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Abstract

Background. Survival heterogeneity and limited trial follow-up present challenges for estimating lifetime benefits of
oncology therapies. This study used CheckMate 067 (NCT01844505) extended follow-up data to assess the predictive
accuracy of standard parametric and flexible models in estimating the long-term overall survival benefit of nivolu-
mab plus ipilimumab (an immune checkpoint inhibitor combination) in advanced melanoma. Methods. Six sets of
survival models (standard parametric, piecewise, cubic spline, mixture cure, parametric mixture, and landmark
response models) were independently fitted to overall survival data for treatments in CheckMate 067 (nivolumab
plus ipilimumab, nivolumab, and ipilimumab) using successive data cuts (28, 40, 52, and 60 mo). Standard para-
metric models allow survival extrapolation in the absence of a complex hazard. Piecewise and cubic spline models
allow additional flexibility in fitting the hazard function. Mixture cure, parametric mixture, and landmark response
models provide flexibility by explicitly incorporating survival heterogeneity. Sixty-month follow-up data, external ipi-
limumab data, and clinical expert opinion were used to evaluate model estimation accuracy. Lifetime survival projec-
tions were compared using a 5% discount rate. Results. Standard parametric, piecewise, and cubic spline models
underestimated overall survival at 60 mo for the 28-mo data cut. Compared with other models, mixture cure, para-
metric mixture, and landmark response models provided more accurate long-term overall survival estimates versus
external data, higher mean survival benefit over 20 y for the 28-mo data cut, and more consistent 20-y mean overall
survival estimates across data cuts. Conclusion. This case study demonstrates that survival models explicitly incorpor-
ating survival heterogeneity showed greater accuracy for early data cuts than standard parametric models did, con-
sistent with similar immune checkpoint inhibitor survival validation studies in advanced melanoma. Research is
required to assess generalizability to other tumors and disease stages.
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Highlights

� Given that short clinical trial follow-up periods and survival heterogeneity introduce uncertainty in the
health technology assessment of oncology therapies, this study evaluated the suitability of conventional
parametric survival modeling approaches as compared with more flexible models in the context of immune
checkpoint inhibitors that have the potential to provide lasting survival benefits.

� This study used extended follow-up data from the phase III CheckMate 067 trial (NCT01844505) to assess
the predictive accuracy of standard parametric models in comparison with more flexible methods for
estimating the long-term survival benefit of the immune checkpoint inhibitor combination of nivolumab plus
ipilimumab in advanced melanoma.

� Mixture cure, parametric mixture, and landmark response models provided more accurate estimates of long-
term overall survival versus external data than other models tested.

� In this case study with immune checkpoint inhibitor therapies in advanced melanoma, extrapolation models
that explicitly incorporate differences in cancer survival between observed or latent subgroups showed
greater accuracy with both early and later data cuts than other approaches did.
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Introduction

An increasing number of health technology assessment
agencies use cost-effectiveness analysis to inform technol-
ogy appraisal decisions for new cancer treatments. This
type of economic evaluation produces an estimate of the
cost-effect tradeoffs between 2 or more competing inter-
ventions, often over a lifetime.

Most randomized controlled trials of oncology agents
have relatively short follow-up at the time of submission
to health technology assessment agencies, with heavy
right-censoring often observed in the Kaplan-Meier sur-
vivor function. Consequently, appropriate survival extra-
polation methods are required to derive reliable estimates
of the long-term effects of these treatments. The conven-
tional approach has been to use common standard para-
metric models to extrapolate time-to-event data collected
in the trial, using a selection algorithm developed by
Latimer.1 In the interest of parsimony, some researchers
have suggested that the exponential distribution should
be considered the default, unless contrary evidence is pro-
vided that others provide more accurate projections.2
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The mechanisms of action for immuno-oncology thera-
pies such as immune checkpoint inhibitors can lead to
delayed clinical effects (i.e., response) and the potential for
long-term survivorship in a subgroup of patients who
achieve an immunological response.3,4 The shape of the
Kaplan-Meier curves for immune checkpoint inhibitors
is typically characterized by an initial period of non-
separation of the curves when compared with conven-
tional or targeted therapies due to delayed response, a
subsequent period of separation as responses occur,
and a final period with a plateau driven by a persistent
treatment effect among those who respond.3,5 This var-
iation in cancer survival may be indicative of latent
prognostic factors or differences in treatment efficacy
in observed or latent patient subgroups and result in a
hazard function that standard parametric models may
be unable to accurately capture.

A number of alternative, more flexible models have
been described in the National Institute for Health and
Care Excellence Technical Support Document 21.6 This
document provides a critique of the more sophisticated
extrapolation methods that have been applied in technol-
ogy appraisals of immuno-oncology treatments, includ-
ing flexible parametric (piecewise and cubic spline),
mixture cure, parametric mixture, and landmark
response models. A simulation study was presented by
the National Institute for Health and Care Excellence to
highlight the strengths and weaknesses of a subset of
these different approaches and their potential impact on
the estimates of lifetime survival. Technical challenges
and lack of access to suitable individual patient data pre-
cluded an assessment of the performance of several flex-
ible models identified by the researchers.

The design of this study was informed by previous
research that investigated the predictive accuracy of stan-
dard versus more flexible extrapolation methods used to
evaluate the long-term benefit of immune checkpoint
inhibitors.7–10 The main aim of this study was to retro-
spectively assess the performance of 6 survival extrapola-
tion methods fitted to extended follow-up data from
CheckMate 067, a phase III randomized controlled trial
that compared the use of the immune checkpoint inhibi-
tor combination nivolumab (a programmed death 1
checkpoint inhibitor) plus ipilimumab (an anti–cytotoxic
T-cell lymphocyte-antigen 4 checkpoint inhibitor) or
nivolumab alone with ipilimumab alone in previously
untreated patients with advanced melanoma.11 Successive
artificial data cuts with varying lengths of follow-up were
created to assess how the predictive accuracy of the meth-
ods may vary based on the maturity of the data.

Methods

Study Design

This study estimated and compared the following 6 sur-
vival modeling techniques that have been used to esti-
mate the long-term survival of patients with cancer
treated with immune checkpoint inhibitors: standard
parametric, piecewise, cubic spline, mixture cure, para-
metric mixture, and landmark response models (Figure
1).7,8,10,12 Standard parametric models are more widely
used and established for health technology assessments
than the other methods and are typically considered
the starting point for survival extrapolation in the
absence of a complex hazard. Because standard hazard
functions are less complex, they are generally easier to
interpret and more parsimonious.1 The other modeling
approaches are increasingly considered as alternatives to
standard parametric models for modeling survival data
for immune checkpoint inhibitors because they allow
for varying degrees of flexibility to fit complex hazards
caused by delayed response and long-term survivor-
ship.1,6 Piecewise and cubic spline models allow for
additional flexibility mechanistically in fitting the
hazard function.5–8,12 Mixture cure, parametric mix-
ture, and landmark response models provide flexibility
by explicitly assuming survival heterogeneity.5–8,12 In
fact, parametric mixture models subsume standard
parametric and mixture cure models as special cases.
Detailed descriptions of the parameterization for each
modeling approach are provided in the Supplemental
Material.

Database

In the CheckMate 067 trial (NCT01844505), nivolumab
either as a monotherapy (n = 316) or in combination with
ipilimumab (n = 314) was compared with ipilimumab
monotherapy (n = 315) in patients with previously
untreated, unresectable, or advanced stage III or IV mela-
noma. Details on the study design and patient population
have been presented previously.13 Results from this trial
showed significant improvement in long-term survival out-
comes with the nivolumab-containing treatments, with
sustained overall survival and progression-free survival at
4 and 5 y of follow-up. Overall survival rates at 4 and 5 y,
respectively, were 53% and 52% in the nivolumab plus ipi-
limumab arm and 46% and 44% in the nivolumab arm,
as compared with 30% and 26% in the ipilimumab arm.11

In this case study, overall survival data from the most
recent data available at the time of analysis were
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analyzed (minimum follow-up, 60 mo; Figure 2A). Three
artificial data cuts were created based on this data set.

The earliest data cut corresponded with 28 mo of
follow-up and data that were available at the time of
the initial health technology assessment review for
nivolumab plus ipilimumab in Canada (Canadian
Agency for Drugs and Technologies in Health). In that
submission, standard parametric models were fitted to
the available data for each arm and extrapolated out to
20 y using a log-normal distribution.14,15 The results
from the models used in this health technology assess-
ment review are used as a point of reference for the other
models under consideration here. The other 2 data cuts
were set to be 12 and 24 mo after this initial data cut (up
to 40 and 52 mo, respectively) to reflect varying degrees
of data maturity. Results for these 2 intermediate data
cuts are presented in the Supplemental Material.

Model Estimation and Selection

Standard survival analysis involves generating Kaplan-
Meier curves, testing of proportional hazards and accel-
erated failure time assumptions, and fitting parametric
survival models (either standard or more complex).
Aligned with the National Institute for Health and Care
Excellence Technical Support Document 14,1 different
parametric survival functions—including exponential,

Weibull, Gompertz, log-logistic, log-normal, gamma,
and generalized gamma—were evaluated for standard
parametric, piecewise, mixture cure, and landmark
response model approaches. For cubic spline models, 1-
and 2-knot hazards, odds, and probit models were evalu-
ated. For parametric mixture models, 15 potential com-
binations of exponential, Weibull, log-logistic, log-
normal, and gamma distributions were tested, assuming
that the trial population consisted of 2 mutually exclusive
and exhaustive latent subgroups in each arm. Detailed
descriptions of all modeling techniques and distributional
assumptions are provided in the Supplemental Material.

Model selection was informed by 3 criteria: goodness-
of-fit statistics, visual inspection of the predicted sur-
vival/hazard to the observed survival/hazard, and align-
ment with external long-term data (available for
ipilimumab only). Given the similar mechanism of action
across the treatments, the same distribution was selected
for all 3 arms within a given method unless there was
strong statistical counterindication from the models to
do otherwise (i.e., goodness-of-fit assessments strongly
indicated one distribution for one treatment and a differ-
ent distribution for another treatment).

Akaike and Bayesian information criteria statistics
were generated separately for each arm and for each
model to inform model selection. Specifically, when the
Akaike and Bayesian information criteria statistics were

Figure 1 Study design. Blue boxes indicate methods that allowed for flexibility mechanistically. Purple boxes indicate methods
that allowed for flexibility by accounting for survival heterogeneity. CSM, cubic spline model, MCM, mixture cure model,
PMM, parametric mixture model, PSM, standard parametric model, PWM, piecewise model, RBLM, landmark response model.
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similar, they were summed across the 3 treatment arms,
and the aggregate Akaike and Bayesian information cri-
teria statistics were compared across candidate models to
identify the best fit.

Visual inspection of predicted survival curves overlaid
with the Kaplan-Meier curves (including the 95% confi-
dence interval [CI]) was used to assess the quality of
within-trial fit to the observed data. Similarly, smoothed
hazard plots comparing the empirical hazard and the
predicted hazard from the fitted models were used to
assess how close the models’ predictions were to the
observed data. In addition, for ipilimumab, in which the
visual fit and statistical fit to the observed data were not
decisive, external data from the pooled analysis of long-
term survival data from 12 studies of ipilimumab in
unresectable or advanced melanoma were leveraged
(based on reconstructed survival data from Schadendorf
et al. to inform model selection).16

For the piecewise models, a combination of the
Kaplan-Meier survivor functions, followed by a standard
parametric distribution, was evaluated. A truncated

Kaplan-Meier curve at prespecified landmark time
points combined with an exponential distribution is not
only a commonly used piecewise model in health tech-
nology assessment but also the most preferred by certain
evidence review groups.2,17,18 Therefore, this approach
was used as an initial starting point for comparison, but
all distributions were tested. Two time periods (corre-
sponding to 1 cut point) for the piecewise models were
estimated for all data cuts based on visual inspection of
the cumulative hazards plot. A point of change in slope
of the cumulative hazard plot was identified visually and
set as the cut point in which independent parametric
models were fitted to the data beyond this time point.

For the parametric mixture models, 2 additional selec-
tion criteria were applied to identify the best-fitting mod-
els. The potential for a local versus global solution was
evaluated by testing extreme starting values for the
expectation-maximization algorithm. In addition, models
that estimate the weight of one class to be \5% repre-
sent the cases in which the fits were driven by one predo-
minant class. Because the fits in such cases can be

A

B

Figure 2 Overall survival by data cut. (A) Kaplan-Meier curves; (B) smoothed hazard functions. Shaded areas represent 95%
CIs. CI, confidence interval; WHO, World Health Organization.
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approximated fairly well with a single parametric sur-
vival model, they were omitted from consideration.

For landmark response models, survival was condi-
tioned on patients’ response status (i.e., complete or par-
tial response v. nonresponders) at a landmark time point.
Landmark time point selection requires a balance that
allows enough time for patients to respond while provid-
ing sufficient postlandmark data to model survival. After
assessment of these data, a 6-mo landmark was selected.
Patients alive at 6 mo were then included in the analysis,
and standard parametric survival models were then fitted
to the 2 response groups. The separate response-specific
curves were then weighted by response rate at the land-
mark time point to form a single overall survival curve.
Survival prior to the landmark point was based on the
Kaplan-Meier curves from the unstratified population.

Analyses were conducted using the statistical packages
in R and Stata. Mixture cure models were fitted using the
flexsurvcure package in R. All other analyses were per-
formed using the flexsurv package in R, with the excep-
tion of the parametric mixture models, which were fitted
using the fmm package in Stata (v15; https://www.stata
.com/support/faqs/resources/citing-software-documentat
ion-faqs/).

Model Assessment and Validation

To evaluate internal validity, we compared survival
extrapolations obtained by each approach for each treat-
ment arm against the observed overall survival data from
CheckMate 067 at 60 mo.

Mean estimates of survival over a 20-y time horizon
were also generated for each selected model. Incremental
survival benefits were calculated for nivolumab plus ipili-
mumab in comparison with either monotherapy and for
nivolumab in comparison with ipilimumab. All mean
survival times were adjusted to account for general
population mortality as follows. For all extrapolation
methods, except for the mixture cure models in which
background mortality was explicitly accounted for in a
relative survival framework, the instantaneous hazards
from the fitted curves were compared with the general
population hazard over time. When the general popula-
tion hazard exceeded the modeled disease-related hazard,
the modeled hazard was replaced with the general
population hazard. General population rates were
based on World Health Organization life tables for
Canada, assuming a starting age of 60 y of age, which
was the mean age of patients who participated in
CheckMate 067. A discount rate of 5% was also applied
to represent the time value of health outcomes from a

Canadian health technology assessment perspective and
to align with the rate used in the original submission
based on the 28-mo data cut from CheckMate 067.14,15

A cross-validation against independent external data
was performed to ascertain whether the survival projec-
tions are clinically plausible. As described above, the
pooled overall survival data from 1861 patients with
advanced melanoma across 10 prospective and 2 retro-
spective studies of ipilimumab were used to inform and
validate survival projections across all methods.16 The
pooled data, representative of various dosing regimens
of ipilimumab, comprise a mixture of treatment-naı̈ve
and previously treated patients. The extrapolated long-
term survival estimates for each model were compared
against the 95% CIs around the pooled overall survival
rates for ipilimumab at year 7 among previously
untreated patients (95% CI: 17.4%–27.0%) and at year
10 for the full pooled population (95% CI: 16.5%–
20.8%), because data beyond 7 y were not available for
the previously untreated group. Considering that
CheckMate 067 included only previously untreated
patients, a higher survival rate was expected than in the
pooled population. Therefore, for the purposes of valida-
tion, the 10-y survival 95% CI upper limit (20.8%) for
the pooled population was increased by 3% to 23.8%. It
was not possible to repeat a similar exercise for nivolu-
mab or nivolumab plus ipilimumab because of the lack
of external data with longer follow-up currently available
from CheckMate 067.

In addition, 2 clinical experts in the treatment of
advanced melanoma were consulted to validate the
appropriateness of the survival extrapolations and
comment on the clinical plausibility (face validity) of
the extrapolation estimates. These clinicians were
first presented with the patient characteristics from
CheckMate 067 and the observed results for overall sur-
vival, response, and subsequent therapy based on the 60-
mo data cut. They were not presented the results of any
of the models before they provided their opinions. The
experts were requested to give their input regarding the
true value, the lower limit, and the upper limit of land-
mark survival at 10 and 20 y for patients treated with
each of the 3 treatment arms, assuming a mean age of
60 y of age at diagnosis, based on a framework that
was developed by Sheffield University in the United
Kingdom (Sheffield Elicitation Framework).19 Example
text of the instructions and questions from this exercise
are provided in the Supplemental Material. With these
outcomes, boundaries were set for what could be consid-
ered as ‘‘clinically valid,’’ based on the oucomes of the
CheckMate 067 trial.
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Results

Model Estimation and Selection

The proportional hazards and accelerated failure
time assumptions were violated for all data cuts (see
Supplemental Material for results supporting this assess-
ment). As such, all models were fitted independently for
the 3 treatment arms.1 Smoothed hazard plots based on
the observed data for each data cut are provided in the
Supplemental Material. These showed an initial increase
in the hazard followed by a steady decline across the suc-
cessive data cuts, with the hazards for nivolumab plus
ipilimumab and nivolumab trending toward the general
population hazard at 60 mo (see Figure 2B).

The best-fitting models within each modeling approach
for the 28-mo and 60-mo data cuts are presented in Table
1 and are plotted against the Kaplan-Meier curves in
Figure 3. All selected models have a close fit to the
observed data for that data cut. In the 28-mo data, there
was much more variation in the extrapolated portions of
the curves, with the piecewise model (exponential) being
the most conservative, followed by the standard para-
metric model (log-normal). The log-normal standard
parametric model was the selected model used in the
Canadian Agency for Drugs and Technologies in Health
review with the 28-mo data. The parametric mixture (exp-
exp [exponential-exponential]) and mixture cure (log-
logistic) models were the least conservative. There was

more alignment in the extrapolations for the best-fitting
models when based on the 60-mo data, with the exception
of the piecewise (exponential) and cubic spline models.
The best-fitting standard parametric model in the 60-mo
data shifted to a Gompertz distribution. Another version
of the piecewise model using a Gompertz distribution was
also added for comparison, as this was the best-fitting
piecewise model for that data cut.

Model Assessment and Validation

At the 60-mo landmark, standard parametric, piecewise,
and cubic spline models all exhibited a common underes-
timating behavior for overall survival when based on the
28-mo data cut. The mixture cure, parametric mixture,
and landmark response models performed consistently
better than the other models across all data cuts, with all
estimates falling within the 95% CI of the observed
Kaplan-Meier overall survival rates (Figure 4 and
Supplemental Material).

Restricted mean survival time estimates for a 20-y time
horizon are presented in Table 2. In general, the models
that account for survival heterogeneity (mixture cure,
parametric mixture, and landmark response models) pro-
duced higher estimates of mean survival (nivolumab plus
ipilimumab, 6.0–7.0 y based on the 28-mo data cut) than
did those for other models (nivolumab plus ipilimumab,
4.6–5.6 y). These same modeling approaches predicted

Table 1 Selected Models for Each Modeling Approach and Data Cut

Model Nivolumab Plus Ipilimumab Nivolumab Ipilimumab

28-mo data cut
PSM Log-normala Log-normala Log-normala

CSM Odds, 1 knot Odds, 1 knot Odds, 1 knot
PWMb Exponential Exponential Exponential
MCM Log-logistic Log-logistic Log-logistic
PMM Exp-Exp Exp-Exp Exp-LL
RBLM (6-mo landmark) Generalized Gamma Log-logistic Log-logistic

60-mo data cut
PSM Gompertz Gompertz Gompertz
CSM Odds, 1 knot Odds, 1 knot Odds, 1 knot
PWM (best fit)c Gompertz Gompertz Gompertz
PWM (exponential)c Exponential Exponential Exponential
MCM Exponential Exponential Exponential
PMM Exp-Exp Exp-Exp Exp-Exp
RBLM (6-mo landmark) Gompertz Gompertz Gompertz

CSM, cubic spline model; Exp, exponential; LL, log-logistic; MCM, mixture cure model; PMM, parametric mixture model; PSM, standard

parametric model; PWM, piecewise model; RBLM, landmark response model.
aSelected distribution for Canadian Agency for Drugs and Technologies in Health submission.
bBest-fitting PWM in the 28-mo data cut was the exponential distribution. Kaplan-Meier data used up to 12 mo, followed by parametric model.
cKaplan-Meier data used up to 24 mo for nivolumab plus ipilimumab and nivolumab and 30 mo for ipilimumab, followed by exponential model.
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Figure 3 (continued)
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consistent estimates of survival benefit when based on
the 60-mo data compared with the 28-mo estimates. This
consistency was evident for all treatment arms and across
the interim data cuts as well (Supplemental Material). By
contrast, for the methods that had projected lower sur-
vival times with the 28-mo data (standard parametric
model, cubic spline model, piecewise model + best fit-
ting), survival times increased to align more closely with
the models accounting for survival heterogeneity, with the
exception of the piecewise model plus exponential.

These findings indicate that survival estimates based
on the 28-mo standard parametric model log-normal used
in the Canadian Agency for Drugs and Technologies in
Health analysis likely underestimated long-term survival. For
nivolumab plus ipilimumab, the original model estimated 5.4
y of survival benefit in comparison with a range of 6.4–6.8 y

as estimated by all other models (when based on the 60-mo
data, excluding piecewise model + exponential; Table 2).
This difference translates to an underestimation of 1.0–1.4 y
(or a 19%–26% higher survival benefit). This underestima-
tion was also noted for nivolumab (0.8–1.3 y difference v.
28-mo standard parametric model; 17%–29% increase) and
ipilimumab (0.5–1.0 y and 16%–35% increase).

The disparities observed in the mean survival estimates
between different survival models were also observed in
the incremental benefit when comparing treatments,
although the patterns were less pronounced (Supplemental
Material). Standard parametric model, cubic spline model,
and piecewise model + exponential generated lower esti-
mates of survival benefit for comparisons versus ipilimu-
mab when based on the 28-mo data as compared with the
other methods.

E

F

Figure 3 Overall survival curves for each modeling approach and data cut. Dashed lines represent 95% CIs for 28-month and

60-month Kaplan-Meier overall survival. (A) Nivolumab plus ipilimumab, 28-month data cut; (B) nivolumab plus ipilimumab,
60-month data cut; (C) nivolumab, 28-month data cut; (D) nivolumab, 60-month data cut; (E) ipilimumab, 28-month data cut;
(F) ipilimumab, 60-month data cut. External data presented in Figures 3E and 3F were pooled from 1861 patients with advanced
melanoma across 10 prospective and 2 retrospective studies of ipilimumab.16 CI, confidence interval; CSM, cubic spline model;
Exp, exponential; MCM, mixture cure model; PMM, parametric mixture model; PSM, standard parametric model; PWM,
piecewise model; RBLM, landmark response model.
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External Validation

As illustrated in Figures 3E and 3F for ipilimumab,
extrapolations based on the 28-mo data cut were highly
variable, differing substantially depending on the sur-
vival modeling technique. Only the mixture cure and
parametric mixture models generated predictions of

survival estimates of 7-y and 10-y overall survival that
were strongly aligned (within both CIs) with external data
for ipilimumab. All other models—most significantly the
piecewise model + exponential—underestimated long-
term overall survival. With the availability of more
mature data at 60 mo, multiple modeling approaches,
including the standard parametric model (Gompertz) and

A

B

C

Figure 4 Absolute deviation from landmark survival at 60 months based on the 28-month data cut. Dashed lines represent
Kaplan-Meier 95% CI. (A) Nivolumab plus ipilimumab; (B) nivolumab; (C) ipilimumab. CI, confidence interval; CSM, cubic

spline model; MCM, mixture cure model; PMM, parametric mixture model; PSM, standard parametric model; PWM, piecewise
model; RBLM, landmark response model.

10 MDM Policy & Practice 7(1)



piecewise model (Gompertz), appeared to show better
alignment with the external data. Importantly, mixture
cure, parametric mixture, and landmark response models
showed alignment with the long-term ipilimumab data
across all data cuts. Piecewise model + exponential and
cubic spline models underestimated survival at the 10-y
landmark across all data cuts.

For nearly all of the modeling approaches considered,
the predicted survival estimates at 10 and 20 y lie within
the plausible range provided by the clinicians (see
Supplemental Material). Notable exceptions in the 28-mo
data cut analysis included underestimation of survival with
the piecewise model + exponential at 10 and 20 y and the
standard parametric model at 20 y for all 3 arms. In addi-
tion, when based on the 60-mo data, piecewise model +
exponential still underestimated survival at 20 y.

Discussion

This study evaluated the predictive accuracy of standard
parametric survival models versus more flexible models
for an immune checkpoint inhibitor combination that has
the potential to provide durable survival for patients with
advanced melanoma. A comprehensive range of extrapola-
tion models was tested using data from CheckMate 067,11

including standard parametric, piecewise, cubic spline,
mixture cure, parametric mixture, and landmark response
models.

In general, all of the selected models provided a rea-
sonable fit to the observed data, irrespective of the level
of data maturity. Extrapolations based on early data cuts
were associated with a higher degree of uncertainty when
predicting long-term survival, as compared with more
mature data cuts, in which there was more agreement
across the various modeling approaches. This is in line
with what would be expected and indicates that the selec-
tion of the ‘‘right’’ model is especially important when
dealing with immature data.

In this analysis, the methods that explicitly assumed
survival heterogeneity in the patient population, namely,
the mixture cure, parametric mixture, and landmark
response models, outperformed other approaches across
all 3 treatment arms. These 3 modeling techniques were
all generally aligned with each other and provided accu-
rate and consistent estimates of overall survival across
the range of follow-up periods. In particular, the results
of the internal validation showed that these models
closely matched landmark survival at 60 mo for all data
cuts when compared with the most mature observed data
from CheckMate 067, whereas the standard parametric,
cubic spline, and piecewise models consistently underesti-
mated survival for the earlier data cuts.

Similar findings were observed in the external valida-
tion exercises. When fitted to early data cuts, mixture
cure, parametric mixture, and landmark response models
produced 7-y and 10-y overall survival estimates that

Table 2 Mean Survival Benefit (Years) at 20 Yearsa

20-y Mean Survival Time

Method Nivolumab Plus Ipilimumab Nivolumab Ipilimumab

28-mo data cut
PSM 5.4 4.7 3.0

CSM 5.6 4.9 3.1
PWM-Exp 4.6 3.6 2.4
MCM 6.7 6.0 3.9
PMM 7.0 6.2 4.0
RBLM 6.0 5.5 3.3

60-mo data cutb

PSM 6.8 5.9 3.8
CSM 6.4 5.5 3.5

PWM-best 6.8 6.0 3.9
PWM-Exp 5.8 4.9 3.2
MCM 6.8 5.9 4.0
PMM 6.8 6.0 4.0
RBLM 6.8 5.8 3.9

CSM, cubic spline model; Exp, exponential; MCM, mixture cure model; PMM, parametric mixture model; PSM, standard parametric model;

PWM, piecewise model; RBLM, landmark response model.
aAll mean survival times account for Canadian-specific general population mortality, assuming a starting age of 60 y, and are discounted at a

5% rate.
bBold indicates a difference of 15% or greater as compared with the 28-mo data cut PSM shown in bold in the first row.

Paly et al. 11



were more aligned with external long-term data for
ipilimumab than the other methods. Piecewise model +
exponential, cubic spline model, and standard para-
metric model underestimated survival when compared
with either the long-term ipilimumab data or the clini-
cally plausible ranges provided by expert clinicians.

The original Canadian Agency for Drugs and
Technologies in Health review used the 28-mo data from
CheckMate 067 in the economic evaluation of these
immune checkpoint inhibitors.14 A mean survival time
of 5.4 y over a 20-y time horizon was estimated for
nivolumab plus ipilimumab, with a standard parametric
model (log-normal) used for extrapolation (see Table 2).
This estimate is well below the range estimated by the
mixture cure, parametric mixture, and landmark
response models for the 28-mo data cut and lower than
estimates for all models based on the 60-mo data cut.
When compared with the average mean survival benefit
across all 60-mo models, the 28-mo log-normal standard
parametric model underestimated survival by 1.2 y, 1 y,
and 0.8 y for nivolumab plus ipilimumab, nivolumab,
and ipilimumab, respectively. The degree of underestima-
tion would have been greater if the piecewise model +
exponential models had been used.

These findings are in general agreement with other
recent studies assessing the accuracy of similar survival
extrapolation techniques in immuno-oncologic therapy
settings. A similar case study conducted by Bullement
et al. in advanced melanoma found that mixture cure
models generated more accurate survival estimates for
ipilimumab plus dacarbazine than other methods when
validated with external registry data.7 In this study, a 3-
part piecewise model (Kaplan-Meier data + log-normal
fitted to trial data + Weibull fitted to registry data) per-
formed well. The commonality across these 2 approaches
was the incorporation of external information (back-
ground mortality for the mixture cure model and long-
term registry data for the piecewise model), highlighting
the importance of including external data when available.7

A study by Ouwens et al. used data from ATLANTIC
(NCT02087423), a phase II single-arm trial of durvalumab
in previously treated patients with advanced lung cancer,
to examine different methods of extrapolating overall sur-
vival.8 The authors reported that the cure models pro-
vided the best fit for longer-term data, whereas the
standard parametric model based on a log-normal distri-
bution generally underestimated long-term observed
overall survival.8 This study did find, however, that the
long-term mean survival estimates from these methods
differed from each other. By contrast, our study showed
general consistency in the mean survival estimates for

these methods. This difference may be attributable to an
early plateauing of the tail of the Kaplan-Meier overall
survival curves in CheckMate 067,11 whereas this was not
as evident in the survival data from ATLANTIC.

The underperformance of the piecewise model +
exponential in our analysis is also noteworthy and is con-
sistent with a similar recent case study in previously
treated patients with advanced renal cell carcinoma.10 In
this analysis, however, the flexible modeling approaches
that accounted for survival heterogeneity (parametric
mixture and landmark response models) did not perform
as well for earlier data cuts as they did in our analysis.10

Other studies have focused on more limited compari-
sons of standard parametric models to either cubic spline
or mixture cure models in the context of immune check-
point inhibitors. An analysis conducted by Gibson et al.
also compared standard parametric and cubic spline
models using 28-mo progression-free survival data from
CheckMate 067 and found cubic spline models to pro-
vide a better fit to the observed data than did standard
parametric models.20 Our analysis of overall survival
from the same data cut did show that the cubic spline
models performed marginally better when looking at 60-
mo landmark survival (both underestimated, but the
cubic spline model underestimated less than the log-
normal standard parametric model). An analysis by
Othus et al. demonstrated that a Weibull mixture cure
model was superior to a Weibull standard parametric
model in estimating long-term data for ipilimumab from
a different trial in advanced melanoma.21

The survival modeling techniques considered in our
study are broadly aligned with those considered in the
National Institute for Health and Care Excellence
Technical Support Document 21.6 An exception to this
is the implementation of relative survival models, which
were not included in our analysis; however, Technical
Support Document 21 does note that these have not pre-
viously been used in technology appraisals to date.

Technical Support Document 21 recommends lever-
aging external data and incorporating background mor-
tality in survival extrapolations, and the importance of
those recommendations has been borne out in this study
and in the existing literature.7,8,22 Although long-term
external data for ipilimumab were leveraged in our
study, no such data were available specific to nivolumab
plus ipilimumab or nivolumab alone. Ranges of clinically
plausible long-term survival rates were solicited from 2
expert clinicians to fill this gap. Extending this exercise
to additional clinicians could have produced a more nar-
row and robust range of plausible outcomes. Although
we did leverage the Sheffield Elicitation Framework,19

12 MDM Policy & Practice 7(1)



best practice for structural expert elicitation is an
emerging area of discussion, and there are currently no
standard guidelines in this setting.23,24 Furthermore,
these external data were used as reference points only for
external validation and were not explicitly used to inform
model parameterization or extrapolation (e.g., via a
Bayesian framework). Because the aim of this case study
was to explore the performance of commonly used meth-
odologies in health technology assessment in the context
of heterogeneity of survival, applying these external data
for the purposes of validation felt most appropriate.
Advanced methods for formally integrating external
data—either observed or elicited via clinical expert—
have recently been explored, and this topic is an area of
ongoing research and development.6,25–29

As part of Technical Support Document 21, a simula-
tion exercise was conducted to evaluate the performance of
a subset of the flexible modeling techniques under different
scenarios representing various ‘‘true’’ complex hazard
shapes (based on Weibull distributions). One such scenario
assumed that there was a signal indicating a cure fraction
exists, and the presented survival and hazard plots most
closely aligned with the shapes seen in CheckMate 067. In
this scenario, Technical Support Document 21 reported
that cubic spline models (accounting for background mor-
tality) had a large underestimation of lifetime survival. In
our analysis, based on the 60-mo data, cubic spline models
were not found to underestimate long-term survival at 10 y
when compared with data from Schadendorf et al.16 In
addition, the Technical Support Document 21 simulation
revealed minimal bias with the mixture cure model
(Weibull) in lifetime survival estimates. A close alignment
of the mixture cure model (exponential) with long-term
data for ipilimumab was also demonstrated.16

A further limitation of this case study is that our find-
ings may not be generalizable to other trial data of
immune checkpoint inhibitors in which the comparators
and cancer type may differ. Although some of our key
conclusions are supported across other studies in other
disease sites, as described above, there were some differ-
ences noted in the performance of certain models when
based on earlier data. Our analysis used Canadian gen-
eral population mortality, matched to the CheckMate
067 trial population, to inform the long-term survival
extrapolations. Applying these methods to another local-
ity would necessitate use of country-specific, non–dis-
ease-related mortality rates. In addition, although
estimated survival benefit is an important element of
cost-effectiveness modeling for health technology assess-
ment, this analysis did not account for progression-free
survival, quality-of-life adjustment, or costs, all of which

are also important components in economic evaluation.
Therefore, it is difficult to make a clear determination on
the net impact of the different modeling approaches on
the estimation of incremental cost-effectiveness ratios.

For the purposes of this case study, all methodologic
approaches were tested for all treatment arms for all data
cuts. In a real-world analysis, it is likely that not all meth-
odologic approaches would be necessary or appropriate
to test in each setting.6 For example, piecewise models
are generally indicated when there is a clear turning point
in the observed data (although there are some who rec-
ommend their use regardless because of their explicit use
of observed Kaplan-Meier data). In this analysis, particu-
larly for the early data cuts, there was not a clear turning
point to select the cut point for the piecewise models;
thus, their application here may be somewhat artificial in
the interest of testing all methods.

Lastly, in this analysis, the ‘‘best’’ single model was
selected within each method, and the data cut was based
on a number of criteria. However, it is possible, if not
likely, that secondary or alternative distribution selec-
tions could have been made and tested. Frequently in
health technology assessment submissions, multiple dis-
tributions would be evaluated in sensitivity analysis.
Furthermore, the ‘‘best’’ distribution within a methodo-
logic approach also changed over time (e.g., log-normal
standard parametric model at 28 mo v. Gompertz stan-
dard parametric model at 60 mo, exponential piecewise
model at 28 mo v. Gompertz piecewise model at 60 mo).
The improved performance of certain approaches that
do not account for survival heterogeneity (e.g., standard
parametric and piecewise models) over the successive
data cuts is likely, in part, because of the selected distri-
bution, in addition to data maturity, rather than the
underlying method specifically.

Conclusions

In summary, this case study in advanced melanoma
found that survival modeling techniques that explicitly
assume heterogeneity showed greater accuracy than
other modeling approaches with both early and later
data cuts. Extrapolated survival outcomes from the earli-
est data cut from CheckMate 067 displayed a wide range
of outcomes, with greater agreement across the methods
as data matured. This study highlights the importance of
considering flexible modeling approaches in earlier data
cuts when estimating the long-term survival of immune
checkpoint inhibitors as well as the key role of external
data to validate and support model selection.
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