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Health economic decision-analytic models are used to
estimate the expected net benefits of competing decision
options. The true values of the input parameters of such
models are rarely known with certainty, and it is often use-
ful to quantify the value to the decision maker of reducing
uncertainty through collecting new data. In the context of
a particular decision problem, the value of a proposed
research design can be quantified by its expected value
of sample information (EVSI). EVSI is commonly esti-
mated via a 2-level Monte Carlo procedure in which plau-
sible data sets are generated in an outer loop, and then,
conditional on these, the parameters of the decision model
are updated via Bayes rule and sampled in an inner loop.
At each iteration of the inner loop, the decision model is
evaluated. This is computationally demanding and may
be difficult if the posterior distribution of the model pa-
rameters conditional on sampled data is hard to sample

from. We describe a fast nonparametric regression-based
method for estimating per-patient EVSI that requires
only the probabilistic sensitivity analysis sample (i.e.,
the set of samples drawn from the joint distribution of
the parameters and the corresponding net benefits). The
method avoids the need to sample from the posterior dis-
tributions of the parameters and avoids the need to rerun
the model. The only requirement is that sample data sets
can be generated. The method is applicable with a model
of any complexity and with any specification of model
parameter distribution. We demonstrate in a case study
the superior efficiency of the regression method over the
2-level Monte Carlo method. Key words: expected value
of sample information; economic evaluation model; Monte
Carlo methods; Bayesian decision theory; computational
methods; nonparametric regression; generalized additive
model. (Med Decis Making 2015;35:570–583)

Health economic decision-analytic models are
used to estimate the expected net benefits of

competing decision options. The true values of the

input parameters of such models are rarely known
with certainty, and uncertainty in model parameters
typically results in decision uncertainty. This may
motivate decision makers to consider options for
further data collection alongside the adoption of
new technologies or to delay adoption until after
data collection.1,2 The value of learning an input
parameter (or a group of input parameters) can be
quantified by its partial expected value of perfect
information (partial EVPI).3–6 However, we are
unlikely to be able to collect perfect information,
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and it is more useful to quantify the value of specific
research designs that will inform the decision-
making problem. The value of reducing, rather than
eliminating, uncertainty through the collection of
data is captured by the expected value of sample
information (EVSI).4,7,8

The EVSI for any particular data collection exer-
cise will depend not only on the study design in ques-
tion but also on the decision context.8 Important
factors include whether there are costs associated
with either delaying or reversing adoption deci-
sions,1,9,10 whether the adoption decision will be
fully implemented11 and whether the proposed study
extends across jurisdictions.12,13 Some of these fac-
tors arise in moving from EVSI per patient to popula-
tion EVSI, but others also arise in estimating EVSI per
patient. While recognizing these issues, we do not
discuss them further in this article but concentrate
on the problem of computing per-person EVSI within
a single jurisdiction under the assumption of costless
reversibility with perfect implementation and with
no delay in either the study or the adoption.

The concept of EVSI was first discussed in the
health economics literature well over a decade
ago.4,7,14,15 Despite this, very few research funding
or design decisions are informed by EVSI. This, at
least in part, reflects the computational burden of cal-
culating EVSI via generic Monte Carlo sampling-
based methods. For example, in a recently published
cost-effectiveness study, the authors noted that to
compute EVSI without assuming an approximation
that the model was linear, it would have taken 7.5
days.16 In another example, the proposed EVSI anal-
ysis would have taken 37.5 days.17 Clearly, computa-
tion times of this order are prohibitive.

The reason for the high computational cost of EVSI
analysis is that, unless the model is of a certain form
or unless certain parametric assumptions are made,
a nested 2-level Monte Carlo scheme is required. In
this scheme, plausible data sets are generated in an
outer loop, and then conditional on each data set,
samples are generated from the posterior distribution
of the parameters in an inner loop. The model is run
with each inner loop set of parameters to estimate
the expected net benefits, conditional on the data
sets that have been simulated in the outer loop. The
computational cost arises primarily due to the
repeated evaluation of the model within the inner
loop but also due to the burden of repeated sampling
in the inner loop. If the aim is to search over the study
design space, then this problem is further com-
pounded because EVSI itself must be repeatedly cal-
culated. Another difficult arises with the 2-level

Monte Carlo approach if the prior distribution of the
model parameters is not conjugate to the data likeli-
hood. In this case, generating the inner-loop samples
will typically require Markov chain Monte Carlo
(MCMC), and the repeated application of MCMC for
each sampled data set adds to the computational
burden.

A fast approximation scheme for the inner-loop
step has been proposed,18,19 but this method requires
repeated evaluation of partial derivatives of the log
posterior density function and therefore considerable
time and effort writing the necessary computer code
on the part of the analyst. Computationally cheaper
single-loop approaches are sometimes available, but
these rely either on the model being of a certain
form7,20,21 or on assumptions of Normality of the
mean incremental net benefits.1 Fast single-loop
methods also exist for computing partial EVPI for sin-
gle parameters,22,23 but these have not yet been
extended to the computation of EVSI.

In this article, we present a method for calculating
per-patient EVSI that avoids the nested 2-level
scheme, requiring only the single set of sampled
model inputs and corresponding model outputs
(i.e., net benefits) that is generated in a standard prob-
ability sensitivity analysis (PSA). The method is
based on a nonparametric regression of the net ben-
efits on data samples that are generated conditional
on the sampled input parameters in the PSA and fol-
lows closely the nonparametric regression method
for computing partial EVPI described in Strong
et al.24 The method makes no assumptions regarding
the form of the model, does not require the use of
MCMC, and does not require that the parameter
prior is conjugate to the data likelihood. All that
is required is that the data likelihood can be sampled
(but not necessarily evaluated). The article is
structured as follows. In the second section, we
introduce the method and describe its general appli-
cation. In the third section, we demonstrate the
method in the case study model that was used for
illustrative purposes in Ades et al.,7 and in the
fourth section, we present results. We conclude
with a short discussion.

METHOD

EVSI is the expected difference between the value
of the optimal decision based on some sample of data,
informative for some subset of inputs, and the value
of the decision made only with prior information.3,4,7

To express this, we first introduce some notation.
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We assume that we are faced with D decision
options, indexed d = 1, . . ., D, and have built a model
NB(d, u) that aims to predict the net benefit of deci-
sion option d given a vector of p input parameter val-
ues u = (u1, . . ., up). The true values of the input
parameters are assumed to be unknown, and we rep-
resent beliefs about the input parameters via their
joint distribution p(u). We index a sample drawn
from the joint distribution of the parameters with
a bracketed superscript, u(n), for sample draws n =
1, . . ., N.

We envisage that we can collect data that will be
informative for some subset of parameters. We con-
sider the (as yet uncollected) data as a vector of ran-
dom variables and denote this as uppercase X. We
use lowercase x for some arbitrary realized (or sam-
pled) vector of values from the distribution of X. We
use the bracketed superscript notation to index a sam-
ple of data vectors x(n), n = 1, . . ., N.

We denote the expectation over the joint distribu-
tion of u as Eu. We denote the expectation over the
distribution of the data X as EX and over the posterior
distribution of u given data X as EujX.

The expected value of our optimal decision, made
only with current information is

max
d

EufNBðd; uÞg: ð1Þ

If we had data X that were informative for (some sub-
set of) the inputs, then the optimal decision would be
that with the greatest net benefit, after averaging over
the joint distribution of the inputs conditional on the
data, p(u|X). The expected net benefit would be

max
d

EujX NBðd; uÞf g: ð2Þ

But, since X is uncollected, we must average over
possible data sets,

EX max
d

EujX NBðd; uÞf g
� �

: ð3Þ

The distribution of X can be obtained by the margin-
alization of p(X, u) = p(X|u)p(u), which suggests
a straightforward Monte Carlo sampling scheme for
X, that is, sample first a value u* from the prior p(u)
and then sample X from the data likelihood p(X|u =
u*). Note that the data likelihood will depend on the
design of the study under consideration, and we
return to this point when we discuss our case study.
The EVSI is then the difference between equation
(3) and equation (1),

EVSI 5EX max
d

EujX NBðd; uÞf g
� �

�max
d

EufNBðd; uÞg: ð4Þ

At this point, we note that we can reexpress (4) as

EVSI 5EX max
d

EujX NBðd; uÞf g
� �

�max
d

EX EujXfNBðd; uÞg
� �

:

ð5Þ

The reason for the reexpression will become appar-
ent when we discuss Monte Carlo sampling schemes
for estimating EVSI.

The Monte Carlo Approach to Computing EVSI

A probabilistic sensitivity analysis (PSA) takes N
samples from the joint distribution of the input
parameters, {u(1), . . ., u(N)}, and generates a corre-
sponding set of N net benefits {NB(d, u(1)), . . .,
NB(d, u(N))} for each decision option d. From this,
the usual Monte Carlo solution to the second term
in equation (4) is

max
d

EufNBðd; uÞg ’ max
d

1

N

XN
n 5 1

NBðd; uðnÞÞ: ð6Þ

The first term in equation (4) requires more work, and
unless there are analytic solutions to the expecta-
tions, the usual approach is to use a nested 2-level
Monte Carlo method.7 Here, the estimator is given by

EX max
d

EujX NBðd; uÞf g
� �

’ 1

K

XK

k 5 1

max
d

1

J

XJ

j 5 1

NBðd; uðj; kÞÞ;

ð7Þ

where u(j,k) are samples drawn from the posterior dis-
tribution of u|x(k), and x(k) are generated by first sam-
pling u(k) from p(u) and then x(k) from p(X|u = u(k)).
Subtracting equation (6) from equation (7) results in
the 2-level Monte Carlo EVSI estimator

dEVSI 5
1

K

XK

k 5 1

max
d

1

J

XJ

j 5 1

NBðd; uðj; kÞÞ �max
d

1

N

XN
n 5 1

NBðd; uðnÞÞ:

ð8Þ

However, if we arrange our sampling scheme such
that it reflects equation (5), we obtain instead

dEVSI 5
1

K

XK

k 5 1

max
d

1

J

XJ

j 5 1

NBðd; uðj; kÞÞ �max
d

1

K

XK

k 5 1

1

J

XJ

j 5 1

NBðd; uðj; kÞÞ

ð9Þ
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Here, both terms in the EVSI expression are evaluated
using the same sampled values of u, and hence we
will obtain an estimator with smaller Monte Carlo
error than if we were to use equation (8).

The first problem with the nested 2-level scheme is
the requirement to evaluate the net benefit function
(i.e., to run the model) at each iteration of the inner
loop, resulting in J 3 K model evaluations. If the
model is slow to run and/or if J and K are large (to
obtain adequate precision), then the scheme will be
computationally burdensome. A second potential
problem is the requirement to sample from the poste-
rior distribution of the input parameters, conditional
on the sampled data, that is, obtaining the j = 1, . . ., J
samples u(j,k) from each p(u|x(k)) in the inner loop. If
p(X|u) and p(u) are conjugate, then the posterior dis-
tribution will be of a known form, and sampling from
it will be straightforward. However, if conjugate
forms are not appropriate, we may be required to
resort to MCMC to generate the j = 1, . . ., J samples
u(j,k) from p(u|x(k)). The MCMC step must be repeated
for each of the k = 1, . . ., K sampled data values, and
this will add considerably to the computational bur-
den. Setting up the MCMC sampler (e.g., via writing
BUGS code25) and checking the MCMC chain(s) for
convergence also requires investment in modeler
time.

We note at this point that in some restricted cases,
we can avoid entirely the inner-loop Monte Carlo
step. If the model is linear or multilinear (i.e., of
‘‘sum-product’’ form) in the parameters, and if the
parameters are independent of one another (and
retain this independence after updating with data),
and if we can analytically compute the posterior
expectations of the parameters given the data, then
we can simply ‘‘plug in’’ the expected parameter val-
ues into the net benefit equation to obtain the
expected net benefit.7,21,26

Nonparametric Regression Method

The problem with the 2-level Monte Carlo scheme
is the need to compute the inner expectation in the
first term in equation (4) via Monte Carlo. Not only
does this require J model runs for each outer loop,
but it is this step that requires the potentially prob-
lematic sampling from the conditional distribution
p(u|X). We therefore propose to estimate this expec-
tation as follows.

Consider generating a random parameter vector u
from p(u) and a random data sample X conditional
on u and then evaluating NB(d, u). We recognize
that we can express the observed NB(d, u) as a sum

of the conditional expectation that we require and
a mean-zero error term,

NBðd; uÞ5EujXfNBðd; uÞg1 e; ð10Þ

where the error e is a function of both X and u.
To see why e has zero mean, we rearrange to give

e5 NBðd; uÞ � EujXfNBðd; uÞg; ð11Þ

and then take expectations with respect to both X and
u, giving

EX; uðeÞ5EX; ufNBðd; uÞg � EX;u½EujxfNBðd; uÞg�
5EufNBðd; uÞg � EX½EujxfNBðd; uÞg�;

noticing that the first term in the right-hand side of
equation (11) is a function only of u and the second
term a function only of X (u having been integrated
out). Then, by the law of total expectation (or ‘‘tower
rule’’), EX½EujxfNB ðd; uÞg�5EfNBðd;uÞg, and hence
EðeÞ5 0. Note that this holds regardless of the distri-
bution of u and regardless of the relationship between
u and X.

Next, we recognize that the expectation
EujXfNBðd; uÞg can be thought of as an unknown func-
tion of X. We denote this function g(d, X), and
substituting this into equation (10) gives

NBðd; uÞ5 gðd;XÞ1 e: ð12Þ

In some instances, the data X will be high dimen-
sional (e.g., censored time-to-event data in a study
that measures survival), and if this is so, we write
the function g in terms of some low-dimensional
summary statistic of the data T(X) = {T1(X), . . .,
Tp(X)}, giving

NBðd; uÞ5 gfd;TðXÞg1 e: ð13Þ

We discuss choice of summary statistic in the next
section.

Last, for each decision option d = 1, . . ., D, we treat
the net benefits in the PSA sample, NB(d, u(k)) as
‘‘noisy’’ data through which we can learn about the
target function g{d, T(x(k))} for k = 1, . . ., K. Thus,
we can think of this as D regression problems. How-
ever, we immediately recognize that the target func-
tions have unknown form, and we have no desire to
impose any particular form. We could begin by fitting
a standard linear model, with power and interaction
terms to model the nonlinearity between the net ben-
efits and the data, but we choose instead to adopt the
more flexible ‘‘nonparametric’’ regression approach
offered by the generalized additive model (GAM).
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GAM models assume that the expectation of the
dependent variable is a smooth but usually unknown
function of the independent variable, which is
exactly what we need here. The standard linear
model is a special case of the GAM model in which
the functional form of the expectation of the depen-
dent variable is specified a priori.

When we adopt a GAM model, we usually repre-
sent the unknown underlying smooth function as
some form of spline, a common choice being the cubic
spline. In the simplest case, a univariate cubic spline
represents an arbitrary smooth single-input function
as a series of short cubic polynomials joined piece-
wise such that the function is twice-differentiable at
the ‘‘knots’’ (i.e., join points). The same spline can
also be represented as the weighted sum of a series
of predetermined ‘‘basis functions’’ that extend over
the whole range of the function input. Simple univar-
iate cubic splines have natural extensions to higher
dimensions and to a regression framework, where
the spline parameters (i.e., the basis function weights)
are estimated from noisy data. For an introduction to
GAM models, see Hastie and Tibshirani27 or Wood.28

Returning now to the problem of estimating g{d,
T(X)}, we obtain the necessary ‘‘data’’ for the GAM
regression analysis as follows. We assume we have
at our disposal a PSA sample of size K. This consists
of a set of k = 1, . . ., K samples from the distribution of
the input parameters u(k), and k = 1, . . ., K correspond-
ing evaluations of the model NB(d, u(k)), for each deci-
sion option d = 1, . . ., D. The dependent variable for
regression d is the net benefit NB(d, u(k)) for decision
option d. To generate realizations of the independent
variable (which is common to all d = 1, . . ., D regres-
sion analyses), we sample, for each value u(k), a data
set x(k) from the likelihood p(X|u = u(k)) and, from
x(k), calculate the summary statistic T(x(k)). At no
point do we attempt to derive or sample from the
potentially difficult posterior distribution of the
parameters, p(u|x(k)), and at no point do we rerun
the economic model. This is why the method is fast
and simple.

We note here that EVSI is invariant to the reexpres-
sion of net benefits as incremental net benefits, rela-
tive to some chosen ‘‘baseline’’ option. Under this
reexpression, the (incremental) net benefit of the
baseline option is zero. This reduces the number of
regression equations from D to D 2 1.

Choice of Summary Statistic T(�)

Study data x may be scalar or vector valued and
may be informative for one or more economic model

parameters. In the simplest case, we have scalar
data that are informative for a single economic model
parameter. Here we choose T(x) = x. If x is vector val-
ued, but we still expect data only to update a single
model parameter ui, and then we choose T(x) to be
a sample estimator for ui. This leads to quite natural
summary statistics. So, for example, if we wish to cal-
culate the expected value of a 2-arm, binary outcome
trial to update beliefs about an odds ratio, then we our
choice of T(x) would be the sample odds ratio.

If we wish to update beliefs about q . 1 economic
model parameters {u1, . . ., uq}, then we would calcu-
late q summary statistics T(x) = {T1(x), . . ., Tq(x)},
where each Ti(x) is a sample estimator for ui. For
example, if we wish to calculate the expected value
of a study to learn about the shape and scale parame-
ters of a Weibull distribution, {u1, u2}, and x are cen-
sored time-to-event data, then we would choose
{T1(x), T2(x)} to be the sample estimates fû1; û2g
derived from a Weibull survival model.

In the case of q . 1, we write the vector of scalar
summary statistics as T(x) = {T1(x), . . ., Tq(x)}, and
fit the GAM model NB (d, u) = g{d, T(x)} + e, where
g is now a multivariate smoothing function.28

Hypothetical Nonparametric Regression Example

To give an example, we imagine a hypothetical net
benefit function NB(u) = u2 (for clarity, we have drop-
ped the decision option index d in this example). The
parameter u represents a proportion (e.g., of people in
the population who have a certain characteristic),
and current knowledge about the proportion is
expressed via a Beta(40,200) distribution. We want
to know the value of doing a study with 500 partici-
pants to learn about the proportion. The number of
people in the study with the characteristic of interest,
x, is modeled using a Binomial(u, 500) distribution.

The PSA sample comprises samples {u(1), . . ., u(K)}
with the corresponding samples from the net benefit
function {NB(u(1)), . . ., NB(u(K))}. For each sample u(k),
we generate a sample of data x(k) from X|u(k) ~ Bino-
mial (u(k), 500). The data here are scalar, and we there-
fore choose T(x) = x. We fit a GAM regression of NB(u)
on T(x) and extract the fitted values, which are our
estimates of EujxfNBðuÞg. In this hypothetical exam-
ple, we can calculate EujxfNBðuÞg analytically, so
can compare the GAM regression values with their
true counterparts.

Figure 1 shows a scatter plot of sampled values of
the incremental net benefit, NB(u) = u2, versus sam-
pled values of T(x). The two lines show the posterior
expected net benefit EujxfNBðuÞg as a function of the
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sampled values of T(x). The solid line shows the
GAM model fitted values, and the dashed line shows
the analytically calculated values.

Regression Diagnostics

As with all regression analysis, it is important to
check assumptions. Most important, we require that
there is no structure in the residuals (e.g., a U-shaped
or S-shaped pattern) since this would suggest
unmodeled structure in the target function g and
therefore bias in the fitted values. We note that for
the purposes of calculating EVSI, we are seeking to
estimate only the posterior mean net benefits. We
do not require the posterior variance of the net bene-
fits for the EVSI computation and therefore whether
the residuals have equal variance and follow a partic-
ular distribution is of secondary importance.29

In contrast to the estimator for the EVSI, the esti-
mator for the Monte Carlo standard error of the
EVSI given in the online Appendix does rely on the
net benefits having approximately equal variance
and approximate Normality if the number of rows of
the PSA is small. However, if the size of the PSA is
large, then the standard error estimator can be justi-
fied on large sample results, even in the absence of
Normality of the net benefits (see Appendix).28

EVSI Calculation

After fitting a GAM model for each decision option
d, we then extract the regression model fitted values.
The fitted values are estimates of g{d, T(x(k))}, k =
1, . . ., K, our target quantity. We denote the GAM fit-
ted values for decision option d as ĝ

ðkÞ
d , and the esti-

mated EVSI is then given by

dEVSI 5
1

N

XN
k 5 1

max
d

ĝ
ðkÞ
d �max

d

1

K

XK

k 5 1

ĝ
ðkÞ
d : ð14Þ

Note that we choose maxd
1
K

PK
k 5 1 ĝ

ðkÞ
d rather than

maxd
1
K

PK
K 5 1 NBðd; uðkÞÞ as the second term in the

EVSI estimator, following expression (5) rather than
expression (4). By choosing this as our estimator,
we exploit the positive correlation between the two
terms in equation (14) and hence estimate the EVSI
with increased precision.

The sampling scheme for the GAM regression-
based EVSI is given in Box 1.

Because we are averaging over k, we can think of
this as a single-loop Monte Carlo method. The size
of K will determine the precision of the estimate of
the EVSI, and a method for estimating the standard
error of the GAM-based approximation is given in
the Appendix.
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T(x)

N
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(θ
)

Posterior expectation E{NB(θ)|x}

GAM model fitted values
Analytically calculated values

Figure 1 Hypothetical example. Generalized additive model
(GAM) model fitted values of the posterior expected incremental

net benefit versus analytic values. The lines representing the

GAM fitted and analytic values are almost indistinguishable.

Box 1 Generalized Additive Model (GAM) Regres-
sion-Based EVSI Algorithm

Generate a PSA sample of size K:
for k = 1, . . ., K do

Sample u(k) from the distribution of the parameters,
p(u)
Evaluate the economic model to obtain (incremental)
net benefits NB(d, u(k))

end for
Given the PSA sample, simulate data samples:

for k = 1, . . ., K do
Generate a data sample x(k) from p(X|u(k))
Calculate summary statistic T(x(k))

end for
Fit regression models and calculate EVSI:

Regress net benefits NB(d, u(k)) from the PSA on T(x(k))
for each d
Extract GAM model fitted values for each d
Calculate EVSI via equation (14).

PSA, probability sensitivity analysis; EVSI, expected value of sample
information.
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CASE STUDY: ADES (2004) DECISION TREE
MODEL

Model

Our case study is based on the model that was used
for illustrative purposes in Ades et al.7 The decision
problem has two options: d = 1 (standard care) and
d = 2 (new treatment) and can be represented by a sim-
ple decision tree (Figure 2). There are 11 parameters
in the model, which we write as the vector u = (L,
QE, QSE, CE, CT, CSE, PC, PSE, OR, PT, l). Parameter def-
initions and distributions are given in Table 1. The
output of the model is the net benefit for each deci-
sion option in monetary units. The algebraic form of
the model is given in equations (15) and (16), with
some components of u being redundant in each net
benefit function.

NBð1; uÞ5 PCfl L ð1 1 QEÞ=2� CEg1 ð1� PCÞ l L: ð15Þ

NBð2;uÞ5 PSE PT ½l fL ð1 1 QEÞ=2�QSEg � ðCT 1 CSE 1 CEÞ�1
PSE ð1� PTÞ fl ðL �QSEÞ � ðCT 1 CSEÞg1

ð1� PSEÞ PT fl L ð1 1 QEÞ=2� ðCT 1 CEÞg1

ð1� PSEÞ ð1� PT Þ ðl L � CTÞ: ð16Þ

The model is multilinear in the parameters, and all
parameters are independent. Thus, the expectation
of the net benefit, EfNBðd; uÞg, is equal to the net ben-
efit equation evaluated at the parameter expectations,
NBfd;EðuÞg. This is generally the case for decision
tree models with independent parameters but not
for Markov models or individual-level simulation
models.

For our case study, we consider the same 3 data
collection scenarios presented in Ades et al.7—that
is, data collection to inform the probability of side
effects (PSE), the quality of life after critical event
(QE), and the treatment effect size (OR). For each sce-
nario, we calculated EVSI using 3 methods. First, we
replicated the method presented in Ades et al. The
method relies on the model being of multilinear
form with independent parameters and that there
are analytic solutions (or good approximations) to
the posterior expectations of the parameters, condi-
tional on simulated data. Hence, the method only
requires a single-loop Monte Carlo scheme to evalu-
ate the outer expectation in the first term in equation
(4). Second, we used the 2-level Monte Carlo scheme
outlined earlier, with an MCMC inner loop. This
method does not rely on the model being multilinear
with independent parameters or that there are ana-
lytic solutions to the posterior expectations of the
parameters. However, it has high computational
cost. Third, we used the GAM regression method pre-
sented earlier. As with the Ades et al. method, the

Table 1 Case Study Parameter Distributions

Description Parameter Mean Distribution

Mean remaining lifetime L 30 Constant
QALY after critical event, per year QE 0.6405 logit(QE) ; N(0.6, 1/6)
QALY decrement due to side effects QSE 1 Constant
Cost of critical event CE $200,000 Constant
Cost of treatment CT $15,000 Constant
Cost of treatment side effects CSE $100,000 Constant
Probability of critical event, no treatment PC 0.15 Beta(15,85)
Probability of treatment side effects PSE 0.25 Beta(3,9)
Odds ratio, (PT/(1 2 PT ))/(PC / (1 2 PC)) OR 0.2636 log(OR) ; N(–1.5, 1/3)
Probability of critical event on treatment PT 0.0440 [derived from OR and PC]
Monetary value of 1 QALY l $75,000 Constant

QALY, quality-adjusted life year. Adapted from Ades et al.7 Copyright � 2004. Reprinted with permission from SAGE Publications.

Standard care

New treatment

1-PC

PC

1-PT

1-PT

PT

PT

PSE

1-PSE

Health effects Costs

L

L(1 + QE )/2

L(1 + QE )/2 - QSE

L - QSE

L

L(1 + QE )/2

CT

CT + CE

CT + CSE

CT + CSE + CE

0

CE

Figure 2 Decision tree model. From Ades et al.,7 copyright �
2004, Society for Medical Decision Making. Reprinted by Permis-

sion of SAGE Publishers.
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GAM method uses Monte Carlo to evaluate the outer
expectation in the first term in equation (4). For con-
sistency, we use K to denote the size of the outer
expectation Monte Carlo loop when reporting all 3
methods.

Because all 3 methods use Monte Carlo to estimate
the outer expectation in equation (4), there will be
a Monte Carlo sampling error that tends to zero as
the outer-loop sampling size increases. For each esti-
mated EVSI, we calculated the Monte Carlo standard
error using the methods presented in the Appendix.
We repeated each analysis with a range of values of
K to demonstrate the relationship between K and
the Monte Carlo standard error. We also recorded
the total CPU time required to undertake the EVSI
computation to compare the efficiency of each
method at different values of K.

For the Ades et al.7 method, we chose values of K
equal to 104, 105, and 106. For the MCMC-based
method, we chose an inner-loop sample size of J =
104 after an initial exploration to determine an ade-
quate sample size to achieve stability of the inner-
loop estimates. We then chose values of K equal to
104, 105, and 106. Values of K greater than this
required prohibitively long runtimes. For the GAM-
based method, we chose values of K equal to 104,
105, and 106.

Data Collection Scenario 1: EVSI for the Probability
of Side Effects (PSE)

To reduce uncertainty about PSE, we considered
the value of undertaking an observational study of
n = 60 patients on the new treatment. The number
of participants observed to experience a side effect
is assumed to follow a Binomial(PSE, 60) distribution.

Method 1—single-loop method presented in Ades
et al.

In method 1, we replicated the single-loop method
used in the case study in Ades et al.7 First, we drew k =
1, . . ., K samples from the Beta(3, 9) prior distribution
for PSE. Next, for each sampled value P

ðkÞ
SE, we gener-

ated a sample of data x(k) from a Binomial(P
ðkÞ
SE, 60) dis-

tribution. Due to conjugacy, the posterior distribution
has the closed form PSE|x(k) ~ Beta (3 + x(k), 69 2 x(k)),
with expectation EPSEjxðkÞ ðPSEÞ5 ð3 1 xðkÞÞ=72.
Because the economic model is multilinear in the
parameters, we can calculate for each data set k the
exact expected net benefit EujxðkÞfNBðd; uÞg by plug-
ging into equations (15) and (16) the posterior expecta-
tion EPSEjxðkÞ ðPSEÞ, along with the expected values for

the remaining uncertain parameters, EðQEÞ, EðPCÞ,
and EðPTÞ. Finally, we estimated the EVSI by

dEVSI 5
1

K

XK

k 5 1

max
d

EujxðkÞ fNBðd; uÞg
� �

�max
d

1

K

XK

k 5 1

EujxðkÞ fNBðd; uÞg
h i

: ð17Þ

Method 2—2-level nested Monte Carlo/MCMC
sampling scheme

In method 2, we implemented the generic 2-level
Monte Carlo scheme outlined earlier. In an outer
loop, we drew k = 1, . . ., K samples from the Beta(3,
9) prior distribution for PSE. For each value P

ðkÞ
SE, we

generated a sample of data x(k) from a Binomial(P
ðkÞ
SE,

60) distribution. Conditional on each simulated trial
data value x(k), we then ran an inner-loop of size J =
104. At each run of the inner loop, we sampled a vec-
tor of parameter values u(j,k) from the posterior distri-
bution p(u|x(k)) and evaluated the model net benefit
equation NB(d, u(j,k)). Finally, we calculated EVSI
via equation (9). Because x(k) is only informative for
the parameter PSE, and PSE is independent of all other
model parameters, drawing from p(u|x(k)) reduced in
this case to drawing from the posterior distribution
p(PSE|x(k)) and the prior distributions for the remain-
ing parameters. Although the posterior distribution
p(PSE|x(k)) has a known form in this example, we
did not assume that this was so and implemented
the inner loop in OpenBUGS.25 At each inner-loop
step, we discarded the first 1000 MCMC samples as
a burn-in.

Method 3—GAM regression

In method 3, we implemented the GAM regression
scheme outlined earlier. First, we generated a PSA
sample of size K. We calculated the incremental net
benefit for each PSA sample. Next, for each parameter
vector u(k) in the PSA sample, we generated a sample
of data x(k) from a Binomial(P

ðkÞ
SE, 60) distribution.

Because the data in this case are scalar, the summary
statistic is T(x(k)) = x(k). We regressed the incremental
net benefits on T(x(k)), extracted the model-fitted val-
ues, and estimated the EVSI via equation (14).

Data Collection Scenario 2: EVSI for Quality of Life
after Critical Event (QE)

To reduce uncertainty about QE, we considered the
value of undertaking an observational study of n =
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100 patients who have experienced a critical event.
We assume that, conditional on QE, the sample
mean of the logit transform of the quality of life
reported in a single data collection exercise is Nor-
mally distributed with expectation logit(QE) and var-
iance s2/n, where s2, the population variance, is
assumed known and equal to 2 (see Ades et al.7 for
details).

Method 1—single-loop method presented in Ades
et al.

As in scenario 1, we replicated the single-loop
method used in the case study in Ades et al.7 First,
we drew k = 1, . . ., K samples from the Normal(0.6,
1/6) prior distribution for logit(QE). Next, for each
sampled value logit(QE)(k), we generated a sample
of data x(k) from a Normal{logit(QE)(k), 1/50} distribu-
tion. Due to conjugacy, the posterior distribution
of logit(QE)|x(k) is Normal{(0.6 3 6 + x(k) 3 50)/
(50 + 6),1/(50 + 6)}. The posterior expectation
EQEjxðkÞ ðQEÞ can then be estimated from the posterior
distribution of the logit-transformed parameter,
p(logit(QE)|x(k)), using a Taylor series method
(described in full in Ades et al.). Because the eco-
nomic model is multilinear in the parameters, we
can calculate for each data set k the expected net ben-
efits EujxðkÞfNBðd; uÞg by plugging into equations (15)
and (16) the posterior expectation EQEjxðkÞ ðQEÞ, along
with the expected values for the remaining uncertain
parameters, EðPSEÞ, EðPCÞ and EðPTÞ. We estimated
EVSI as described for scenario 1 using equation (17).

Method 2—2-level nested Monte Carlo/MCMC
sampling scheme

In method 2, we implemented the 2-level Monte
Carlo scheme outlined earlier. In an outer loop, we
drew K samples from the Normal(0.6, 1/6) prior dis-
tribution for logit(QE). For each value logit(QE)(k),
we generated a sample of data x(k) from a Normal{lo-
git(QE)(k), 1/50} distribution. Conditional on each
simulated trial data value x(k), we then ran an inner
loop of size J = 104. At each run of the inner loop,
we sampled a vector of parameter values u(j,k) from
the posterior distribution p(u|x(k)) and evaluated
the model net benefit equation NB(d, u(j,k)). Finally,
we calculated EVSI via equation (9). Because x(k) is
only informative for the parameter QE, and QE is inde-
pendent of all other model parameters, drawing from
p(u|x(k)) reduced in this case to drawing from the
posterior distribution p(QE|x(k)) and the prior distri-
butions for the remaining parameters. The posterior
distribution p(QE|x(k)) does not have a standard

form, and we therefore implemented the inner loop
in OpenBUGS.25 At each inner-loop step, we dis-
carded the first 1000 MCMC samples as a burn-in.

Method 3—GAM regression

In method 3, we implemented the GAM regression
scheme outlined earlier. First, we generated a PSA
sample of size K. We calculated the incremental net
benefit for each PSA sample. Next, for each parameter
vector u(k) in the PSA sample, we generated a sample
of data x(k) from a Normal{logit(QE)(k), 1/50} distribu-
tion. Because the data are scalar, the summary statis-
tic is T(x(k)) = x(k). We regressed the incremental net
benefits on T(x(k)), extracted the model-fitted values,
and estimated the EVSI via equation (14).

Data Collection Scenario 3: EVSI for the Treatment
Effect Size (OR)

To reduce uncertainty about the treatment effect
size parameter OR, we consider the value of undertak-
ing a randomized controlled trial with n = 200 patients
allocated to the new treatment, and n = 200 patients
allocated to standard care. We assume that, condi-
tional on PC and PT, where logit(PT) = logit(PC) +
log(OR), the number of critical events is xT ~ Binomial
(PT, 200) in the new treatment group and xC ~ Binomial
(PC, 200) in the standard care group.

Method 1—single-loop method presented in Ades
et al.

Again, we replicated the single-loop method used
in the case study in Ades et al.7 The scheme for updat-
ing the model parameters conditional on the sampled
data is rather more complex than in scenarios 1 and 2.
We give a brief outline of the method here, and the
reader is referred to the original study for full details.
First, we drew k = 1, . . ., K samples from the Beta
(15, 85) prior distribution for PC, and k = 1, . . ., K sam-
ples from the Normal(–1.5, 1/3) prior distribution for

log(OR). For each k, we calculated P
ðkÞ
T 5 logit�1

flogitðPðkÞC Þ1 log ðORÞðkÞg. Next, for each value P
ðkÞ
C ,

we generated a sample of data x
ðkÞ
C from

a Binomial(P
ðkÞ
C , 200) distribution and, from each

value P
ðkÞ
T , a sample of data x

ðkÞ
T from a Binomial(P

ðkÞ
T ,

200) distribution. From x
ðkÞ
C and x

ðkÞ
T , we calculated

the log odds ratio fxðkÞT =ð200� x
ðkÞ
T Þg=fx

ðkÞ
C =

ð200� x
ðkÞ
C Þg for simulated study k. This was assumed

to follow a Normal distribution with expectation

equal to log(OR)(k) and variance equal to 1=x
ðkÞ
C 1
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1=ðn� x
ðkÞ
C Þ1 1=x

ðkÞ
T 1 1=ðn� x

ðkÞ
T Þ. These assump-

tions result in conjugacy and therefore a Normal pos-
terior distribution for log(OR) given the sampled data.
The posterior expectation of log(OR) was added to the
prior expectation for logit(PC) to give a value of log-
it(PT) that reflected the new knowledge of the treat-
ment effect derived from the simulated trial. The

posterior expectation of PTjxðkÞT ; x
ðkÞ
C was derived

from the expectation of logitðPTÞjxðkÞT ; x
ðkÞ
C using a Tay-

lor series approximation. Finally, the expected net
benefits E

ujxðkÞ
T
; x
ðkÞ
C

NBðd; uÞ were obtained by plugging

into equations (15) and (16) the posterior expecta-
tions E

PT jxðkÞT
; x
ðkÞ
C

ðPTÞ, along with the prior expected

values for the remaining uncertain parameters,
EðPSEÞ, EðPCÞ, and EðQEÞ. We then estimated EVSI
as described for scenario 1 using equation (17).

Method 2—2-level nested Monte Carlo/MCMC
sampling scheme

In method 2, we implemented the 2-level Monte
Carlo scheme outlined earlier. In an outer loop, we
generated samples of data xðkÞ5 ðxðkÞC ; x

ðkÞ
T Þ as in

method 1. Conditional on each simulated trial data
vector, we ran an inner loop of size J = 104. Because
we require that x(k) is informative only for the param-
eter OR and not for PC, we used the inner-loop step to
sample parameter values P

ðj; kÞ
T from its posterior dis-

tribution p(PT|x(k)) and values of PC from its prior dis-
tribution. We evaluated the model net benefit
equation NB(d, u(j,k)) at each inner loop run and cal-
culated EVSI via equation (9). The posterior distribu-
tion p(PT|x(k)) does not have a standard form, and we

therefore implemented the inner loop in Open-
BUGS.25 At each inner-loop step, we discarded the
first 1000 MCMC samples as a burn-in.

Method 3—GAM regression

In method 3, we implemented the GAM regression
scheme outlined earlier. First, we generated a PSA
sample of size K. We calculated the incremental net
benefit for each PSA sample. Next, for each parameter
vector u(k) in the PSA sample, we generated a sample
of data comprising x

ðkÞ
C from a Binomial(P

ðkÞ
C , 200) dis-

tribution and x
ðkÞ
T from a Binomial(P

ðkÞ
T , 200) distribu-

tion. Data samples in this case are vector valued,
xðkÞ5 ðxðkÞC ; x

ðkÞ
T Þ, and we therefore calculated the sam-

ple log odds ratio statistic TðxðkÞÞ5 log

½fxðkÞT =ð200� x
ðkÞ
T Þg=fx

ðkÞ
C =ð200� x

ðkÞ
C Þg�. We regressed

the incremental net benefits on T(x(k)), extracted the
model-fitted values, and estimated the EVSI via equa-
tion (14).

RESULTS

Table 2 shows the EVSI values, standard errors,
and timings for the 3 data collection scenarios calcu-
lated by the Ades et al.7 method, the 2-level Monte
Carlo/MCMC method, and the GAM regression
method. For comparison, Ades et al. report values
of $5550, $1880, and $3260 for scenarios 1, 2, and 3,
respectively, using the single-loop method with
a sample size of 105. Partial EVPI values for PSE, QE,
and OR (the parameters updated in scenarios 1, 2,
and 3) are $6280, $2090, and $3890, respectively.

Table 2 Estimated EVSI Values and CPU Run Times for the Three Case Study Scenarios

Sample Size
EVSI (SE), $

Mean CPU Time, sOuter (K) Inner (J) Total Scenario 1 Scenario 2 Scenario 3

Ades et al7 (2004) method
104 2 104 5660 (107) 1955 (38) 3121 (79) 0.1
105 2 105 5543 (34) 1872 (12) 3279 (26) 0.2
106 2 106 5565 (11) 1884 (3.7) 3245 (8.0) 1.2
Two-level Monte Carlo method
104 104 108 5464 (105) 1871 (37) 2967 (80) 4456
105 104 109 5562 (34) 1892 (12) 3049 (26) 43,303
106 104 1010 5569 (11) 1886 (3.7) 3031 (8.1) 424,686
GAM regression method
104 2 104 5334 (130) 2047 (163) 3117 (137) 0.1
105 2 105 5534 (42) 1846 (51) 3020 (41) 0.7
106 2 106 5580 (13) 1861 (16) 3035 (13) 8.1

EVSI, expected value of sample information; GAM, generalized additive model. Partial EVPI values (an upper limit on EVSI) are $6280, $2090, and $3890
for scenarios 1, 2, and 3, respectively.

EFFICIENT COMPUTATION OF EVSI

ORIGINAL ARTICLE 579



There is good agreement between all 3 methods in
scenarios 1 and 2. In scenario 3, the most precise EVSI
estimates obtained using the MCMC and GAM meth-
ods are in agreement with each other and are approx-
imately $200 lower than the most precise estimate
obtained using the Ades et al.7 method.

The analytic method for computing the inner con-
ditional expectation EujxfNBðd;uÞg is exact for sce-
nario 1 but not for scenarios 2 and 3. In scenarios 2
and 3, a Taylor series approximation is used to derive
the expectation of a logit-transformed parameter from
the expectation of the parameter itself, and in sce-
nario 3, the log odds ratio obtained for each simulated
study is assumed to be Normally distributed. These
approximations are not required in either the 2-level
method or the regression method. The assumption in
the analytic method that the study log odds ratios are
Normally distributed may in particular be problem-
atic. The assumption is reasonable if the underlying
probabilities are close to 0.5 but not when probabili-
ties are close to 0 or 1. In our case study, the mean
probability of a critical event is EðPTÞ5 0:044 on
the new treatment and EðPCÞ5 0:15 on standard
care. To explore the robustness of the assumption of
Normality, we generated samples from XT ~
Binom(0.044, 200) and XC ~ Binom(0.15, 200) and,
for each pair of samples, calculated the log odds ratio.
A Normal QQ plot of the sampled log odds ratios in

Figure 3 shows that the assumption of Normality
does not hold.

Precision and Computational Efficiency

For comparisons within each method, the Monte
Carlo standard error scales in proportion to K21/2

(as expected), and the computation time scales
approximately in proportion to K.

For the same level of precision, the 2-level Monte
Carlo method requires 104 (i.e., the inner loop size)
times as many samples as does the Ades et al.7 ana-
lytic method. This holds across all 3 scenarios. The
2-level method is roughly 5 orders of magnitude
slower than the Ades et al. method for the same value
of K, primarily due to the requirement for 104 model
evaluations at each outer-loop run.

For scenario 1, the standard errors obtained using
the GAM method are approximately 20% larger
than those of the analytic method, given the same
number of model runs. Thus, to achieve the same pre-
cision, the number of runs would need to be increased
by approximately 1.22 = 1.44 times (this was con-
firmed empirically; results not shown). For scenario
2, the standard errors obtained using the GAM method
are approximately 4 times larger than those of the ana-
lytic method, given the same number of model runs.
Thus, to achieve the same precision, the number of
runs would need to be increased by approximately
16 times. For scenario 3, the standard errors obtained
using the GAM method are approximately 60% larger
than those of the analytic method, given the same
number of model runs. Here, to achieve the same pre-
cision, the number of runs would need to be increased
by approximately 2.6 times.

The precision of the GAM estimate, as well as
being related to the sample size, is related to the
uncertainty in the model parameters that are not
updated by the data. This uncertainty propagates
through to the model output (the net benefit) in the
PSA sample and causes the variability in the net ben-
efit that is modeled by the error term in the regression.
In the case of scenario 2, the GAM estimate requires
relatively more samples (for some given precision)
than does the GAM estimate for scenario 1 or 3.
This suggests that in scenario 2, the uncertainty in
the parameters not updated by data (i.e., PSE and
log(OR)) is large. This is confirmed by the relatively
high partial EVPI values for PSE and log(OR).

In terms of computational speed, the GAM method
is roughly an order of magnitude slower than the
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Figure 3 Normal QQ plot for samples of a study log odds ratio

with PT = 0:044, PC = 0:15, and nT = nC = 200.
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analytic method but roughly 4 orders faster than the
2-level method.

DISCUSSION

Our key idea is that instead of estimating, for each
decision option, the posterior expected net benefits
via a computationally burdensome repeated (inner-
loop) Monte Carlo step, we estimate the functional rela-
tionship between the posterior expected net benefit and
the simulated data via a nonparametric regression.

Strengths and Limitations

The value of the nonparametric regression method
over the 2-level Monte Carlo approach is 2-fold: it is
straightforward to implement, requiring less detailed
mathematical thinking on the part of the analyst for
any particular application, and is several orders of
magnitude faster for any given precision. Due to the
method’s ease of use and the fact that it only requires
the PSA sample and not the model itself, we would
suggest that the regression method is applicable in
even the simplest of modeling contexts.

In common with other established methods for
computing EVSI, we must be able to generate sample
data sets, conditional on samples from the prior dis-
tribution of the model parameters. For complex study
designs, this may not be straightforward. For our
method, we must also be able to summarize the sam-
pled data in either a scalar, or low-dimensional, sum-
mary statistic. Again, for complex study designs, this
may not always be easy.

How This Fits with Existing Literature

One option for computing EVSI is to assume that
the incremental net benefit is Normally distributed
with parameters that are known functions of study
sample size. Under this assumption, EVSI can be cal-
culated using fast analytical methods. This ‘‘paramet-
ric’’ approach is most appropriate in settings in
which cost-effectiveness analysis is undertaken
alongside a single 2-arm randomized controlled trial
(RCT). In this setting, the mean incremental net ben-
efit is derived directly from individual-level costs
and effects, and the central limit theorem can
be used to justify the assumption of Normality.
The method has been explored in theoretical investi-
gations9–13 and applied in real clinical decision prob-
lems.30 However, the approach is not straightforward
for decision problems with more than 2 options and

may not be appropriate when a more complex
decision-analytic model has been used to estimate
incremental net benefit. A nonlinear cost-effectiveness
model with non-Normal input parameters may gener-
ate notably non-Normal incremental net benefits. It
may be difficult to predict the relationship between
the size of a proposed study that informs some partic-
ular subset of parameters and the net benefits of a range
of competing decision options. Deriving the parame-
ters of the Normal distribution(s) that the parametric
approach requires may therefore be difficult.

The nonparametric regression approach that we
propose has some similarities to the model emulation
method proposed in Oakley,31 and in one sense, the
GAM model can be viewed as an emulator for the pos-
terior expectation of the net benefit, conditional on
the data. The important difference between the 2
approaches is that in Oakley, the net benefit function
itself is emulated. Emulating the net benefit function
allows for the rapid evaluation of a slow economic
model, but it does not address the problem of how
to sample from a difficult posterior distribution of
the parameters conditional on the data. Our method
also has some similarities to the spline-based
approach for computing partial EVPI that has been
proposed by Madan et al.21 Here, a spline is used to
approximate the conditional expectation of some pre-
defined subfunction of the net benefit function, given
some sampled value of a parameter of interest.
Although the method by Madan et al is shown to per-
form well, it requires algebraic manipulation of the
net benefit function to identify the appropriate sub-
functions for the spline approximation. This may be
difficult in complex models.

Implications for Practice and for Research

At present, commissioners and funders of research
are not using EVSI methods as part of their day-to-day
decision-making processes (although there are excep-
tions to this30,32,33). However, it is becoming more
common for early economic evaluation models to be
requested by research funders to establish the poten-
tial benefits of proposed new interventions. One bar-
rier to implementation of EVSI at this stage has been
the complexity of calculation, and we hope that our
method can help to remove this barrier. We do recog-
nize, though, that there are other important barriers to
the widespread use of EVSI, including a lack of
understanding of value of information methods,
a mistrust of mathematical models, and a requirement
for trialists to work within a frequentist hypothesis
test-based framework.
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Throughout the article, we have assumed that the
decision maker’s utility is equal to net benefit and
that the decision problem is to maximize net benefit
over a set of discrete treatment options. This is the
typical decision problem faced by government agen-
cies such as the National Institute for Health and
Care Excellence (NICE), but the type of decision prob-
lem faced by the pharmaceutical industry is some-
what different. Here, utility is profit, and under
value-based pricing, the decision problem is to
choose price to maximize profit, subject to the con-
straint that additional health benefits do not cost
more than the funder’s willingness to pay. EVSI
from an industry perspective has been explored by
Willan34 and by Willan and Eckermann,35 as well as
more recently within a value-based pricing context
by Breeze and Brennan.36 Our nonparametric regres-
sion method for computing EVSI will apply equally
well in this context.

Further research could extend to testing the
nonparametric regression method in other cost-
effectiveness models, including Markov cohort mod-
els and more complex patient-level models. An
important feature of our method is that all variation
in the net benefit function that is not due to the data
is taken up by the error term in the regression analysis
and ‘‘averaged out.’’ Thus, any variation in the net
benefit that arises due to poor convergence of
a patient-level model is also averaged out in the
regression.24 This means that, to calculate EVSI for
a patient-level model (in which patients do not inter-
act), only a single patient needs to be ‘‘run’’ through
the model at each evaluation of the PSA. We look for-
ward to more research in this area.
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