2,000 bases) and shelves (flanking 2,000–4,000 bases). We
followed Ball et al. (2009) to stratify annotated promoters
into three groups of increasing CpG density displaying an
inverse correlation with their methylation levels (Ball et al.
2009). All genomic coordinates for the above-mentioned re-
gions have been downloaded from UCSC table browser
(www.genome.ucsc.edu/; last accessed September 1, 2016),
using Ensembl gene build from the hg19/build37 reference
assembly for humans. Additionally, we retrieved hg18 geno-
mic coordinates of CTCF binding sites from Fu et al. (2008)
and converted these to hg19/build37 using liftOver (http://
hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/; last
accessed September 1, 2016). Our final set of genomic coor-
dinates included 2 kilobases centered at each of 5,735 CTCF
occupied and 5,635 unoccupied CTCF binding sites. We ex-
cluded sex chromosomes, which display depth-of-coverage
variation between males and females, from all our analyses,
except when noted otherwise. CGI coordinates for equids
were converted from hg19/build37 using liftOver to horses
(EquCab2.0) and represented 4.9 megabases spread across
7,685 regions. The gene annotation and intron/exon splice

sites coordinates for horses (EquCab2.0) and Aurochs (btau_
umd3.1/bosTau6) was retrieved from (www.genome.ucsc.
edu/; last accessed September 1, 2016). For details on pro-
moter categories, gene builds and BED files used, see supple
mentary table S6, Supplementary Material online. The ex-
pected number of deaminations per overhang was estimated
within CTCF regions using ds and k parameters as retrieved
from mapDamage2 (J�onsson et al. 2013: 2) (supplementary
table S3, Supplementary Material online) and the following
formula (ds�((1/k)�1)).

Modern Human Methylomes
To compare ancient and present-day methylomes, we
downloaded RRBS methylation data for 101 human tissues
from UCSC (see supplementary table S7, Supplementary
Material online) (http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeHaibMethylRrbs/; last
accessed September 1, 2016). This represented a total num-
ber of �1.6 millions of CpG sites, for which we calculated
Ms in their 1,000 flanking bases (i.e., 2,000 bp centered
around each CpG). This window size was selected to reflect
the correlation of the methylation levels within neighbor-
ing regions in the human genome (Eckhardt et al. 2006). As
no hair tissue was represented in the RRBS data, we down-
loaded from UCSC (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/;
last accessed September 1, 2016) methylation data esti-
mated using the Infinium HumanMethylation450
BeadChip system (450K Illumina array; Sandoval et al.
2011; Slieker et al. 2013) for 22 modern human tissues,
including hair. We constructed a linear model to compare
ancient and present-day human methylomes. It related
modern methylation scores, as measured in RRBS experi-
ments and 450K Illumina arrays, with ancient methylation
scores, the number of TpGs and CpGs found in the ancient
sequencing data, the variance of TpGs as well as the CpG
density of the region. All CpG sites covered with less than
10 reads were disregarded from RRBS sequencing data, as
the chance events to observe post-mortem deamination
events at such sites are limited.

Nucleosome Calls
Nucleosomes were called using the sliding-window approach
described by Pedersen et al. (2014) (fig. 1B). This method
provides a nucleosome score, which represents a more robust
measure of nucleosome presence than simply the maximal
read depth. We therefore used this score when aggregating
signal across regions, for example, all TSS regions genome-
wide, and also disregarded all called nucleosomes with a neg-
ative score.

Insert length, GC-content (%GC) and repeats represent
well-known factors affecting read depth variation along the
genome (Benjamini and Speed 2012; J�onsson et al. 2014),
potentially conflicting with our nucleosome calling proce-
dure. To assess whether nucleosome calls were robust to
such biases, we restricted nucleosome calls to uniquely map-
pable genomic regions, which were defined following the pro-
cedure described in Jonsson et al. (2014), where we computed
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the sequence mappability within 20-kb genomic blocks using
a 41-mers (Derrien et al. 2012) and restricted nucleosome
calls to blocks showing mappability uniqueness� 0.9. We
also implemented the model-based %GC correction from
Benjamini and Speed (Benjamini and Speed 2012) to read
depth at each genomic coordinate prior to nucleosome call-
ing. All nucleosome-calling analyses are based on GC-
corrected read-depth and uniquely mappable regions unless
otherwise noted.

Phasograms
We followed the procedure originally described by Valouev
et al. (2011) to analyze nucleosome phasing in HTS data (fig.
1C). We required a minimal depth-of-coverage of three reads
per sequencing start position unless stated otherwise.

Regional Nucleosome Profiles
We evaluated ancient data sets at regions known to show
strong nucleosome positioning and phasing in a wide range of
cell types. One of such regions was represented by CTCF
binding sites (defined as above) and another was located
on the human chromosome 12 at positions 34,439,733–
34,559,733 (hg19) (Gaffney et al. 2012). We also analyzed
promoter regions and the respective gene bodies of their
longest open reading frame (supplementary table S6,
Supplementary Material online).

Fourier Transforms
Periodicity signals were investigated through spectral density
analyses, using the Spectrum package in R (http://www.R-proj
ect.org/; last accessed September 1, 2016). This was applied to
all genomic regions that displayed fluctuations in either
methylation levels, read depth, or phasogram analyses.

The raw data was normalized over the background using
LOESS (span¼ 0.3) function in R (https://www.cran.r-project.
org/; last accessed September 1, 2016).

Saqqaq Palaeo-Eskimo Sequence Data
We extracted DNA from 150 mg of hair from a Palaeo-Eskimo
human sample of the Saqqaq culture, dated 4,044 6 31 BP,
following Rasmussen et al. (2010). MBD enrichment was per-
formed on the whole extract as described by Seguin-Orlando,
Gamba, et al. (2015). The captured fraction, enriched for
methylated DNA, was eluted using a 1-M KCl solution, puri-
fied on a MinElute (QIAGEN) column and eluted in 55 ll EB
buffer. An aliquot of the eluate (32.5 ll) was treated for 3 h at
37 �C using the 10-ll USER mix (New England Biolabs,
#M5505) before an Illumina DNA library was constructed
using the procedure from Meyer and Kircher (Meyer and
Kircher 2010) with the modifications from Seguin-Orlando,
Gamba, et al. (2015). The library was split in two halves, each
of which was independently amplified for 15 cycles, using 5
units of AmpliTaq Gold (Life Technologies) and 6-bp indexed
primers. After MinElute-purification, both were subjected to a
second round of amplification (6 cycles), using four parallel
reactions each. Final products were purified on MinElute col-
umns, quantified on the 2100 Bioanalyzer (Agilent) High-
Sensitivity Assay, pooled with other libraries and sequenced

on the Illumina Hiseq2500, 75 Paired-End Rapid Mode, at the
Danish National High-Throughput DNA sequencing centre.
High-quality reads aligning uniquely against the human ref-
erence genome hg19 were identified using PALEOMIX
(Schubert et al. 2014), disabling seeding in BWA 0.5.9-r26-
dev (Li et al. 2009), and requiring a minimum mapping quality
of 25. The sequence data are available for download at the
European Nucleotide Archive (PRJEB15186).

Supplementary Material
Supplementary figures S1–S13 and tables S1–S7 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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