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Purpose: Obesity is currently a major global public health issue. It has been shown by many that gut microbiota and microbial factors 
regulate the pathogenesis of obesity and metabolic abnormalities, but little is known about their roles in the different degrees of 
obesity. Here, we sought to investigate the microbial signatures of obesity of various severities.
Patients and Methods: We did this by characterizing the intestinal microbiome signature in a Chinese cohort of obese patients and 
healthy controls using 16S rRNA gene sequencing. To this end, obesity was sub-divided into four subgroups, including “Overweight”, 
Class I, Class II, and Class III obesity, based on body mass index (BMI).
Results: Microbial diversity decreased in obese subjects, and the reduction trend was correlated with the severity of obesity. We 
detected an expansion of Escherichia shigella in obese patients compared to healthy controls. The family Eubacterium coprostano-
ligenes and Tannerellaceae, the genera Eubacterium coprostanoligenes, Lachnospiraceae NK4A136, Parabacteroides, and 
Akkermansia, and the species Prevotella copri were microbial biomarkers of healthy people. Gammaproteobacteria and 
Enterobacterales were biomarkers of being “Overweight”. Erysipelatoclostridiaceae was a biomarker of Class I obesity. The class 
Bacilli and the order Lactobacillales were both biomarkers of Class II obesity. Negativicutes was a biomarker of Class III obesity. We 
further established relationships between this microbiome data and other biochemical data, including albumin, low-density lipoprotein 
(LDL), high-density lipoprotein (HDL), vitamin folic acid (FA) and vitamin B12 (VB12), and Interleukin-6 (IL-6) levels. Function 
prediction results showed a marked energy metabolism dysbiosis in obesity, especially in patients with Class III obesity.
Conclusion: These results suggested that people with different levels of obesity had distinct gut microbial signatures. Decreased 
microbial diversity, depletion of some specific taxa, and deviation in potential functions mirrored the severity of obesity in this cohort.
Keywords: body mass index, degree of obesity, fecal microbiota, 16S rRNA sequencing

Introduction
As a major modern global health issue, unhealthy weight such as overweight and obesity has been shown to be driven by 
multiple complex factors in China.1 Overweight and obesity have been evinced to contribute to 11.1% of deaths 
associated with non-communicable diseases (NCDs) in 2019, which in turn resulted in substantial national health 
expenditure for the management of NCDs (Institute for Health Metrics and Evaluation. http://ghdx.healthdata.org/gbd- 
results-tool [Accessed Dec 21, 2021]).2 Obesity is a complicated dysfunction of appetite regulation and energy 
metabolism regulated by unique biological factors. It is generally accepted that obesity in adults can be classified into 
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3 types (class I, II, and III), based on body mass index (BMI) cutoffs according to the National Heart, Lung, and Blood 
Institute (NHLBI, https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm [accessed Dec 21, 2021]) and 
the World Health Organization (WHO).3 Unfortunately, similar definitions in China are lacking. With the degree or 
severity of obesity increasing in subjects, it can be estimated that the disease risk for type 2 diabetes (T2D), hypertension, 
cardiovascular diseases (CVD), and mortality will increase. These diseases are linked with deviations in gut microbiota, 
as is obesity.4 Thus, researchers have focused on excavating the microbiota traits from different severities of obese 
populations.

For years, significant evidence has indicated that gut microbiota, in particular bacteria, play a central role in human 
diseases and wellness, due to their huge genomic content and metabolic complement.4,5 The microbiota present in the 
human body now seems to have the potential to provide innovative biomarkers of many diseases, including obesity. 
Accordingly, characterizing microbial biomarkers from microbiota profiles has great potential for translational and 
precision medicine.6 The gut microbiome has been extensively studied over the past years with regards to obesity, 
while many works have only considered BMI classes in their study designs for distinguishing between obese, over-
weight, and lean subjects.7–9 Previous studies have reported that the gut microbiota in obese subjects were markedly 
worse than those in overweight and lean control subjects.7,9 However, to our knowledge, the gut microbiota alterations in 
subjects with different degrees of obesity have not yet been extensively studied.

In this context, we tested the hypothesis that the more severe obesity was, the worse the gut microbiota would be in 
a Chinese cohort as assessed by 16S rRNA metagenomic sequencing. Fecal samples were collected from normal and 
obese individuals. Obesity was further classified into “Overweight”, Class I, Class II, and Class III groups according to 
WHO criteria. Blood samples were also collected from obese patients to analyze obesity-related biochemical data and its 
association with microbiome profiles. Our results demonstrated the relationship of gut microbiota alterations to the 
severity of obesity and shed light on potential microbiome-focused strategies for the prevention or treatment of different 
degrees of obesity.

Materials and Methods
Study Participants and Design
According to the China National Nutrition and Health Survey (CNNHS) data, a BMI of ≥ 28 kg/m2 in Chinese adults 
indicates obesity.1 We studied fecal microbiota in 92 subjects including a total of 36 normal people and 56 obese patients 
whose ages ranged from 18 to 52 years. The obese patients were hospitalized patients (BMI ≥ 28 kg/m2) before bariatric 
surgery at the Third People’s Hospital of Chengdu, Chengdu, China between September 2019 and October 2020. Most of 
them presented obesity-related comorbidities, such as type 2 diabetes (10 / 56), hypertension (13 / 56), hyperuricemia 
(30 / 56), hyperlipoidemia (18 / 56), fatty liver (53 / 56), and obstructive sleep apnea syndrome (41 / 56). Normal control 
subjects were healthy volunteers. Subjects less than 18 years of age were excluded from this study. Fecal samples were 
collected and transported immediately to the laboratory and stored at −80°C. Blood was taken from obese patients in 
order to assess blood albumin, uric acid (UA), alanine aminotransferase (ALT), glycated hemoglobin (HbA1c), aspartate 
transaminase (AST), cholesterol, triglyceride (TG), folic acid (FA), high-density lipoprotein (HDL), low-density lipo-
protein (LDL), homocysteine (Hcy), and creatinine (Cr) levels, in addition to other metrics (Table 1). Based on the BMI 
classification criteria of obesity from the WHO, we sub-grouped the obese subjects into “Overweight” (N = 6), Class I (N 
= 20), Class II (N = 14), and Class III (N = 16) (Table 1). Thus, we sought to gain a profound understanding of obesity- 
related microbiota.

Ethics Approval
All content involving human participants in this research complies with the ethical standards of the Declaration of 
Helsinki. This study was approved by the Institutional Ethics Review Board of the Third People’s Hospital of Chengdu 
(record #: 2018S75; Chengdu, Sichuan, China), and was conducted following the Chinese ethical guidelines for human 
genome/gene research.
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Fecal DNA Extraction and Sequencing
Total genome DNA from fecal samples was extracted using the hexadecyl trimethyl ammonium bromide (CTAB)/sodium 
dodecyl sulfate (SDS) method. DNA concentration and purity were monitored using 1% agarose gels. Based one 
concentration, DNAs were diluted to 1 ng/μL using sterile water. The 16S rRNA gene V3–V4 region was amplified 
using a specific primer (341F: CCTAYGGGRBGCASCAG; 806R: GGACTACNNGGGTATCTAAT) with unique bar-
codes. All PCR reactions used Phusion® High-Fidelity PCR Master Mix (New England Biolabs). Sequencing was 
performed on an Illumina HiSeq2500 platform and 250 bp paired-end reads were generated.

Microbial Data Processing and Analysis
Reads were processed and analyzed using QIIME 2 2022.210 and the R microeco package (v0.9.0) in R 4.1.011 (R Core 
Team 2021). Raw sequence data were demultiplexed and quality filtered using the q2-demux plugin, followed by 
denoising with DADA212 (via q2-dada2). All amplicon sequence variants (ASVs) were aligned with mafft13 (via q2- 
alignment) and used to construct a phylogenic tree with fasttree214 (via q2-phylogeny). For the taxonomic assignment, 
the weighted SILVA 138 99% OTUs classifier15 was used (via q2-feature-classifier).16 The file2meco package (https:// 
github.com/ChiLiubio/file2meco) was used for data input from QIIME2. The PICRUSt2 (v2.5.0) (Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States) workflow was applied for the prediction of 

Table 1 Baseline Patient Characteristics by Obesity Category

Characteristics “Overweight” N (%) Class I N (%) Class II N (%) Class III N (%) P (K-W) a

Sex (Female) 6 (100) 13 (65) 11 (78.6) 10 (62.5) 0.269

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age (y) 38.5 (9.87) 30.3 (7.41) 32.8 (7.76) 30.8 (6.52) 0.262

Chest circumference (cm) 98 (3.9) 107 (5.83) 114 (3.69) 125 (9.29) <.001

Biceps circumference (cm) 34 (0.868) 40.6 (16.6) 40.7 (1.47) 46.1 (6.38) <.001

Thigh circumference (cm) 55.9 (1.27) 60.9 (2.76) 64 (2.23) 66.6 (16.6) <.001

Abdominal circumference (cm) 95.7 (5.82) 107 (7.35) 120 (6.26) 129 (12) <.001

Hip circumference (cm) 102 (2.1) 110 (3.67) 111 (21.2) 130 (9.84) <.001

ALT (u/L) 19.8 (10.9) 57.3 (36.2) 57.3 (56.2) 42.3 (24.9) 0.007 b

AST (u/L) 28.3 (11.4) 35.3 (16) 41.5 (35.2) 28.7 (12.3) 0.455

Albumin (g/L) 38.4 (4.05) 41.8 (2.93) 41.6 (3.46) 40.6 (2.56) 0.187

Hcy (μmol/L) 11.8 (5.34) 13.1 (8.95) 11 (1.63) 14.8 (7.62) 0.68

HDL (mmol/L) 1.3 (0.222) 1.05 (0.189) 1.11 (0.151) 1.1 (0.192) 0.108

LDL (mmol/L) 3.04 (0.271) 2.86 (0.82) 3.33 (0.365) 2.75 (0.386) 0.02 b

UA (μmol/L) 348 (91.1) 449 (145) 498 (105) 483 (122) 0.107

TG (mmol/L) 1.27 (0.514) 1.86 (0.71) 2.6 (1.54) 1.55 (0.663) 0.01 b

Cholesterol (mmol/L) 4.9 (0.352) 6.77 (9.18) 5.42 (0.62) 4.49 (0.474) 0.012 b

HbA1c (%) 5.35 (0.532) 6.06 (1.41) 5.71 (0.678) 6.39 (1.51) 0.055 c

Notes: aKruskal–Wallis and Dwass-Steel-Critchlow-Fligner pairwise comparison tests. bindicate a significant difference between groups. cindicate a borderline significant 
difference between groups. 
Abbreviations: SD, standard deviation; y, years; ALT, alanine aminotransferase; AST, aspartate transaminase; Hcy, homocysteine; HDL, high-density lipoprotein; LDL, low- 
density lipoprotein; UA, uric acid; TG, triglycerides; HbA1c, glycated hemoglobin.
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metagenome functions of microbiota.17 Correlation network was constructed using the weighted gene co-expression 
network analysis (WGCNA) method by microeco. Visualization of this network was conducted using Gephi (v0.9.2).18

Statistical Analysis
The differences in predicted function outcomes between the groups were compared using STAMP software v2.1.3 (https:// 
beikolab.cs.dal.ca/software/STAMP). Two-sided Welch’s t-tests and Benjamini-Hochberg FDR correction were used for two- 
group analysis. A Kruskal–Wallis H-test with Tukey-Kramer post-hoc test and Eta-squared effect size (P < 0.001, Effect size > 
0.40) were utilized for multiple group analysis. The other statistical analyses were included in microeco. The LDA score cutoff 
was set to 4.0 in LEfSe biomarkers analysis. The clinical data of obese patients was analyzed using the open-source software 
jamovi v2.2.5 with Kruskal–Wallis and Dwass-Steel-Critchlow-Fligner pairwise comparisons tests.

Results
General and Clinical Data on Obesity
There were no significant differences between the four obesity subgroups in terms of sex or age. Chest circumference, 
bicep circumference, thigh circumference, abdominal circumference, and hip circumference parameters were markedly 
different between the four groups. The clinical biochemical data, such as ALT, AST, HDL, LDL, UA, TG, cholesterol, 
and HbA1c levels are shown in Table 1 and Supplementary Table 1. The concentrations of ALT, LDL, TG, and 
Cholesterol differed significantly between these four groups. These results reflected a lipid metabolism dysfunction in 
the different degrees of obesity.

Alterations of Microbiota Pattern in Obese Subjects
We first assessed the microbial changes between healthy and obese subjects. The Shannon diversity was significantly 
decreased in obese subjects, which was accompanied by a very huge community structural shift as depicted by principal 
coordinate analysis (PCoA) of the unweighted Unifrac distance (Figure 1A and 1B, Supplementary Figure 1A). Next, to 
analyze the unique and shared features of healthy controls and obese patients, we performed a Venn analysis using groups 
at the ASV level. Notably, there were no shared ASVs, and the obesity and healthy individuals possessed 6336 (74%) and 
10,373 (26%) unique ASVs, respectively (Figure 1C). Thus, we further analyzed the composition of unique ASVs at the 
species level, and the abundance of Citrobacter europaeus, Bacteroides ovatus, Bacteroides uniformis, Eubacterium 
rectale, Blautia wexlerae, Bacteroides vulgatus, and Prevotella copri divisions dominated the microbiota (Figure 1D). 
Interestingly, one genus, Escherichia shigella, was the sole microbial biomarker in obese subjects and three genera, 
Eubacterium coprostanoligenes, Lachnospiraceae NK4A136, and Parabacteroides in healthy subjects were identified by 
both LEfSe (Figure 1E) and random forest (RF) generation (Supplementary Figure 1B). Furthermore, the potential 
beneficial microbiota Akkermansia, Prevotella, and Butyricicoccus were microbial markers in healthy controls based on 
RF outcomes (Supplementary Figure 1B).

Characterization of Microbiota in Various Severities of Obesity
As shown in Figure 2A, in considering of the degree of obesity, the microbial alpha diversity reduced as the severity of 
obesity increased. The Class III group ranked lowest in Shannon diversity. Except for the Class I and “Overweight” 
groups, the Class II and Class III groups showed no statistical difference, while the other paired groups showed 
a significant difference in terms of their Shannon index. PCoA of the unweighted Unifrac distances also demonstrated 
that the degree of obesity shifted the community structure, although the “Overweight” group showed no difference 
compared to the Class I, Class II, and Class III groups (Figure 2B, Supplementary Figure 2A). These results demon-
strated that the degree of obesity had a profound effect on microbial community diversity.

Similarly, all four obesity subgroups and the normal group had no shared ASVs. In contrast, the four subgroups had 324 
shared ASVs. The numbers of unique ASVs present in the “Overweight”, Class I, Class II, and Class III groups were 649, 
2187, 1221, and 1370, respectively. However, the shared ASVs between these groups were small (Figure 2C). The most 
dominant genera were Bacteroides, Faecalibacterium, Megamonas, Escherichia Shigella, Blautia, Subdoligranulum, 
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Figure 1 Marked microbiota dysbiosis in obesity. (A) Microbial diversity was estimated based on Shannon index in healthy controls (n = 36) and obese (n = 56) subgroups. 
Different lowercase letters indicate significant differences (P < 0.05). (B) Based on the Unweighted Unifrac distance, PCoA was used to show beta diversity between the 
groups. (C) Venn diagram of shared or unique ASVs between healthy controls and obese patients. (D) Relative frequency of the top 8 species in the healthy control and 
obesity subgroups. (E) Microbial biomarker analysis between the groups by Linear discriminant analysis effect size (LEfSe) analysis, LDA score > 4.0.
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Prevotella, Bifidobacterium, Roseburia, and Fusobacterium (Figure 2D, Supplementary Figure 2B). At the species level, 
Megamonas funiformis, Bacteroides plebeius, Bacteroides vulgatus, Blautia wexlerae, Prevotella copri, and Bifidobacterium 
catenulatum were the predominant microbial species (Figure 2E).

Figure 2 Microbial changes between different degrees of obesity. (A) Shannon diversity in subjects from the Normal, “Overweight”, Class I, Class II, and Class III obesity 
groups. Different lowercase letters indicate significant differences (P < 0.05). (B) Beta diversity of Unweighted Unifrac distances in patients from different groups based on 
PCoA. (C) Venn diagram of shared or unique ASVs between the 5 groups. (D) Bar plot of the mean relative abundance of top 15 genera between different groups. (E) Top 
15 taxonomic species are shown for different degrees of obesity.
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Furthermore, LEfSe and RF were applied to investigate the different biomarkers between healthy subjects and the 
four obesity subgroups (Figure 3A and 3B). Prevotellaceae, Prevotella, Prevotella copri, among others, were signifi-
cantly increased in normal people identified by LEfSe. We also found that Akkermansiaceae, Akkermansia, Bacteroides 
ovatus, and Dorea formicigenerans were biomarkers of normal people by RF analysis. Meanwhile, the family 
Eubacterium coprostanoligenes and Tannerellaceae, and the genera Eubacterium coprostanoligenes, Lachnospiraceae 
NK4A136, and Parabacteroides were identified by both methods. Based on LEfSe and RF, Gammaproteobacteria and 
Enterobacterales were biomarkers for the “Overweight” group. Only one taxon, Erysipelatoclostridiaceae, was character-
ized by RF, while no other biomarker was identified through the LEfSe analysis of data from Class I obesity patients. 
Both methods revealed that the class Bacilli and the order Lactobacillales were biomarkers of Class II obesity. The 
bacterial class Negativicutes was a biomarker of Class III obesity as depicted by LEfSe and RF.

Taxa correlation network analysis is a useful approach for studying the co-occurrence patterns in microbial ecology. We 
therefore constructed a network based on the WGCNA method, as shown in Supplementary Figure 3. The network included 
848 nodes and 2524 edges. In this network, all taxa/ASVs (node) were divided into 158 modules (communities). As assigned 
to Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteriota, these nodes revealed a positive correlation (data not shown).

Figure 3 Microbial biomarkers and correlation with different degrees of obesity. (A and B) Biomarker analysis between groups by LEfSe, LDA score > 4.0 (A), and RF (B).
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Correlation Between Microbiota and Biochemical Data in Obesity
We next explored the biochemical data from obese subjects and whether this data had an association with microbiota 
signatures. We found that the concentrations of TG and C-Peptide were negatively correlated with microbial alpha diversity 
(Simpson, Shannon, InvSimpson, Chao1, ACE, Observed Features, and Fisher), especially C-Peptide levels (Figure 4A). 
Additionally, the concentrations of ALT, AST, FA, and HDL were slightly positively correlated with the alpha diversity, 
although this was not significant (Figure 4A). Redundancy Analysis (RDA) was also performed at the genus level 
(Supplementary Figure 4A). Megamonas, Bifidobacterium, Blautia, Escherichia Shigella, Bacteroides, Fusobacterium, 
Faecalibacterium, Romboutsia, Subdoligranulum, and Agathobacter were found to be related to these biochemical factors. 
As such, these biochemical factors might be influenced by these taxa. For instance, Escherichia shigella seemed to influence 
the albumin and LDL levels in obesity. Next, we were interested in which species were associated with these clinic biochemical 
data (Figure 4B). Lactobacillus iners were found to be significantly positively correlated with the concentration of HDL. 
Parasutterella secunda, Butyrivibrio crossotus, and Clostridium saccharogumia were significantly positively correlated with 
FA levels. Moreover, Lactococcus lactis was significantly positively correlated with VB12 levels. Streptococcus parasanguinis 

Figure 4 Relationship within microbiota and obese clinic traits in obesity. (A) Relationship between clinic data and alpha diversity. (B) Correlation analysis between clinic 
data and some important taxa, as detected in RF biomarker analysis. * P < 0.05, ** P < 0.01, *** P < 0.001.
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was significantly positively correlated with IL6 levels. Regression analysis was then applied, and we found that TG level and 
microbial Bray-Curtis distance had a positive relationship in the “Overweight” group (Supplementary Figure 4B).

Changes in Potential Microbial Functions in Different Degrees of Obesity
The potential microbial alterations within different classifications of obesity severity were also investigated (Figure 5). One key 
pathway in obesity was TCA cycle VII (acetate-producers), which showed a degree-specific increasing trend (Figure 5A and B). 
An unexpected and interesting pathway in obesity was taxadiene biosynthesis (engineered), which was shown to be involved in 
the biosynthesis of the anticancer drug taxol (Figure 5A and C). The pathways related to polyamine biosynthesis in obesity 
included the superpathway of polyamine biosynthesis I (Figure 5A and E) / II (Figure 5A and D) and the superpathway of 
arginine and polyamine biosynthesis (Figure 5A and F). In addition, pathways for the biosynthesis of several amino acids were 
significantly upregulated in obesity, including the L-phenylalanine (PWY-6628, Figure 5A and H), L-tyrosine (PWY-6630, 
Figure 5A and G), and arginine pathways. Notably, all obesity Class I, Class II, and Class III groups were significantly higher than 
normal controls in all pathways mentioned above. Meanwhile, the Class III group was significantly higher than the Class I group 
in the pathways of TCA cycle VII (acetate-producers), the superpathway of polyamine biosynthesis I, the superpathway of 
L-tyrosine biosynthesis, and the superpathway of L-phenylalanine biosynthesis. However, the pathways of the urea cycle and 
octane oxidation were overrepresented in the normal group relative to all of the obesity subgroups.

Correlation Between Baseline Microbiota and Weight Loss Achievement After 
Bariatric Surgery
The Spearman correlation between the relative abundance of microbiota and the percentage of excess weight loss (%EWL) 6 
and 12 months (1 year) after surgery was assessed. Members of the family Comamonadaceae and the genus Paraprevotella 
exhibited a positive correlation with both %EWL 6 months and 1 year after surgery. The species Parabacteroides johnsonii, 
the family Leuconostocaceae, and an unknown member from the genus Leuconostoc were positively correlated with %EWL 6 
months after surgery (Figure 6A, Supplementary Table 2). On the contrary, Oscillibacter, UCG−005, Flavonifractor, 
Eubacterium ruminantium group, Dialister pneumosintes, Lactobacillus ruminis, and Bacteroides fragilis presented 
a negative correlation with weight loss (Figure 6A, Supplementary Table 2). Furthermore, the receiver operating characteristic 
(ROC) curve analysis demonstrated that a member from Oscillibacter had the best accuracy (AUC = 0.6114). The AUC for the 
genus UCG−005 reached 0.5995 (Figure 6B).

Discussion
Although gut bacteria have been well-studied in terms of global obesity, there still is an unclear understanding of the microbial 
alterations in relation to the degree of obesity. In the current study, we sequenced 16S rRNA amplicons from participants with 
different degrees of obesity as well as healthy controls. In the context of marked dysbiosis with altered bacterial diversity, 
abundance, and potential functions seen in obesity and different classifications, we provide important evidence that suggests that 
it is very necessary for researchers to further classify obese populations in terms of microbiota. However, the challenge remains in 
terms of how we classify this data scientifically, meaningfully, and statistically.

Many studies have linked an altered gut microbiome to obesity. The gut microbiome in obesity has been characterized by 
lower diversity, which is consistent with the present study.19 Notably, our study demonstrated that the more severe obesity was, 
the lower the bacterial diversity was. No shared features were seen between obese patients and healthy people, and even 
among the obesity subgroups there were modest common features. Our Venn diagram results seemed to be odd, thus larger 
populations are needed to further verify our findings. Regardless, the bacterial phyla mainly consisted of Firmicutes, 
Bacteroidota, Proteobacteria, and Actinobacteriota, irrespective of the patient. The difference was represented mostly in the 
abundance of Firmicutes and Bacteridota (somewhere in the ratio of the Firmicutes/Bacteridota).20 Fewer Bacteridota were 
observed in obese patients, but the relative abundance of Firmicutes was much similar. To date, research on the gut 
microbiome profiles in obese and non-obese subjects has reported conflicting findings.19 Due to the recently updated release 
of taxonomic references (Silva v138), the current study more accurately explored the bacterial composition at all taxonomic 
levels, especially at the species level.
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Figure 5 Alterations in the predicted metagenome functions in different obesity classes. (A) Heatmap of significantly different pathways between different groups. P < 0.001, 
Effect size > 0.4. (B-H) Key pathways in obesity: TCA cycle VII (acetate-producers) (B), taxadiene biosynthesis (engineered) (C), superpathway of polyamine biosynthesis II 
(D), superpathway of polyamine biosynthesis I (E), superpathway of arginine and polyamine biosynthesis (F), superpathway of L-tyrosine biosynthesis (G), and superpathway 
of L-phenylalanine biosynthesis (H).
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Akkermansiaceae and Akkermansia were markedly increased in healthy subjects compared to any classifications of 
obesity. Indeed, interventional studies with certain Akkermansia muciniphila strains have shown an anti-obesogenic effect 
in both humans and rodents.21,22 Moreover, a lack or decreased abundance of A. muciniphila could mirror a thin mucus layer 
and thus, an increased translocation of pro-inflammatory bacterial toxins, potentially leading to metabolic disturbances.23,24 In 
addition, Prevotellaceae, Prevotella, and Prevotella copri were also markedly abundant in healthy subjects. The genus 

Figure 6 Correlation between baseline gut microbiota and weight loss achievement after bariatric surgery. (A) Spearman correlation network of microbiota and weight loss. 
Node and edge sizes indicate the degree and absolute values of the correlation, respectively. Edges represent the interaction between nodes, and negative and positive 
correlations are denoted by dashed gray lines and solid yellow lines, respectively. (B) Receiver operating characteristic (ROC) analysis of the microbiota signature for the 
relationship of microbiota and weight loss.
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Prevotella is part of the family Prevotellaceae, and P. copri is the most recognized and relevant member of human gut 
Prevotella spp.25 In non-Western populations, Prevotella spp. tend to dominate gut microbiota.26–28 A study including over 
1000 persons revealed Prevotella copri to be potentially beneficial in glucose homeostasis and host metabolism.29 These 
results can explain the bloom of Akkermansia and Prevotella copri in healthy controls due to their benefits for health. In 
addition, Bacteroides ovatus is known to be a prominent member of human Bacteroidales spp, and were found to be increased 
in healthy subjects in the present study. This species can extensively utilize polysaccharides in a pattern of commensalism with 
other species.30 In gnotobiotic animals, Horvath and colleagues31 very recently found Bacteroides ovatus to be a producer of 
short-chain fatty acids (SCFAs), which are not only linked to immune function but also involved in nervous system 
modulation. Furthermore, Bacteroides ovatus was also recently identified to induce the production of gut IgA, and eventually 
benefit host gut homeostasis and immune health.32 Inconsistent with the current study, Dorea formicigenerans previously 
considered a biomarker of obesity, was significantly abundant in healthy subjects.33

Overall, our work identified Escherichia shigella as a biomarker of obesity, which was recently reported to have an 
association with nonalcoholic fatty liver disease (NAFLD).34 This can be explained by the fact that almost all obesity 
patients recruited in the current study had fatty liver comorbidities. Supporting our results that Gammaproteobacteria and 
Enterobacterales were biomarkers of the “Overweight” group, the most diverse class of gram-negative bacteria was 
Gammaproteobacteria, and this included several human pathogens. Moreover, Enterobacterales is a large order of 
intestinal bacteria belonging to the Gammaproteobacteria. Class I obesity could be characterized by an enrichment in 
Erysipelatoclostridiaceae. Members of Erysipelatoclostridiaceae have been shown to be associated with infectious 
diseases. Known as lactic acid bacteria (LAB), the order Lactobacillales ferments carbohydrates into lactic acid. Thus, 
they are generally considered probiotics. However, the enrichment in Lactobacillales was observed in Class II obesity 
patients. A diet intervention study in animals demonstrated that insoluble dietary fiber (soybean) could increase the 
relative abundance of potentially beneficial Lactobacillales in high-fat diet-induced obesity mice.35 Additionally, Bacilli 
was also a biomarker of Class II obesity, which is usually associated with the spoilage of food resulting in potential 
pathogens. Importantly, these results suggest that this result may be an effect of diet. Several studies have shown that the 
class Negativicutes is enriched in advanced NAFLD or cirrhosis patients.36–38 This shift was consistent with our studies 
of microbial populations in Class III obesity with fatty liver, which indicated that the patients from this group may have 
worse fatty livers than other patients. A very new study also provides key evidence that a high abundance of 
Negativicutes represents the high severity of steatosis.39

In this study, we established some relationships between the microbiota and biochemical data, such as albumin, LDL, 
HDL, vitamins FA and VB12, and IL6. The gut microbiota supplies its host with energy by releasing enzymes and 
metabolites such as short-chain fatty acids (SCFAs), amino acids, bile acids (BAs), vitamins, succinate, branched-chain 
amino acids (BCAAs), and lipopolysaccharide (LPS).40,41 In the current study, the biomarker Escherichia shigella was 
shown to have a connection with albumin and LDL in obesity, while Lactobacillus iners was shown to be connected with 
the concentration of HDL. Folic acid is an important substrate for the synthesis of methyl donors and as an essential 
water-soluble vitamin metabolized by the intestinal microbiome and the human body.42 Additional folic acid supple-
mentation can attenuate liver injury under a high-fat diet (HFD), and ameliorate liver lipid accumulation.43,44 Thus, 
Parasutterella secunda, Butyrivibrio crossotus, and Clostridium saccharogumia, which are related to FA, might be 
potential targets for regulating the production of FA to ameliorate fatty liver. Vitamin B12 is an important nutrient for 
humans and animals, and acts as a key coenzyme in numerous mitochondrial and cytosolic pathways.45 Lactococcus 
lactis was shown to be significantly positively correlated with VB12. Li et al46 revealed the anti-inflammatory potential 
of the Streptococcus parasanguinis, which exhibited a significantly positive correlation with IL6 in our study.

All ASVs were related to 398 pathways in total. When we filtered by the P value (P < 0.001), there were 123 marked 
microbial pathways among the different degrees of obesity and healthy people (data not shown). Then, with further 
filtering (effect size > 0.4), 14 significant pathways were identified. Generally speaking, functions of energy metabolism 
dysbiosis were marked in obesity, especially in Class III obesity. It has been well-documented that obesity can be 
characterized by a dysfunction of energy metabolism. The TCA pathway is very common, existing in all aerobic living 
organisms and even in some anaerobic bacteria. For instance, acetic acid bacteria can oxidize ethanol to acetate. A study 
has reported the presence of the pathway TCA cycle VII (acetate-producers) in diverse bacterial groups, including 
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microbial symbionts of humans.47 In addition, polyamine biosynthesis is a key microbial pathway in obesity, and has 
been shown to be vital for survival. In line with this, polyamine biosynthesis is a proper target for drug design in bacteria 
targeting obesity.48 L-tyrosine and its precursor L-phenylalanine are in high demand in microbiota in obesity. 
Accordingly, tyrosine might be a potential therapy for cognitive and mood problems associated with the maintenance 
of reduced body weight in the treatment of obesity.49 This suggests a potential microbial response for preventing weight 
gain in obese people.

The correlation results of the baseline microbiota and weight loss indicated that preoperative gut microbiota could 
affect bariatric surgery outcomes. In particular, members of Comamonadaceae were positively correlated with weight 
loss. Betaproteobacteria survive on copious amounts of organic nutrients, whereas Comamonadaceae showed a positive 
correlation with weight loss. A recent study using Mendelian randomization analysis established a significant causal 
effect between Oscillibacter and decreasing blood triglyceride.50 In comparison, our results indicate that this baseline gut 
taxon was negatively correlated with weight loss. It is possible that its abundance may pronouncedly increase after 
surgery, although this assumption requires further verification. Recently, Zhang et al reported that the baseline gut 
microbiota could serve as a positive predictor to predict weight loss after dietary intervention.51 As such, we believe that 
baseline gut microbiota has the potential to serve as a guide for clinical applications to develop more effective weight 
loss strategies.

However, we also must acknowledge the several limitations of our study. The current study was an in silico microbiota 
analysis of bacterial abundance levels based on 16S rRNA gene sequencing. Thus, such in silico-based microbiota inferences 
need further functional verification. Meanwhile, to understand the functional interaction of microbiota in diseases, we require 
comprehensive approaches like meta-proteomics and meta-metabolomics for more direct data on the functional properties of 
the microbiome. In addition, due to our study design, we could not separate cause from consequence. Importantly, detailed 
diet questionnaires should be included to explore any dietary effects. Longitudinal studies and larger cohorts with well- 
documented disease characteristics are therefore warranted in the future.

Conclusion
In summary, our work demonstrated that different degrees of obesity have distinct gut microbial signatures. Decreasing 
microbial diversity, depletion of some specific taxa, and deviation in the potential functions all reflected the severity of 
obesity. Members of genera Eubacterium coprostanoligenes, Lachnospiraceae NK4A136, Akkermansia, and 
Parabacteroides might be potential taxa for intervening in obesity regarding different degrees of obesity. Furthermore, 
three species, Prevotella copri, Bacteroides ovatus, and Dorea formicigenerans also showed great potential to regulate 
obesity. In contrast, a strategy that targets the inhibition of certain taxa in different obesity groups might be another way 
to improve obesity.

Data Sharing Statement
The raw sequence data reported in this study have been deposited in the Genome Sequence Archive in the National 
Genomics Data Center (NGDC), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese 
Academy of Sciences (GSA: CRA007762). They are available at https://ngdc.cncb.ac.cn/gsa.

Acknowledgments
We respectfully acknowledge our participants, who selflessly helped to complete this project.

Author Contributions
All authors have contributed significantly to the work reported, whether that is in the conception, study design, execution, 
acquisition of data, analysis and interpretation or in all these areas; they have participated in drafting, revising, or 
critically reviewing the article; they approved the final version to be published; they have agreed on the journal to which 
the article has been submitted; and they agree to be accountable for all aspects of the work.

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15                                               https://doi.org/10.2147/DMSO.S387523                                                                                                                                                                                                                       

DovePress                                                                                                                       
3945

Dovepress                                                                                                                                                               Hu et al

Powered by TCPDF (www.tcpdf.org)

https://ngdc.cncb.ac.cn/gsa
https://www.dovepress.com
https://www.dovepress.com


Funding
Funds to support this work were provided by the National Natural Science Foundation of China [82170887 to LYJ]; 
Chengdu High-level Key Clinical Specialty Construction Project [LYJ]; and the Science and Technology Project of The 
Health Planning Committee of Sichuan Municipality [20PJ211 to YQ].

Disclosure
The authors report no conflicts of interest in this work.

References
1. Pan X-F, Wang L, Pan A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021;9(6):373–392. doi:10.1016/ 

S2213-8587(21)00045-0
2. Qin X, Pan J. The Medical Cost Attributable to Obesity and Overweight in China: estimation Based on Longitudinal Surveys. Health Econ. 

2016;25(10):1291–1311. doi:10.1002/hec.3217
3. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii, 

1–253.
4. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–1032. doi:10.1136/gutjnl-2021- 

326789
5. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. doi:10.1038/s41579-020-0433-9
6. Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat 

Commun. 2020;11(1):5206. doi:10.1038/s41467-020-18871-1
7. Bervoets L, Van Hoorenbeeck K, Kortleven I, et al. Differences in gut microbiota compos between obese and lean children. Gut Pathog. 2013;5:10. 

doi:10.1186/1757-4749-5-10
8. Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian 

population. BMC Microbiol. 2017;17(1):120. doi:10.1186/s12866-017-1027-1
9. Yun Y, Kim HN, Kim SE, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 

2017;17(1):151. doi:10.1186/s12866-017-1052-0
10. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat 

Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9
11. Liu C, Cui Y, Li X, Yao M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2021;97:2. 

doi:10.1093/femsec/fiaa255
12. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. 

Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869
13. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic 

Acids Res. 2002;30(14):3059–3066. doi:10.1093/nar/gkf436
14. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. 

doi:10.1371/journal.pone.0009490
15. Kaehler BD, Bokulich NA, McDonald D, Knight R, Caporaso JG, Huttley GA. Species abundance information improves sequence taxonomy 

classification accuracy. Nat Commun. 2019;10(1):4643. doi:10.1038/s41467-019-12669-6
16. Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature- 

classifier plugin. Microbiome. 2018;6(1):90. doi:10.1186/s40168-018-0470-z
17. Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–688. doi:10.1038/ 

s41587-020-0548-6
18. Bastian M, Heymann S, Jacomy M. Gephi: an Open Source Software for Exploring and Manipulating Networks. Int AAAI Conf Weblogs Soc 

Media. 2009;3(1):548.
19. Pinart M, Dotsch A, Schlicht K, et al. Gut Microbiome Composition in Obese and Non-Obese Persons: a Systematic Review and Meta-Analysis. 

Nutrients. 2021;14:1. doi:10.3390/nu14010012
20. Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes Ratio: a Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 

2020;12:5. doi:10.3390/nu12051474
21. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of- 

concept exploratory study. Nat Med. 2019;25(7):1096–1103. doi:10.1038/s41591-019-0495-2
22. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves 

metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–113. doi:10.1038/nm.4236
23. Brahe LK, Le Chatelier E, Prifti E, et al. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr 

Diabetes. 2015;5(6):e159–e159. doi:10.1038/nutd.2015.9
24. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. 

Nat Rev Gastroenterol Hepatol. 2022.
25. Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. 2021;19 

(9):585–599. doi:10.1038/s41579-021-00559-y
26. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and 

rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–14696. doi:10.1073/pnas.1005963107
27. Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;357 

(6353):802–806. doi:10.1126/science.aan4834

https://doi.org/10.2147/DMSO.S387523                                                                                                                                                                                                                               

DovePress                                                                                             

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15 3946

Hu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/S2213-8587(21)00045-0
https://doi.org/10.1016/S2213-8587(21)00045-0
https://doi.org/10.1002/hec.3217
https://doi.org/10.1136/gutjnl-2021-326789
https://doi.org/10.1136/gutjnl-2021-326789
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.1038/s41467-020-18871-1
https://doi.org/10.1186/1757-4749-5-10
https://doi.org/10.1186/s12866-017-1027-1
https://doi.org/10.1186/s12866-017-1052-0
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1093/femsec/fiaa255
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1038/s41467-019-12669-6
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.3390/nu14010012
https://doi.org/10.3390/nu12051474
https://doi.org/10.1038/s41591-019-0495-2
https://doi.org/10.1038/nm.4236
https://doi.org/10.1038/nutd.2015.9
https://doi.org/10.1038/s41579-021-00559-y
https://doi.org/10.1073/pnas.1005963107
https://doi.org/10.1126/science.aan4834
https://www.dovepress.com
https://www.dovepress.com


28. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. 
doi:10.1038/nature11053

29. Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1098 deeply phenotyped individuals. 
Nat Med. 2021;27(2):321–332. doi:10.1038/s41591-020-01183-8

30. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533(7602):255–259. 
doi:10.1038/nature17626

31. Horvath TD, Ihekweazu FD, Haidacher SJ, et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and 
neurotransmitters. iScience. 2022;25(5):104158. doi:10.1016/j.isci.2022.104158

32. Yang C, Mogno I, Contijoch EJ, et al. Fecal IgA Levels Are Determined by Strain-Level Differences in Bacteroides ovatus and Are Modifiable by 
Gut Microbiota Manipulation. Cell Host Microbe. 2020;27(3):467–475 e466. doi:10.1016/j.chom.2020.01.016

33. Companys J, Gosalbes MJ, Pla-Paga L, et al. Gut Microbiota Profile and Its Association with Clinical Variables and Dietary Intake in Overweight/ 
Obese and Lean Subjects: a Cross-Sectional Study. Nutrients. 2021;13:6. doi:10.3390/nu13062032

34. Xin FZ, Zhao ZH, Liu XL, et al. Escherichia fergusonii Promotes Nonobese Nonalcoholic Fatty Liver Disease by Interfering With Host Hepatic 
Lipid Metabolism Through Its Own msRNA 23487. Cell Mol Gastroenterol Hepatol. 2022;13(3):827–841. doi:10.1016/j.jcmgh.2021.12.003

35. Wang B, Yu H, He Y, et al. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut 
microbiota. Food Funct. 2021;12(17):7923–7937. doi:10.1039/D1FO00078K

36. Iebba V, Guerrieri F, Di Gregorio V, et al. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota 
features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Sci Rep. 2018;8(1):8210. doi:10.1038/s41598-018- 
26509-y

37. Loomba R, Seguritan V, Li W, et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human 
Nonalcoholic Fatty Liver Disease. Cell Metab. 2017;25(5):1054–1062.e1055. doi:10.1016/j.cmet.2017.04.001

38. Oh TG, Kim SM, Caussy C, et al. A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metab. 2020;32(5):878–888 e876. 
doi:10.1016/j.cmet.2020.06.005

39. Zeybel M, Arif M, Li X, et al. Multiomics Analysis Reveals the Impact of Microbiota on Host Metabolism in Hepatic Steatosis. Adv Sci. 2022;9 
(11):2104373. doi:10.1002/advs.202104373

40. Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol. 2017;13 
(1):11–25. doi:10.1038/nrendo.2016.150

41. Han H, Yi B, Zhong R, et al. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome. 2021;9 
(1):162. doi:10.1186/s40168-021-01093-y

42. Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, 
oxidative stress and inflammation in rats. Nutr Metab. 2013;10(1):20. doi:10.1186/1743-7075-10-20

43. Ojeda ML, Rua RM, Nogales F, Díaz-Castro J, Murillo ML, Carreras O. The Benefits of Administering Folic Acid in Order to Combat the 
Oxidative Damage Caused by Binge Drinking in Adolescent Rats. Alcohol Alcoholism. 2016;51(3):235–241. doi:10.1093/alcalc/agv111

44. Xin FZ, Zhao ZH, Zhang RN, et al. Folic acid attenuates high-fat diet-induced steatohepatitis via deacetylase SIRT1-dependent restoration of 
PPARalpha. World j Gastroenterol. 2020;26(18):2203–2220. doi:10.3748/wjg.v26.i18.2203

45. Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: 
from Ecosystems to Industrial Biotechnology. Int J Mol Sci. 2021;22:9. doi:10.3390/ijms22094522

46. Li S, Li N, Wang C, et al. Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis 
Strains. Front Nutr. 2022;9:798403. doi:10.3389/fnut.2022.798403

47. Kwong WK, Zheng H, Moran NA. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat Microbiol. 2017;2:17067. 
doi:10.1038/nmicrobiol.2017.67

48. Gevrekci A. The roles of polyamines in microorganisms. World J Microbiol Biotechnol. 2017;33(11):204. doi:10.1007/s11274-017-2370-y
49. Hao S, Avraham Y, Bonne O, Berry EM. Separation-induced body weight loss, impairment in alternation behavior, and autonomic tone: effects of 

tyrosine. Pharmacol Biochem Behav. 2001;68(2):273–281. doi:10.1016/S0091-3057(00)00448-2
50. Liu X, Tong X, Zou Y, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. 

Nat Genet. 2022;54(1):52–61. doi:10.1038/s41588-021-00968-y
51. Zhang S, Wu P, Tian Y, et al. Gut Microbiota Serves a Predictable Outcome of Short-Term Low-Carbohydrate Diet (LCD) Intervention for Patients 

with Obesity. Microbiology Spectrum. 2021;9(2):e0022321. doi:10.1128/Spectrum.00223-21

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy                                                      Dovepress 

Publish your work in this journal 
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy is an international, peer-reviewed open-access journal committed to the rapid 
publication of the latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, 
review, case reports, hypothesis formation, expert opinion and commentaries are all considered for publication. The manuscript management 
system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress. 
com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/diabetes-metabolic-syndrome-and-obesity-targets-and-therapy-journal

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15                                           DovePress                                                                                                                       3947

Dovepress                                                                                                                                                               Hu et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1038/nature11053
https://doi.org/10.1038/s41591-020-01183-8
https://doi.org/10.1038/nature17626
https://doi.org/10.1016/j.isci.2022.104158
https://doi.org/10.1016/j.chom.2020.01.016
https://doi.org/10.3390/nu13062032
https://doi.org/10.1016/j.jcmgh.2021.12.003
https://doi.org/10.1039/D1FO00078K
https://doi.org/10.1038/s41598-018-26509-y
https://doi.org/10.1038/s41598-018-26509-y
https://doi.org/10.1016/j.cmet.2017.04.001
https://doi.org/10.1016/j.cmet.2020.06.005
https://doi.org/10.1002/advs.202104373
https://doi.org/10.1038/nrendo.2016.150
https://doi.org/10.1186/s40168-021-01093-y
https://doi.org/10.1186/1743-7075-10-20
https://doi.org/10.1093/alcalc/agv111
https://doi.org/10.3748/wjg.v26.i18.2203
https://doi.org/10.3390/ijms22094522
https://doi.org/10.3389/fnut.2022.798403
https://doi.org/10.1038/nmicrobiol.2017.67
https://doi.org/10.1007/s11274-017-2370-y
https://doi.org/10.1016/S0091-3057(00)00448-2
https://doi.org/10.1038/s41588-021-00968-y
https://doi.org/10.1128/Spectrum.00223-21
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com
https://www.dovepress.com

	Introduction
	Materials and Methods
	Study Participants and Design
	Ethics Approval
	Fecal DNA Extraction and Sequencing
	Microbial Data Processing and Analysis
	Statistical Analysis

	Results
	General and Clinical Data on Obesity
	Alterations of Microbiota Pattern in Obese Subjects
	Characterization of Microbiota in Various Severities of Obesity
	Correlation Between Microbiota and Biochemical Data in Obesity
	Changes in Potential Microbial Functions in Different Degrees of Obesity
	Correlation Between Baseline Microbiota and Weight Loss Achievement After Bariatric Surgery

	Discussion
	Conclusion
	Data Sharing Statement
	Acknowledgments
	Author Contributions
	Funding
	Disclosure

