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This study presents a model-based sensitivity analysis of the strength of voluntary muscle contraction with respect to different
patterns of motor unit loss. A motor unit pool model was implemented including simulation of a motor neuron pool, muscle
force, and surface electromyogram (EMG) signals. Three different patterns of motor unit loss were simulated, including (1)
motor unit loss restricted to the largest ones, (2) motor unit loss restricted to the smallest ones, and (3) motor unit loss
without size restriction. The model outputs including muscle force amplitude, variability, and the resultant EMG-force
relation were quantified under two different motor neuron firing strategies. It was found that motor unit loss restricted to
the largest ones had the most dominant impact on muscle strength and significantly changed the EMG-force relation,
while loss restricted to the smallest motor units had a pronounced effect on force variability. These findings provide
valuable insight toward our understanding of the neurophysiological mechanisms underlying experimental observations of
muscle strength, force control, and EMG-force relation in both normal and pathological conditions.

1. Introduction

Voluntary muscle activation is mainly controlled by motor
unit recruitment and rate modulation. Neurological disorders
can influence motor unit properties, contributing to muscle
atrophy, contracture, weakness, unstable force output, and
altered electromyogram- (EMG-) force relationship. For
example, previous studies have revealed various changes in
motor unit properties of poststroke patients, such as loss of
functional motor units [1–6], impaired motor unit control
properties (reduced motor unit peak firing rates and com-
pressed ranges of motor unit recruitment) [7–10], and altered
motor unit morphological features [11–13]. These factors sig-
nificantly impair muscle force generation and the EMG-force
relation. Muscle strength of hemispheric stroke patients is
profoundly weaker for the paretic side compared with the con-
tralateral side or neurologically intact subjects. The slope of
the EMG-force relation of the paretic first dorsal interosseous

and biceps brachii muscles was reported to be significantly
greater in hemiparetic stroke survivors compared with the
contralateral or neurologically intact muscles [7, 14].

By using an experimental approach, it is difficult to quan-
tify the relative contribution of each of the various motor unit
property alterations to muscle weakness and the EMG-force
relation. To overcome this difficulty, a classic motor neuron
pool model, developed by Fuglevand et al. [15], has been
widely used to better understand the experimental observa-
tions of the force and EMG signals and explore the mecha-
nisms of motor impairment [16–18]. For example, Shin
et al. [19] and Zhou et al. [20] have used the model to explore
the effect of motor unit control property (recruitment and
firing rate) changes on muscle weakness and the EMG-
force relation.

Among different motor unit properties, loss of functional
motor units plays a very important role in influencing muscle
strength, force variability, and the EMG-force relation. Some
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studies reported that small motor units (with low recruit-
ment thresholds) were more affected after a neurological
injury [13], while others found that large motor units (with
high recruitment thresholds) were more susceptible to atro-
phy [21]. It still remains unclear whether motor unit loss
occurred randomly or in a specific pattern. Therefore, the
objective of this study was to explore the effects of different
patterns of motor unit loss on muscle strength, force variabil-
ity, and the EMG-force relation. This was performed by vary-
ing the model input with three different patterns of motor
unit loss, including motor unit loss restricted to the largest
ones, motor unit loss restricted to the smallest ones, and
motor unit loss without any size restriction.

The Fuglevand model [15] was used in this study. Each
pattern of motor unit loss was simulated under two different
motor neuron firing strategies. The resultant muscle force
amplitude, force variability, and the EMG-force relation under
different conditions were compared. The findings of this study
can help better understand experimental muscular force and
surface EMG recordings in both healthy and pathological con-
ditions and facilitate identification of specific motor unit
mechanisms underlying observed alterations in overall muscle
force and EMG activities. Such analyses in turn can help
design appropriate rehabilitation strategies to improve muscle
function by targeting the identified motor unit alterations.

2. Methods

There are three main components contained in the motor unit
pool model used in this study: a motor neuron pool model, a
force generation model, and a surface EMG model [15].

2.1. Motor Neuron Pool Model. A motor neuron pool inner-
vating 120 motor units was simulated. Each motor unit had
a recruitment threshold (RTE), which is the minimum excit-
atory drive needed to trigger the motor unit to discharge. The
RTE was expressed as an exponential function as Equation
(1). In Equation (1), RR is the range of recruitment threshold
between the first and last motor units in the pool, i is an index
identifying each motor unit, and ln is the natural logarithm.
According to Equation (1), most of the motor units would
be recruited at relatively lower excitation levels. In our study,
once the excitatory drive exceeded the RTE, the motor unit
started to discharge at a minimum firing rate (MFR) of 8
Hz. RR of the motor unit pool was assigned to be 40% excita-
tion (i.e., the last motor neuron was recruited at 40% maxi-
mum excitation).

RTE ið Þ = e lnRR/nð Þ∙i: ð1Þ

The firing rate (FR) of each motor unit was modeled to
increase linearly until the peak firing rate (PFR) was reached.
To simulate the stochastic nature of motor neuron discharge,
the interspike interval of the motor unit firing was modeled
as a random process with a Gaussian probability distribution
function. The standard deviation of the interspike interval
was fixed for all motor units at 20% of the mean interspike
interval as used in the original model [15]. Two motor neu-
ron firing rate patterns were simulated. The first pattern is

called the “onion skin” pattern, in which the PFR of each
motor unit was inversely proportional to its RTE. Therefore,
the PFRs of later recruited large motor units were lower than
the early recruited small ones. On the contrary, the other pat-
tern is called the reverse “onion skin” pattern, meaning that
the PFRs of large motor units were assigned to be higher than
the small motor units. In both firing strategies, the gain
between the firing rate and excitatory input was set to be
the same for all motor units. The FR of each motor unit at
a given time was governed by Equation (2) until it reached
its PFR, where EðtÞ was the excitatory drive. Figure 1 shows
the two different motor neuron firing patterns.

FRi = gain ∗ E tð Þ − RTE ið Þ½ � +MFR E tð Þ ≥ RTE ið Þ: ð2Þ

2.2. Force Model. A motor unit twitch was modelled as a
second-order critically damped impulse response (Equation
(3)), where gi,j is the force gain for discharge j in the ith
motor unit, Pi is the peak twitch force, and Ti is the contrac-
tion time of the i th motor unit. For each motor unit, Pi was
varied over a wide range and associated with the motor unit
recruitment threshold as in Equations (4) and (5). RP is the
range of peak twitch force across all the motor units, RT is
the range of contraction time, ln is the natural logarithm, i
is an index identifying each motor unit, n is the number of
motor units, and TL represents the longest contraction time.
In this study, RP and RT were assigned to 100 and 3, respec-
tively. Most motor units had lower and longer twitch forces,
and a few had higher and shorter twitch forces as shown in
Figure 1(c). Peak twitch force varied over a 100-fold range,
and contraction time varied over 3-fold range. The highest
threshold (of the last recruited motor unit) was assigned the
largest force and shortest duration time.

The gain gi,j was nonlinearly changed based on the motor
unit contraction time and the interspike interval (ISI) of the
discharge j. The gain was assigned a value of 1 when Ti/ISI j
< 0:4 and then was determined as in Equation (6) when Ti/
ISIj > 0:4. As stated in the original model [15], the greatest
gain in motor unit force occurs when the ISI is equivalent to
the twitch contraction time. When the motor unit firing rate
exceeds a certain level, there will be no more increase in the
force output. The total muscle contraction force was calculated
as the linear summation of each motor unit force output.

f i,j tð Þ = gi,j ∗
Pi∙t
Ti

∙e1−t/Ti , ð3Þ

P ið Þ = e lnRP/nð Þ∙i, ð4Þ

T ið Þ = TL
1

P ið Þ
� �1/logRTRP

, ð5Þ

gi,j =
1 − e−2 Ti/ISI jð Þ3

Ti/ISIj
when

Ti

ISIj
> 0:4: ð6Þ

2.3. Surface EMG Model. The muscle simulated in this study
was cylindrical in shape, and the radius was 8mm. The
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thickness of fat and skin layers was set to be 2.5mm. There
were totally 70,000 muscle fibers innervated by all the 120
motor neurons, which were randomly scattered in a circular
territory and distributed in parallel. The density of the terri-
tory was approximately 20 fibers/mm2. Following an expo-
nential function, the number of muscle fibers per motor unit
was simulated to have the same range (100-fold) as the twitch
force [15]. The smallest motor unit innervated 28 fibers, and
the largest one innervated 2,728 fibers. The average innerva-
tion ratio was 598 fibers/motor unit. The conduction velocity
was correlated to the diameter of fibers as described in [22].

A tripole model described in [23] was used to simulate
the individual fiber action potentials in a three-dimensional
muscle volume. Briefly, two action potentials generated by a
fiber, modeled as two current tripoles, were originated at
the innervation zone, propagated in opposite directions,
and were extinct at the fiber-tendon endings (Figure 2).
The monopolar signal detected by the electrode is the sum-
mation of the contribution from each of the tripoles. A motor
unit action potential (MUAP) was simulated as the sum of its
constituent muscle fiber action potentials.

The surface EMG signal xðtÞ was then generated as a
sparse combination of MUAP waveforms from all N active
motor units [24, 25], as described in Equation (7):

x tð Þ = 〠
N

j=1
〠
L−1

τ=0
aj τð Þsj t − τð Þ, ð7Þ

where aj is the MUAP waveform of the jth motor unit and L
is the length of the waveform. sjðtÞ =∑kδðt − T jðkÞÞ indi-
cates whether the jthmotor unit discharges at a specific time
t, where T jðkÞ is the k th discharge time of the jth motor unit
and δ represents Dirac Delta function.

2.4. Procedures. To investigate the effect of motor unit loss on
muscle strength and the EMG-force relation, each of the
parameters describing these properties was adjusted. Each
time when one parameter was adjusted, the other parameters
remained the same as their initial assignments.

The percentage of motor unit loss was set to be 20%, 40%,
and 60%, respectively. Three motor unit loss patterns were
simulated in this study, including the following: (1) motor
unit loss restricted to the largest ones, (2) motor unit loss
restricted to the smallest ones, and (3) motor unit loss with-
out any size restriction. The force and EMG outputs at 10
excitation levels were simulated. As demonstrated in
Figure 3(a), during each excitation level, the excitation drive
increased linearly in the first 2 seconds and then held at a
steady level for 5 seconds. The steady state excitation level
ranged from 10% to 100% of maximum excitation with
10% increments. An example of simulated force and surface
EMG signals is shown in Figures 3(b) and 3(c). The first 2-
second transient force or EMG output was excluded from
analysis, and only the steady state force and EMG signals
were analyzed. The coefficient of variation (COV) of the
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Figure 1: (a) The simulated relation between the excitation level and the motor unit firing rate for the “onion skin” firing strategy. (b) The
simulated relation between the excitation level and the motor unit firing rate for the reverse “onion skin” firing strategy. (c) The twitch
parameter assignment for the entire pool of 120 motor units.
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generated force signals was calculated to estimate the force
variability. The averaged rectified value (ARV) of surface
EMG signals was calculated. As the force and EMG output
may vary slightly because of the randomized firing time of
each motor unit, 10 repetitions were simulated for each exci-
tation level and each situation of motor unit loss. Then, the
mean value of all the repetitions was calculated for each of
the output parameters, including force amplitude, force
COV, and ARV of surface EMG. For the EMG-force relation,
the force value and surface EMG amplitude were normalized
to their maximum levels. Because the variation of the simula-
tion outcomes from different repetitions was very small, as
observed in previous studies [19, 20] and confirmed in the

current study, only the mean value of the 10 repetitions was
reported for each simulation condition.

The model was implemented in MATLAB (MathWorks
Inc., Natick, MA, USA). On average, it took approximately
10 to 15 minutes to complete simulation of one motor unit
loss pattern under one firing strategy across all the excitation
levels. The simulation can be run on a normal desktop or lap-
top computer.

3. Results

3.1. Strength of Muscle Activation. Compared with the default
condition (120 motor units), motor unit loss led to reduction
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Figure 2: The simulated muscle fiber action potential generation and the detection system. All the muscle fibers are uniformly distributed in a
cylinder at different depths h (y axis). The left or right current tripole originates from the neuromuscular junction and propagates along the
direction of z axis, to the fiber-tendon termination.
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Figure 3: An example of (a) the excitation input simulation when the level was at 100% excitation and (b) the muscle force and (c) surface
EMG outputs of the model.
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in muscle strength, the extent of which was related to each of
the examined parameters. The muscle strength reduction
caused by loss of large motor units was the greatest compared
with the other two motor unit loss patterns. To examine the
force capacity of the muscle, the maximum voluntary con-
traction force (i.e., the 100% excitation drive) was compared
for different motor unit loss patterns. As shown in Figure 4,
for the loss of 60% motor units restricted to the largest ones,
the maximum muscle force was reduced from 5685 arbitrary
units (au) to 382 au (an approximately 93.3% reduction)
when the motor units followed the “onion skin” firing strat-
egy and reduced from 6133 au to 380 au (an approximately
93.8% reduction), when the motor units followed the reverse
“onion skin” firing strategy. By contrast, for the loss of 60%
motor units restricted to the smallest ones, the maximum
muscle force was only reduced from 5685 au to 4624 au (an
approximately 18.7% reduction) when the motor units
followed the “onion skin” firing strategy and reduced from
6133 au to 5090 au (an approximately 17% reduction), when
the motor units followed the reverse “onion skin” firing strat-
egy. It is worth noting that the force capacity under the motor
unit reverse “onion skin” firing strategy was higher than the
“onion skin” strategy.

3.2. Force Variability. The COV of the output force decreased
substantially with increasing excitation drive under all condi-
tions. Compared with the default condition (120 motor units),
loss restricted to the largest motor units could lead to smaller
COV, while motor unit loss restricted to the smallest ones or
without any size restriction could lead to larger COV across
all excitation levels. This was the case for both “onion skin”
and reverse “onion skin” motor unit firing strategies.

The COV of the maximum voluntary contraction force
(i.e., the 100% excitation drive) was compared for different
motor unit loss patterns. As shown in Figure 5(a), for the loss
of 60% motor units restricted to the largest ones, the COV of
the maximum muscle force was reduced by 71.4% when the
motor units followed the “onion skin” firing strategy. By con-
trast, for the loss of 60%motor units restricted to the smallest
ones or without any size restriction, the COV of the maxi-
mum muscle force was increased by 23.5% and 64.7%,
respectively. The COV of the maximum muscle force
followed a similar trend when motor units followed the
reverse “onion skin” firing strategy, as shown in Figure 5(b).

3.3. EMG-Force Relation. Figure 6 shows the simulated
EMG-force relation for different patterns and degrees of
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Figure 4: The simulated muscle force generation capacity (i.e., at 100% excitation) for different patterns and levels of motor unit loss in (a) the
“onion skin” and (b) reverse “onion skin” motor unit firing strategies.
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motor unit loss, under two motor unit firing strategies. For
each constructed relation, the force and EMG were normal-
ized to their respective maximum values at the simulated sit-
uation. For the default condition (120 motor units), the
EMG-force relation could be well fit by a linear line for both
motor unit firing strategies. This linear fitting of the EMG-
force relation was well maintained in the situations of motor
unit loss restricted to the smallest ones or without any size
restriction, regardless of the degree of motor unit loss. A sim-
ilar slope of the fitted line was observed for different degrees
of motor unit loss restricted to the smallest ones or without
any size restriction. By contrast, motor unit loss restricted
to the largest ones tended to drive the approximately linear
EMG-force relation to a nonlinear form, with the EMG
amplitude increasing faster than force, as shown in
Figure 6. This was observed for both “onion skin” and reverse
“onion skin” motor unit firing strategies.

4. Discussion

This study implemented a model to estimate the effect of dif-
ferent patterns of motor unit loss on muscle force strength,
variability, and the EMG-force relation. The force and
EMG outputs were simulated at different levels of excitation.
It was found that loss restricted to the largest motor units had
the most pronounced impact on muscle strength and the
EMG-force relation, while motor unit loss restricted to the

smallest ones had the most pronounced impact on force var-
iability. This was observed for both motor unit firing strate-
gies used in the simulation.

4.1. Strength of Muscle Activation.As documented in previous
motor unit number estimation investigations [26], progressive
motor unit loss occurs after neuromuscular diseases such as
amyotrophic lateral sclerosis and spinal muscular atrophy
[27–29]. Transsynaptic motor neuron degeneration has also
been reported in neurological injuries, causing different
degrees of motor unit loss in affected muscles [1–6, 30, 31].
Motor axon degeneration following various neuropathies can
also be quantified by estimating motor unit number changes
[32–35]. Loss of functional motor units, especially those large
ones, has a dramatic effect on muscle strength. Based on the
model, twitch forces were distributed exponentially across
the motor unit pool with the smallest motor unit (MU 1)
assigned the smallest twitch force and the largest motor unit
(MU 120) assigned the largest twitch force. Therefore, the
twitch forces of one-half the motor unit population (i.e., from
MU 1 toMU 60) were less than 10% of the largest motor unit’s
twitch force. As a result, the loss restricted to the largest motor
units could cause severe muscle weakness compared with the
other two motor unit loss patterns.

It was observed that for the reverse “onion skin” motor
neuron firing strategy, motor unit loss restricted to the largest
ones could lead more severe muscle weakness than the
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“onion skin” firing strategy. This is because the reverse
“onion skin” firing strategy more ideally matches the motor
unit contractile properties. As the excitation level increases,
the discharge rate of almost all the motor units would be pro-
gressively closer to the fusion frequency, being able to reach
the maximummotor unit force. However, in the “onion skin”
firing strategy, the discharge rates of the largest motor units
can be far below their fusion frequency even at the maximum
excitation, thus compromising the maximum motor unit
force generation. Consequently, the relative contribution of
the largest motor units to the muscle force output is greater
in the reverse “onion skin” strategy compared with the
“onion skin” strategy. This results in a more severe muscle
weakness if large motor units are lost in the reverse “onion”
skin firing strategy.

4.2. Muscle Force Variability. Similar to a previous simulation
study [36], the coefficient of variation (COV) of the force out-
put decreased substantially with increasing excitation level in
all simulated conditions. At submaximal excitation levels, the
early recruited motor units would discharge at relatively low
rates, which are below their fusion frequency. Therefore, there
would be substantial ripples in the resultant motor unit force.
As the excitation level increases, the motor unit firing rates
start to increase, closer to the fusion frequency, gradually
reducing the ripples of the individual motor unit forces. This
can result in a more stable force, as suggested by the decreased
COV with increasing excitation level.

Compared with the default condition, under both firing
strategies, motor unit loss restricted to the largest ones could
lead to a decrease in force COV, while motor unit loss
restricted to the smallest ones could lead to an increase in
force COV. When the lost motor units were primarily large
ones, the generated force was only from small motor units
even at the maximum excitation level. Given that the fusion
frequency of the small motor units is low, there would be
fewer ripples in the generated motor unit forces, as suggested
by a decreased COV. On the other hand, when the lost motor
units were primary small ones, increasing the excitation level
could only activate the large motor units, whose fusion fre-
quency is relatively high and difficult to reach. The generated
force, therefore, would show more ripples as suggested by an
increased COV.

4.3. EMG-Force Relation. The EMG-force relation has been
extensively investigated in the past. A linear relation between
force and the surface EMG amplitude has been reported for
muscles with narrow motor unit recruitment ranges [15, 37,
38]. In the present simulation study, with the recruitment
threshold set at 40% excitation, a linear EMG-force relation
was also observed for both motor unit firing strategies. Inter-
estingly, this linear relation remained in the case of motor
unit loss restricted to the smallest ones or without any size
restriction. If the lost motor units were primarily small ones,
with increase of the excitation level, larger motor units were
progressively recruited. Given relatively high fusion frequen-
cies for the large motor units, their motor unit force contin-
ued to increase with increase of the firing rates. On the
other hand, although there was an effect of EMG phase can-

cellation, the overall EMG amplitude also continued to
increase since large MUAPs were generated with recruitment
of large motor units. As a result of both force and EMG
increase with excitation drive, an approximate linear EMG-
force relation was maintained. There was a similar scenario
for motor unit loss without size restriction since large motor
units were still recruited with increase of the excitation, con-
tributing to both force and EMG signals.

By contrast, our simulation results indicate that motor
unit loss restricted to the largest ones tended to drive the
EMG-force relation from a linear to nonlinear form, with
EMG increasing faster than force. This is due to the fact that
the remaining small motor units were assigned longer con-
traction time (i.e., low fusion frequency), so further increas-
ing the motor unit firing rate with increased excitation level
would not have an influence on force given that those motor
units had already reached the maximum force output, and
meanwhile, no larger motor units could be recruited. The
increased number of MUAPs, however, increased surface
EMG amplitude even there was an effect of phase cancella-
tion. As a result, a nonlinear EMG-force relation was
observed. It is worth noting that in the simulation, it was
assumed that the excitation capacity still remained intact,
while after a neurological injury, the excitation capacity could
be impaired and consequently compromise the motor unit
peak firing rates and alter the resultant EMG-force relation.

4.4. Limitations. As a simulation study with many assump-
tions used in the model, the limitations should be acknowl-
edged. For example, the muscle fibers of each motor unit
were simulated as widely scattered throughout the whole
muscle, and the muscle fiber diameters of the small and large
motor units were assigned the same mean value. However,
motor units might locate in different regions of a muscle,
with small and large motor units having different depth
[39]. The size and type composition of muscle fibers belong-
ing to small and large motor units of a muscle can also be dif-
ferent. Three simplified motor unit loss patterns were
simulated while in real world, there is often a variable mix-
ture of motor unit loss. A range of neurophysiological factors
were not considered in the simulation, such as the excitatory
and inhibitory central drive upon lower motor neurons, the
interneurons input, motor unit synchronization [40], possi-
ble nonlinear effect of the individual motor unit force sum-
mation [41], and resistance to fatigue of different motor
units. Of particular note, muscle fiber reinnervation as a pos-
sible compensatory process after motor unit loss was not
considered in the simulation [42]. There are some other
physiological changes that need to be considered in a practi-
cal situation, such as muscle atrophy, compression of motor
unit recruitment range, and reduction in motor unit firing
rate. All these factors may collectively alter muscle force
and surface EMG signals. To address these issues, a more del-
icate or complicated model is required in a future study [43].

Nonetheless, by simulating three different motor unit loss
patterns using the current model, we have observed their dif-
ferent effects on muscle weakness and changes in EMG-force
relation. Motor unit loss restricted to the largest ones had the
most dominant impact on the total force output and
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significantly changed the EMG-force relation, while loss
restricted to the smallest motor units had a pronounced effect
on force variability. These findings provide valuable clues for
understanding experimental observations of muscle strength,
force control, and EMG-force relation, especially their alter-
ations with pathological neural or muscular changes.
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