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ABSTRACT The 2015–2016 Zika virus (ZIKV) epidemic in the Americas and the Ca-
ribbean demonstrated that clinical assays to detect, distinguish, and characterize im-
mune responses to flaviviral infections are needed. ZIKV and dengue virus (DENV)
are mosquito-transmitted flaviviruses sharing overlapping geographic distributions
and have significant sequence similarities that can increase the potential for anti-
body and T cell cross-reaction. Using nonstructural protein 1-based enzyme-linked
immunosorbent assays (ELISAs), we determined the serostatus of individuals living in
a region of DENV and ZIKV endemicity in Brazil, identifying individuals with primary
DENV (pDENV) and primary ZIKV (pZIKV), ZIKV with primary DENV (ZIKVwpDENV),
and secondary DENV (sDENV) infections; the presence of pDENV and pZIKV was fur-
ther confirmed by neutralization tests. Development of an enzyme-linked immu-
nosorbent spot (ELISPOT) assay for DENV and ZIKV structural and nonstructural (NS)
protein antigens enabled us to distinguish infections by these viruses based on T
cell responses and to characterize those responses. We found that gamma interferon
(IFN-�) and tumor necrosis factor alpha (TNF-�) T cell responses to NS3 differenti-
ated DENV and ZIKV infections with 94% sensitivity and 92% specificity. In general,
we also showed that pDENV and sDENV cases and pZIKV and ZIKVwpDENV cases
elicit similar T cell response patterns and that HIV-infected individuals show T cell re-
sponses that are lower than those shown by HIV-negative individuals. These results
have important implications for DENV and ZIKV diagnostic and vaccine development
and provide critical insights into the T cell response in individuals with multiple fla-
viviral infections.

IMPORTANCE The potential for antibody and T cell cross-reactions to DENV and
ZIKV, flaviviruses that cocirculate and can sequentially infect individuals, has compli-
cated diagnostic and vaccine development. Our serological data show that antibod-
ies to nonstructural protein 1 can distinguish sequential human infections by DENV
and ZIKV. The development of a simple and inexpensive assay also enables the dif-
ferentiation of DENV and ZIKV infections based on characterization of T cell re-
sponses. Our T cell data reveal strong response patterns that are similar in nature to
those seen with individuals with one or multiple DENV infections and with individu-
als with only primary ZIKV infection and ZIKV-infected individuals with previous
DENV exposure. The characterization of T cell responses in a serologically validated
group of individuals is of relevance to the development of vaccines and immuno-
therapeutics against these global threats.

Received 19 April 2018 Accepted 16 July
2018 Published 7 August 2018

Citation Herrera BB, Tsai W-Y, Brites C, Luz E,
Pedroso C, Drexler JF, Wang W-K, Kanki PJ.
2018. T cell responses to nonstructural protein
3 distinguish infections by dengue and Zika
viruses. mBio 9:e00755-18. https://doi.org/10
.1128/mBio.00755-18.

Invited Editor Robert F. Garry, Tulane
University Health Sciences Ctr.

Editor Christine A. Biron, Brown University

Copyright © 2018 Herrera et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Wei-Kung Wang,
wkwang@hawaii.edu, or Phyllis J. Kanki,
pkanki@hsph.harvard.edu.

B.B.H. and W.-Y.T. contributed equally to this
article.

RESEARCH ARTICLE

crossm

July/August 2018 Volume 9 Issue 4 e00755-18 ® mbio.asm.org 1

https://doi.org/10.1128/mBio.00755-18
https://doi.org/10.1128/mBio.00755-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:wkwang@hawaii.edu
mailto:pkanki@hsph.harvard.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00755-18&domain=pdf&date_stamp=2018-8-7
http://mbio.asm.org


KEYWORDS Brazil, dengue virus, T cell immunity, Zika virus, nonstructural protein 3

Aedes mosquitoes transmit globally relevant flaviviruses, including dengue virus
(DENV) and Zika virus (ZIKV). DENV exists as four antigenic serotypes, DENV1 to

DENV4 (1). These viruses have a wide geographic distribution, with approximately 390
million infections annually and more than a quarter of the world’s population at risk (2).
Prior to 2015, ZIKV was considered obscure and was known to circulate in Africa and
Southeast Asia as two separate viral lineages, African and Asian (3). While most are
asymptomatic, the clinical presentation of ZIKV infection resembles that of dengue,
including fever, rash, conjunctivitis, arthralgia, and myalgia (4). In early 2015, thousands
of Asian ZIKV cases appeared in northeast Brazil, with accompanying reports of severe
neuropathology, including congenital microcephaly and Guillain-Barré syndrome (5, 6).
In February 2016, the World Health Organization declared ZIKV a public health emer-
gency of international concern (7). By June 2016, autochthonous transmission of ZIKV
had been reported in 40 countries and in territories throughout South and Central
America and the Caribbean (8).

The emergence of ZIKV in regions of DENV endemicity is of particular concern and
relevant for diagnostic and vaccine development. The cocirculation of these genetically
similar viruses can result in coinfection or sequential exposure, which has been shown
to potentiate cross-reactive immunity at both the antibody (Ab) and T cell levels (9–12).
The envelope (E) protein is the major target of the antibody response in humans during
flaviviral infection (1). Antibody-based assays were found to detect extensive cross-
reactivity to ZIKV E protein with other flaviviruses, requiring confirmation by plaque
reduction neutralization tests (PRNTs) (11, 13–16). These tests, however, are challenged
in their ability to confirm infection in individuals with multiple flaviviral infections,
especially during the acute and early convalescent phases. Several studies have also
shown that most DENV-immune serums or DENV E monoclonal antibodies cross-react
with ZIKV but contain limited cross-neutralization activity and can instead enhance ZIKV
infection, known as antibody-dependent enhancement (ADE) (17–22). In contrast,
recent studies reported that antibodies to ZIKV nonstructural protein 1 (NS1) were able
to discriminate infections by these viruses (23, 24). We previously showed that combi-
nations of DENV and ZIKV NS1-based enzyme-linked immunosorbent assays (ELISAs)
were capable of distinguishing confirmed cases with respect to past and present
flaviviral infections, including primary DENV (pDENV) and primary ZIKV (pZIKV), ZIKV
with primary DENV (ZIKVwpDENV), and secondary DENV (sDENV) infections (12). These
ELISAs are applicable for routine serological tests for DENV and ZIKV and are also useful
in retrospective studies to identify individuals with primary and multiple flaviviral
infections.

Preexisting T cell responses to DENV have also been shown to occur with reactions
to peptides encoded throughout the ZIKV proteome. DENV-naive mice challenged with
ZIKV developed ZIKV-specific CD8� T cells, whereas DENV-immune mice challenged
with ZIKV elicited cross-reactive CD8� T cells that reduced levels of infectious ZIKV (25).
A study in humans infected with Asian ZIKV demonstrated that DENV serostatus
influences the T cell response to ZIKV (10). DENV-immune individuals showed CD4�

and CD8� T cell responses to ZIKV that occurred more rapidly and that were of greater
magnitude than those shown by DENV-naive ZIKV-infected individuals. In addition,
different patterns of immunodominant T cell responses were observed in the case of
DENV and ZIKV infections. While CD8� T cell responses against DENV target nonstruc-
tural (NS) proteins such as NS3, NS4B, and NS5, ZIKV-specific CD8� T cell responses
target the capsid (C), premembrane (prM), and E structural proteins (10, 26). We
previously developed a modified anthrax toxin (N-terminal domain of lethal factor
[LFn])-based enzyme-linked immunosorbent spot (ELISPOT) assay, which revealed long-
term T cell responses that were ZIKV and DENV specific with respect to NS3 protease
but cross-reactive with respect to NS3 helicase in individuals infected with DENV and
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African ZIKV (27). The impact of cross-reactive immune responses in protection or
development of ZIKV-mediated neuropathology remains unclear.

In this study, we utilized our NS1-based ELISAs to determine the DENV and ZIKV
serostatus of individuals from Salvador, Brazil, a region of DENV hyperendemicity with
one of the highest incidence rates of ZIKV during the 2015–2016 epidemic (28). We
then tested the ability of our LFn ELISPOT test to distinguish infections by DENV and
Asian ZIKV based on T cells and to characterize those responses.

RESULTS
NS1-based ELISAs and neutralization tests determine DENV and ZIKV serosta-

tus. During the ZIKV outbreak in Salvador, Brazil, acute-phase blood samples were
collected from hundreds of suspected ZIKV-infected patients attending HIV outpatient
clinics between November 2015 and May 2016. Serological testing for ZIKV-NS1 IgG and
DENV-E IgG was performed, revealing a high incidence of ZIKV infection in presumed
DENV-immune and -naïve individuals (28). Fifty of these patients were included in the
present study. Their median age was 43 (range, 23 to 72), 49% were female, and 76%
were infected with human immunodeficiency virus (HIV). All HIV-infected individuals
were on antiretroviral therapy; more than 92% had undetectable viral loads and normal
CD4 counts. Data pertaining to acute serology and patient characteristics are summa-
rized in Table 1 and Table S1, respectively.

In order to determine the DENV and ZIKV serostatus among the study participants
who had potentially been dually exposed, we collected late-convalescent-phase blood
samples and employed our previously developed ZIKV-NS1 and DENV-NS1 IgG ELISAs
(22). For samples positive for DENV-NS1, we calculated the ratio of relative optical
density (rOD) of ZIKV-NS1 to that of DENV-NS1 and used a rOD ratio of �0.24 or �0.24
to determine sDENV or ZIKVwpDENV infection, respectively (22). Twelve ZIKVwpDENV
infections and 21 sDENV infections were identified (Table 1) (Fig. 1A to C). Five samples
with ZIKV-NS1-positive and DENV-NS1-negative results represented pZIKV. Since these
samples were collected more than 1 year postinfection, some anti-NS1 antibodies may
have declined to levels below detection, so we further tested with ZIKV and DENV E
protein-based ELISAs and identified four samples negative for both ZIKV and DENV in
all four ELISAs tested (Table 1). Based on the difference in rOD of ZIKV and DENV E
proteins (ΔrOD � rOD of ZIKV � rOD of DENV), we identified four pZIKV infections
(ΔrOD greater than or equal to 0.17) and four pDENV infections (ΔrOD less than �0.17)
(Table 1) (Fig. 1D and E). The negative pZIKV and pDENV samples were further
confirmed by microneutralization tests of DENV1 to DENV4 and ZIKV; all four negative
samples had 90% neutralization (NT90) titers of �10 for DENV1 to DENV4 and ZIKV, and
the five pZIKV and four pDENV samples showed monotypic neutralization patterns for
ZIKV and for one of the four DENV serotypes, respectively (Table 1). For the remaining
33 samples, microneutralization tests were performed with ZIKV, DENV1, and/or DENV2
or DENV3 to show that all 12 ZIKVwpDENV samples neutralized (NT90 titers of �10) ZIKV
plus at least one DENV serotype, whereas all 21 sDENV samples neutralized at least two
DENV serotypes or DENV plus ZIKV; these patterns were compatible with unspecified
flavivirus infection according to CDC guidelines (16). An additional three samples
(ZK1004, ZK1005, and ZK1008), which showed ΔrOD values between �0.17 and 0.17
and positive ZIKV-NS1 IgG results for acute-phase sera but negative results for late-
convalescent-phase sera, were classified as undetermined (Table 1). Another sample
(ZK0981), for which DENV acute-phase serology was not performed, was negative for
ELISAs using late-convalescent-phase serum and was also classified as undetermined.

T cell responses to NS3 distinguish DENV and ZIKV infections. We recently
reported the development of an LFn ELISPOT test based on NS3 protease and helicase
to distinguish DENV and African ZIKV human infections (27). To assess the ability of the
assay to distinguish infections by DENV and Asian ZIKV, we performed DENV and ZIKV
homologous and heterologous LFn-NS3 protease and helicase stimulation of date-
matched late-convalescent-phase peripheral blood mononuclear cells (PBMCs) in sep-
arate gamma interferon (IFN-�) and tumor necrosis alpha (TNF-�) ELISPOT tests among
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TABLE 1 Results of serological testsg

ID

Acute-phase sera Late-convalescent-phase serum

Interpretation
ZIKV-NS1
IgGa

DENV-E
IgGa

PRNT
testb

ZIKV-NS1
IgGc

DENV-NS1
IgGc

rOD
ratioc

ZIKV-E
IgGd

DENV-E
IgGd

NT test results for
D1/D2/D3/D4/ZIKVf

ZK0978 � � � � � NA � � �10/�10/�10/�10/�10 Negative
ZK0982 � � � � � NA � � �10/�10/�10/�10/�10 Negative
ZK0987 � � � � � NA � � �10/�10/�10/�10/�10 Negative
ZK0999 � � � � � NA � � �10/�10/�10/�10/�10 Negative
ZK0979 � � � � NA �e � �10/�10/�10/�10/�160 pZIKV
ZK0993 � � � � NA �e � �40/�40/�10/�10/�160 pZIKV
ZK0998 � � � � NA �e � �10/�10/�40/�10/�160 pZIKV
ZK1006 � � � � NA �e � �80/�40�10/�40/640 pZIKV
ZK0996 � � � � � NA �e � �10/�10/�10/�10/�160 pZIKV
ZK0966 � � � � � NA � �e �40/160/�10/�40/�10 pDENV
ZK0980 � � � � NA � �e �40/�40/�160/�40/�10 pDENV
ZK0995 � � � � NA � �e �640/160/�10/�10/�10 pDENV
ZK0997 ND ND � � NA � �e �40/�160/�40/�40/�10 pDENV
ZK0972 � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK0975 � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK0989 � � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK0991 � � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK1000 � � � � �0.24 � � �40/ND/ND/ND/�40 ZIKVwpDENV
ZK1009 � � � � � �0.24 � � �10/ND/ND/ND/�80 ZIKVwpDENV
ZK1011 � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK1012 � � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK1014 � � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK1015 � � � � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK0968 � ND � � �0.24 � � �40/ND/ND/ND/�80 ZIKVwpDENV
ZK0984 � � � � �0.24 � � �320/�1,280/�80/�1,280/�320 ZIKVwpDENV
ZK0976 � � � � �0.24 � � �40/ND/ND/ND/�10 sDENV
ZK0986 � � � � �0.24 � � �40/ND/ND/ND/�80 sDENV
ZK0967 � � � � �0.24 � � �40/ND/ND/ND/�80 sDENV
ZK0969 � � � � �0.24 � � �40/ND/ND/ND/�40 sDENV
ZK0971 � � � � �0.24 � � �40/�40/ND/ND/�10 sDENV
ZK0977 � � � � �0.24 � � �40/ND/ND/ND/�80 sDENV
ZK0983 � � � � � �0.24 � � �40/ND/ND/ND/�10 sDENV
ZL0985 � � � � � �0.24 � � �40/ND/ND/ND/�40 sDENV
ZK0988 � � � � �0.24 � � �40/ND/ND/ND/�40 sDENV
ZK0992 � � � � � �0.24 � � �40/ND/ND/ND/�80 sDENV
ZK0994 � � � � � �0.24 � � �40/ND/ND/ND/�40 sDENV
ZK1001 � � � � �0.24 � � �40/�40/ND/ND/�10 sDENV
ZK1010 � � � � �0.24 � � �40/ND/ND/ND/�80 sDENV
ZK1013 � ND � � �0.24 � � �40/ND/ND/ND/�10 sDENV
ZK0973 � ND � � �0.24 � � �40/�80/�80/ND/�320 sDENV
ZK0974 � � � � �0.24 � � �40/�320/�80/ND/�10 sDENV
ZK1002 � � � � � �0.24 � � �40/�80/�80/ND/�10 sDENV
ZK1003 � � � � � �0.24 � � �40/�80/�80/ND/�10 sDENV
ZK1007 � � � � �0.24 � � �40/�80/�80/ND/�10 sDENV
ZK1016 � � � � �0.24 � � �40/�1,280/�1,280/ND/�10 sDENV
ZK0990 � � � � � �0.24 � � �40/�1,280/�80/ND/�10 sDENV
ZK1004 � � � � NA � � ND/ND/ND/ND/ND Unknown
ZK1005 � ND � � NA � � ND/ND/ND/ND/ND Unknown
ZK1008 � � � � NA � � ND/ND/ND/ND/ND Unknown
ZK0981 � ND � � NA � � ND/ND/ND/ND/ND Unknown
aEuroimmun ZIKV-NS1 and DENV-E IgG ELISAs were performed on acute-phase sera (28).
bPRNT was performed on acute-phase sera to detect neutralization antibody to ZIKV (47).
cZIKV-NS1 and DENV-NS IgG ELISAs were described previously (12). rOD ratio (ZIKV-NS1/DENV-NS1) values of �0.24 or �0.24 were classified as representative of
sDENV or ZIKVwpDENV infection, respectively (12).

dZIKV-E and DENV-E IgG ELISAs utilized ZIKV VLP and DENV virions, respectively (46). ΔrOD (rOD of ZIKV � rOD of DENV) values of greater than or equal to 0.17 or
less than �0.17 were classified as representative of pZIKV or pDENV infection, respectively.

eZIKV-E and DENV-E IgG ELISAs utilized ZIKV VLP and DENV virions, respectively (46). ΔrOD (rOD of ZIKV � rOD of DENV) values of greater than or equal to 0.17 or
less than �0.17 were classified as representative of pZIKV or pDENV infection, respectively.

fMicroneutralization tests (NT) were performed (NT90 titers are shown) to confirm no infection or pZIKV or pDENV infection (46, 48).
gpDENV, primary DENV infection; pZIKV, primary ZIKV infection; sDENV, secondary DENV infection; ZIKVwpDENV, ZIKV infection with previous DENV infection. D1,
DENV serotype 1; D2, DENV serotype 2; D3, DENV serotype 3; D4, DENV serotype 4; NA, not applicable; ND, not determined.
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FIG 1 ZIKV and DENV NS1-based and E-based IgG ELISAs. (A) ZIKV-NS1 IgG ELISA. (B) DENV-NS1 IgG ELISA. (C) ZIKV-NS1/DENV-NS1 rOD ratio. (D) ZIKV-E
IgG ELISA. (E) DENV-E IgG ELISA. (F) ΔrOD � rOD of ZIKV � rOD of DENV. Horizontal lines indicate cutoff values (0.24 for rOD ratio and 0.17 for ΔrOD).
pZIKV, primary ZIKV infection; pDENV, primary DENV infection; sDENV, secondary DENV infection; ZIKVwpDENV, ZIKV infection with previous DENV
infection. NA, not applicable.
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the serological-validated pDENV, pZIKV, sDENV, ZIKVwpDENV, and undetermined cases.
Using an NS3 protease-to-helicase-ratio cutoff value of 1.05 for the IFN-� ELISPOT test,
pDENV and sDENV cases and pZIKV and ZIKVwpDENV and 3 of the 4 serologically
undetermined cases appeared to group together (Fig. 2A). Among the undetermined
cases, 3 (ZK1004, 1005, and 1008) of 4 grouped with the ZIKV-exposed individuals,
while ZK0981 grouped with the DENV-infected individuals. Using a ratio cutoff value of
1.048 for the TNF-� ELISPOT test, similar groupings were observed (Fig. 2B). We were
unable to distinguish sequential infections based on T cell responses to NS3 protease
and helicase.

Test data were further analyzed to define sensitivity (identifying true positives, i.e.,
individuals who had been infected by DENV versus ZIKV) and specificity (identifying
true negatives, i.e., DENV- or ZIKV-uninfected individuals). We evaluated sensitivity and
specificity as functions of the IFN-� and TNF-� cutoff values, above which a sample was
considered positive and below which a sample was considered negative. We grouped
pDENV and sDENV cases and pZIKV and ZIKVwpDENV cases based on the clustering
observed and excluded the 4 serologically undetermined cases from the analysis.
Receiver operating characteristic (ROC) curves and corresponding numerical values
illustrate the performance of the ELISPOT tests as a function of the discrimination
threshold, plotted as sensitivity versus 1 � specificity. The areas of the ROC curves
represent test performance, where 1 represents a perfect test and 0.5 a random
predictor. We measured areas of 0.96 and 0.97 for the IFN-� and TNF-� ELISPOT tests,
respectively (Table 2) (Fig. 2C and D). Using the cutoff values, the test sensitivity and
specificity for both the IFN-� and TNF-� ELISPOT tests were 94% and 92%, respectively.

LFn-DENV and LFn-ZIKV structural and nonstructural proteins elicit robust T
cell responses, and prior DENV exposure does not affect the response. To assess

FIG 2 T cell responses to NS3 protease and helicase and ROC analysis of the ELISPOT test. Late-convalescent-phase
PBMCs from DENV-infected and/or ZIKV-infected individuals were treated with homologous and heterologous
LFn-DENV and LFn-ZIKV NS3 protease, and the specific IFN-� and TNF-� T cell responses were detected by ex vivo
ELISPOT tests. (A) Scatter plot of the ratios of ZIKV NS3 protease to DENV NS3 protease IFN-� responses versus ratios
of helicase. (B) ROC analysis of the IFN-� ELISPOT test. (C) Scatter plot of the ratios of ZIKV NS3 protease to DENV
NS3 protease TNF-� T cell responses versus ratios of helicase responses. (D) ROC analysis of the TNF-� ELISPOT test.
The dashed line in panel A represents the optimal cutoff value of 1.05, and the dashed line in panel C represents
the optimal cutoff value of 1.048. Individual colored dots represent serologically validated DENV-infected and/or
ZIKV-infected individuals and the undetermined cases.
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the magnitude of T cell responses among the study participants, we stimulated
late-convalescent-phase PBMCs in separate IFN-� and TNF-� ELISPOT tests using the
following six LFn fusion proteins: LFn-DENV-NS3-protease (LFn-DV NS3-P), LFn-DENV-
NS3-helicase (LFn-DV NS3-H), LFn-ZIKV-capsid (LFn-ZV C), LFn-ZIKV-premembrance
(LFn-ZV prM), LFn-ZIKV-NS3-protease (LFn-ZV NS3-P), and LFn-ZIKV-NS3-helicase
(LFn-ZV NS3-H). Individuals with pDENV and sDENV infections showed similar IFN-� and
TNF-� T cell response patterns (Fig. 3A and B). These individuals had T cell responses
to LFn-DV NS3-H and LFn-ZV NS3-H that were greater in magnitude than the responses
to LFn-DV NS3-P and LFn-ZV NS3-P, respectively. Additionally, T cell responses to
LFn-DV NS3-P and NS3-H were stronger than those seen with LFn-ZV NS3-P and NS3-H.

TABLE 2 Numerical values of ROC and sensitivity and specificity analysis results

Parameter

Value(s) for DENV versus ZIKV

IFN-�� TNF-��

AUCa 0.96 0.97
95% CIb 0.91–1.02 0.92–1.01
Cutoff 1.055 1.048
% sensitivity 94 94
% specificity 92 92
aAUC, area under the curve.
bCI, confidence interval.

FIG 3 T cell responses to ZIKV and/or DENV structural or nonstructural proteins among subgroups with different DENV and ZIKV
serostatus. Late-convalescent-phase PBMCs from DENV-infected and/or ZIKV-infected individuals were treated with homologous
and/or heterologous LFn-DENV and LFn-ZIKV capsid (ZV C), premembrane (ZV prM), NS3 protease (DV or ZV NS3-P), and NS3 helicase
(DV or ZV NS3-H), and the specific IFN-� and TNF-� T cell responses were detected by ex vivo ELISPOT tests. IFN-� and TNF-�
spot-forming cells (SFC) were detected and counted, and the results were expressed as box plots with means and standard deviations.
(A and B) Comparisons of late-convalescent-phase IFN-� (A) and TNF-� (B) T cell responses of individuals with pDENV and sDENV
infections. (C and D) Comparisons of late-convalescent-phase IFN-� (C) and TNF-� (D) T cell responses of individuals with pZIKV and
ZIKVwpDENV infections. Individual colored plots represent serologically validated DENV-infected and/or ZIKV-infected individual. *,
P � 0.05.
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The amount of T cell cross-reactivity to the ZIKV structural proteins (LFn-ZV C and
LFn-ZV prM) was limited compared to the high cross-reactivity to LFn-ZV NS3-P and
NS3-H. Furthermore, individuals with pZIKV and ZIKVwpDENV infections showed T cell
responses to LFn-ZV NS3-H and LFn-DV NS3-H that were greater in magnitude than
those seen with LFn-ZV NS3-P and LFn-DV NS3-P, respectively (Fig. 3C and D). While
individuals with pZIKV and ZIKVwpDENV infections had stronger IFN-� T cell responses
to LFn-ZV NS3-H than to the ZIKV structural proteins, TNF-� responses to the ZIKV
structural proteins were stronger than to LFn-ZV NS3-P.

We further evaluated the impact of DENV immunity on the magnitude of T cell
responses. We compared the magnitudes of the IFN-� and TNF-� T cell responses of
individuals with pDENV and sDENV infections and of individuals with pZIKV and
ZIKVwpDENV infections. In all cases, the T cell responses in individuals with prior DENV
exposure were not significantly higher than those seen in individuals with a primary
DENV or ZIKV infection (Fig. 3). While IFN-� and TNF-� responses to the ZIKV structural
proteins in individuals with sDENV infections appeared stronger than the responses to
those in individuals with pDENV infections, these differences were not statistically
significant. Similarly, individuals with ZIKVwpDENV infection had IFN-� and TNF-� T
responses comparable to those of individuals with pZIKV infections (Fig. 3C and D).

HIV influences the T cell response in DENV-exposed individuals. We also com-
pared the magnitudes of the IFN-� and TNF-� T cell responses in DENV-exposed
(grouping individuals with pDENV and sDENV infections together), pZIKV-infected, and
ZIKVwpDENV-infected individuals who were HIV negative or HIV infected. DENV-
exposed HIV-negative individuals had stronger IFN-� responses to LFn-ZV C, LFn-ZV
NS3-P, and LFn-ZV NS3-H than HIV-infected individuals. IFN-� responses to LFn-DV
NS3-P and NS3-H appeared to be stronger in the HIV-infected individuals, although
these differences were not statistically significant (P � 0.61 and P � 0.13, respectively)
(Fig. 4A). A similar pattern of responses was observed for TNF-� (Fig. 4D). In general,

FIG 4 Impact of HIV status on the T cell response. (A to C) Comparisons of mean convalescent-phase IFN-� T cell responses expressed as bars and standard
deviations between HIV-negative (open black bars) and HIV-infected (shaded black bars) individuals with pDENV and sDENV infections grouped together (A),
HIV-negative (open dark gray bars) and HIV-infected (shaded dark gray bars) individuals with ZIKVwpDENV infections (B), and HIV-negative (open light-gray bars)
and HIV-infected (shaded light-gray bars) individuals with pZIKV infections (C). (D to F) Comparisons of mean convalescent-phase TNF-� T cell responses
indicated as bars and standard deviations between (D) HIV-negative (open black bars) and HIV-infected (shaded black bars) individuals with pDENV and sDENV
infections grouped together, (E) HIV-negative (open dark gray bars) and HIV-infected (shaded dark gray bars) individuals with ZIKVwpDENV infections, and (F)
HIV-negative (open light-gray bars) and HIV-infected (shaded light-gray bars) individuals with pZIKV infections. *, P � 0.05.
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ZIKVwpDENV HIV-negative individuals had stronger IFN-� and TNF-� responses than
individuals that were HIV infected (Fig. 4B and E). In contrast, there was largely no
difference in the IFN-� and TNF-� responses in pZIKV HIV-negative and HIV-infected
individuals (Fig. 4C and F). There was an exception where the TNF-� response to LFn-ZV
NS3-H was stronger in individuals that were HIV negative.

DISCUSSION

We report on the characterization of late-convalescent-phase antibody and T cell
responses in individuals from Salvador, Brazil, a region of DENV hyperendemicity that
was burdened by the 2015–2016 ZIKV outbreak. Our report presents three major
findings in a serologically validated group of DENV-infected and/or ZIKV-infected
individuals. First, IFN-� and TNF-� T cell response ratios of ZIKV NS3 protease to DENV
NS3 protease can discriminate infections in individuals exposed to these viruses.
Second, individuals with pDENV and sDENV infections have similar T cell response
patterns, with extensive cross-reactivity to ZIKV NS3 helicase, whereas individuals with
pZIKV and ZIKVwpDENV infections have strong responses to both ZIKV structural and
nonstructural proteins, with high cross-reaction to DENV NS3 helicase. Third, HIV
infection is associated with responses that are lower in DENV-exposed individuals.

Our previous study of NS1-based ELISAs of convalescent-phase sera from reverse
transcription-PCR (RT-PCR)-confirmed cases with pZIKV, pDENV, sDENV, and ZIKVwp-
DENV infections showed that sDENV infection panels cross-react to ZIKV-NS1 and that
the rOD ratio of ZIKV-NS1 to DENV-NS1 in IgG ELISA can distinguish sDENV infections
from ZIKVwpDENV infections (22). Since levels of anti-NS1 antibodies may decline over
time and become undetectable, especially for those with primary infection, we further
tested these samples with E protein-based IgG ELISAs and identified four negative
samples and five pZIKV and four pDENV infections. All 13 of those samples have been
verified by neutralization tests using an NT90 value of �10 as the cutoff based on the
CDC guidelines (16), suggesting that ΔrOD values based on ZIKV-E and DENV-E IgG
ELISAs can distinguish pZIKV and pDENV infections; this could potentially be a useful
tool for epidemiology and pathogenesis study in regions of endemicity. However, the
sample size was small and the ΔrOD of 0.17 was based on a single serum dilution of
1:800; future studies involving larger sample size and different dilutions or end point
titers are needed to further validate these observations.

The proportions of amino acid sequence identity between DENV and ZIKV structural
and nonstructural proteins are 49% and 51%, respectively (10). Multiple-sequence
alignment and DENV and ZIKV NS3 homology determination results demonstrate a
high amino acid sequence identity of 67%, with protease and helicase homologies of
58% and 72%, respectively, consistent with the higher degree of DENV/ZIKV cross-
reaction in NS3 helicase (Table 3) (Fig. 5). Our recent characterization of acute- and
convalescent-phase T cells collected from individuals infected with DENV and African
ZIKV in Senegal, West Africa, revealed sustained DENV- and ZIKV-specific responses to
NS3 protease and cross-reactive responses to NS3 helicase (27). Our findings in indi-
viduals infected with DENV and Asian ZIKV are in agreement with our previous
observations. Although we were unable to distinguish sequential exposures, the LFn
NS3 protease ELISPOT test differentiates between infections in DENV- and ZIKV-infected
individuals with high sensitivity and specificity of 94% and 92%, respectively.

TABLE 3 Sequence homology of DENV and Asian ZIKV NS3a

Serotype

% homology to ZIKV

NS3 protease NS3 helicase Full-length

DENV1 55 71 66
DENV2 58 72 67
DENV3 58 72 67
DENV4 59 71 67
aData represent results of homology analyses of comparisons of Asian ZIKV (GenBank accession number
NC_035889.1) to DENV1 (ACO06157.1), DENV2 (JN819419.1), DENV3 (ACY70771.1), and DENV4 (AEW50183.1).
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A relatively large body of epidemiological and laboratory-based evidence has
suggested that severe and often fatal forms of dengue disease occur most commonly
during a secondary infection by a heterotypic DENV serotype (29, 30). Another phe-
nomenon, known as original antigenic sin (OAS), has been observed in antibody as well
as T cell responses, in which less-effective T cells generated in response to a primary
DENV infection predominate during a subsequent infection with a different DENV
serotype, resulting in an inappropriate response and predisposing individuals to severe
disease (31, 32). The OAS hypothesis was challenged by a study in Sri Lankan individuals
infected with DENV, which showed that the phenomenon does not generate less-
functional responses but instead correlates with protective responses to conserved viral
sequences (26). Unexpectedly, we did not observe T cell responses that were signifi-
cantly higher in individuals with prior DENV exposure. These results are in contrast to
our data on African ZIKV infections, which showed that previous flavivirus exposure was

FIG 5 Clustal Omega-generated amino acid sequence alignment of DENV serotypes 1 to 4 and Asian ZIKV. The residues in yellow represent the NS3 protease
domain (amino acids 1 to 169), and the residues in orange represent the helicase domain (amino acids 179 to 619). *, single, fully conserved residue; :,
conservation between groups of strongly similar properties (i.e., those scoring �0.5 in the Gonnet PAM 250 matrix); ●, conservation between groups of weakly
similar properties (i.e., those scoring �0.5 in the Gonnet PAM 250 matrix).
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associated with enhanced T cell responses (27). One possibility is that the proportion of
HIV infection among those with prior DENV exposure was higher than that seen with
DENV-naive individuals in this study (90.5% versus 50% comparing sDENV and pDENV
cases; 83.3% versus 60% comparing ZIKVwpDENV and pZIKV cases). Nevertheless, as
cocirculation of DENV, ZIKV, and other flaviviruses occurs throughout many parts of the
world, it is critical to continue to develop tools to better understand T cell immunity in
individuals exposed to multiple flaviviruses.

A recent study using human leucocyte antigen (HLA) transgenic mice infected with
DENV2 and Asian and African ZIKV strains revealed cross-reactive T cell responses to
HLA-restricted epitopes (25). Of 8 ZIKV NS3 epitopes computationally predicted to bind
HLA class I molecules, only 3 epitopes elicited DENV2/Asian ZIKV cross-reactive T cell
responses. Of note, the cross-reactive epitopes were all positioned within the helicase
domain of NS3, further supporting our observations of high DENV/ZIKV NS3 helicase T
cell cross-reaction. Another study demonstrated ZIKV-specific and ZIKV/DENV cross-
reactive T cell responses in humans (10). T cell responses generated in response to prior
DENV exposure recognized peptides sequences located throughout the ZIKV proteome.
DENV serostatus also influenced T cell immunity to ZIKV. DENV-naive ZIKV-positive
individuals had predominant CD8 T cell responses directed against structural proteins.
In contrast, a majority of CD8 T cells responses were directed against nonstructural
proteins in DENV-immune ZIKV-positive individuals, suggesting that previous DENV
exposure can alter the T cell response.

While the studies cited above used peptide stimulation to characterize the T cell
response, there are concerns regarding this approach (33). Some of the HLA-predicted
peptides may fail to stimulate the expected strong T cell responses. Longer and shorter
peptides have also been shown to elicit different types of responses (34–36). An
alternative to peptide stimulation is use of the anthrax toxin LFn, which has the ability
to deliver full-length antigen into the cytosol for native processing via the major
histocompatibility complex (MHC) pathways and the ability to elicit better T cell
responses than peptides in some cases (37–42). Our adaptation of the LFn ELISPOT test
allowed not only detection of human DENV and ZIKV infections but also characteriza-
tion of the associated T cell responses to structural and nonstructural proteins. We
demonstrated that individuals with pDENV and sDENV infections had similar IFN-� and
TNF-� T cell response patterns, with high cross-reactivity to ZIKV NS3 helicase but low
cross-reactivity to the ZIKV structural proteins. A small number of individuals with
sDENV infections had cross-reactive T cell responses to ZIKV structural proteins. Inter-
estingly, however, individuals with pZIKV and ZIKVwpDENV infections had similar IFN-�
and TNF-� T cell response patterns, with strong responses to structural and nonstruc-
tural proteins. It is noteworthy that we observed comparably strong T cell responses to
the structural proteins in pZIKV and ZIKVwpDENV cases, in contrast to Grifoni et al. (10),
suggesting that the most recent infection in a given case may dictate the T cell
response. Another possibility that cannot be excluded is represented by the differences
in T cell stimulation strategies, which may be contributing to the observed differences.
Additionally, due to the limited collection of blood samples from each patient, we were
unable to distinguish CD4-specific responses from CD8-specific responses. Future
characterization studies of CD4 and CD8 T cells by use of the LFn delivery system will
be important.

Our study of ZIKV seroprevalence in West Africa demonstrated continued human
transmission of the virus in HIV-infected and malaria-infected individuals (43). The
coinfection of flaviviruses with HIV or malaria could potentially impact pathophysio-
logical mechanisms, result in different clinical and laboratory findings, and interfere
with treatment. Previous studies have shown suppression of HIV-1 replication during
acute DENV infection (44, 45). In this study, we demonstrated that DENV-exposed
individuals who were HIV infected had T cell responses whose levels were significantly
lower than those shown by HIV-negative individuals except in individuals with pZIKV
infections. We also observed that DENV-exposed HIV-infected individuals showed lower
T cell responses to ZIKV proteins than DENV-exposed HIV-negative individuals. Of note,
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we did not observe significant differences in the sizes of IFN-� and TNF-� spots in
assays of individuals with multiple flaviviral infections or of those that were HIV infected
versus those that were HIV negative. The issue of whether HIV infection in DENV-
exposed individuals reduces the ability to induce cross-reactive T cell responses has
important implications. More studies with larger sample sizes are needed to increase
our limited understanding of the epidemiological and immunopathogenesis interac-
tions of flavivirus exposure in individuals with HIV and other comorbidities.

In summary, despite high sequence homology between DENV and ZIKV, diagnostic
assays based on antibodies to NS1 and T cell responses to NS3 protease are effective
at distinguishing human infections by these viruses. The LFn ELISPOT test has enabled
direct comparisons of results of T cell characterization in human infections by DENV and
Asian and Africa ZIKV. As vaccines against DENV and ZIKV are currently being devel-
oped, the information generated from these characterization studies is of high rele-
vance. The results of these characterization studies may contribute to the design and
development of DENV and ZIKV vaccines and T cell-based diagnostics.

MATERIALS AND METHODS
Clinical samples and ethical statement. Fifty late-convalescent-phase blood samples were ob-

tained from patients at Edgard Santos University Hospital, Federal University of Bahia, Salvador, Brazil.
These individuals were suspected to have been infected by ZIKV during the 2015–2016 ZIKV epidemic,
and their acute-phase sera were screened for ZIKV and DENV antibodies. Late-convalescent-phase
peripheral blood mononuclear cells (PBMCs) were separated from whole blood in EDTA tubes by
Ficoll-Hypaque gradient density (Sigma-Aldrich, St. Louis, MO, USA) and cryopreserved in freezing media
(10% dimethyl sulfoxide [DMSO], Sigma-Aldrich, St. Louis, MO, USA) at �80°C overnight prior to transfer
to liquid nitrogen. Convalescent-phase serum was divided into aliquots and immediately transferred to
�80°C.

The Federal University of Bahia Institutional Review Board (IRB), the Harvard T.H. Chan School of
Public Health IRB, and the University of Hawaii IRB approved the primary studies under which the
samples and data were collected. All patients provided informed consent for the collection of samples.
Excess samples and corresponding data were banked, coded prior to analyses, and stored at the Federal
University of Bahia.

ELISAs. For acute-phase sera, commercial ZIKV-NS1- and DENV-E-based IgG ELISAs (Euroimmun,
Luebeck, Germany) were performed (27). For late-convalescent-phase sera, ZIKV- and DENV1-NS1 IgG
ELISAs were performed as described previously (22). Briefly, purified NS1 proteins (16 ng per well) were
coated onto 96-well plates overnight, followed by blocking and incubation with primary antibodies
(serum at 1:400 dilution) and secondary antibodies (anti-human IgG conjugated with horseradish
peroxidase [HRP]; Jackson) (22). The OD at 450 nm was read with a reference wavelength of 650 nm. Each
ELISA plate included two positives (two confirmed-Zika and confirmed-dengue samples for ZIKV- and
DENV-NS1 ELISAs, respectively), four negatives (4 flavivirus-naive serums), and tested samples (all in
duplicates). The OD values were divided by the mean OD value of positive controls to calculate the rOD
values. The cutoff was defined by the mean rOD value of negatives plus 12 standard deviations as
described previously (22). For samples positive for both ZIKV- and DENV-NS1 ELISAs, the ratio of rOD (rOD
ratio � rOD of ZIKV-NS1/rOD of DENV-NS1) was calculated; a rOD ratio value of �0.24 or �0.24 indicated
sDENV or ZIKVwpDENV infection, respectively (22).

E protein-based IgG ELISAs using DENV1 virion or ZIKV (MR766 strain) virus-like particles (VLP) were
also performed for late-convalescent-phase sera (46). Briefly, DENV1 virions or ZIKV VLP derived from
ultracentrifugation of culture supernatants of virus-infected Vero cells or pENTR-ZIKV prME plasmid-
transfected 293T cells, respectively, were UV inactivated (for virions) and coated on 96-well plates at 4°C
overnight, followed by blocking and incubation with primary (serum at 1:800 dilution) and secondary
antibodies as described above. The rOD and cutoff rOD values were similarly calculated. The difference
in rOD of ZIKV and DENV E proteins (ΔrOD � rOD of ZIKV � rOD of DENV) was determined; ΔrOD values
of greater than or equal to 0.17 or less than �0.17 were classified as representative of pZIKV or pDENV
infection, respectively.

Neutralization test. PRNT was performed on acute-phase sera to detect neutralization antibody to
ZIKV as reported previously (47). For late-convalescent-phase sera, a previously described microneutral-
ization test was performed (48). Briefly, flat-bottom 96-well plates were seeded with Vero cells (3 �
104 cells per well) 24 h prior to infection. Fourfold serial dilutions of serum (starting from 1:10) were
mixed with 50 focus-forming units of DENV1 (Hawaii strain), DENV2 (NGC strain), DENV3 (CH53489),
DENV4 (H241 strain), or ZIKV (PRVABC59 strain) at 37°C for 1 h. The mixtures were added to each well
followed by incubation for 48 h (except 70 h for DENV1), removal of medium, and fixation as described
previously (46). After adding a murine monoclonal antibody (MAb) 4G2 and secondary antibody mixture
(IRDye 800CW-conjugated goat anti-mouse IgG at 1:10,000 and DRAQ5 fluorescent probe at 1:10,000),
the signal (800 nm/700 nm fluorescence) was detected by the use of a Li-Cor Odyssey Classic imaging
system (Li-Cor Biosciences) and analyzed using Image Studio software to determine percent neutraliza-
tion at different concentrations and NT90 as described previously (46, 48).

Herrera et al. ®

July/August 2018 Volume 9 Issue 4 e00755-18 mbio.asm.org 12

http://mbio.asm.org


LFn fusion protein design. Commercially synthesized gene fragments encoding the NS3 protease
and helicase of DENV2 and the C, prM, and NS3 protease and helicase of Asian ZIKV were cloned into the
LFn expression vector (pET15bLFn). The pET15bLFn vector contains a T7 promoter, a six-histidine tag
(His6), and the terminal domain of the anthrax lethal factor (LFn; 255 amino acids). The pET15bLFn
containing the coding sequences of the DENV and Asian ZIKV proteins were transformed into Escherichia
coli BLR (DE3) (Millipore, Medford, MA). Selected clones were sequences used to verify the reading frame,
and clones containing the correct sequence were used for protein expression.

The LFn-DENV and LFn-ZIKV fusion proteins and the LFn control were expressed upon induction of
isopropyl-�-D-thiogalactopyranoside (IPTG; Sigma-Aldrich, St. Louis, MO, USA) in 5 liters of Luria broth
containing carbenicillin and chloramphenicol for 2 to 4 h. Cells were pelleted by centrifugation and
resuspended in imidazole (1 mM) binding buffer (Novagen, Madison, WI) in the presence of a protease
inhibitor cocktail (Thermo Fisher Scientific, Rockford, IL). Cell pellets were sonicated and centrifuged at
4°C, and the supernatants were loaded in an equilibrated nickel-charged column for affinity purification.
The bound proteins were eluted in 100 to 200 mM imidazole, desalted with a Sephadex G-25M column
(Sigma-Aldrich, St. Louis, MO, USA), and eluted in phosphate-buffered saline (PBS) (Sigma-Aldrich, St.
Louis, MO, USA). The PBS-eluted proteins were passed through Detoxi-Gel (Thermo Fisher Scientific,
Rockford, IL). Protein concentrations were determined, and samples were stored at �80°C.

ELISPOT test. Ex vivo ELISPOT tests were performed as previously described. Briefly, 96-well
polyvinylidene difluoride (PVDF)-backed MultiScreenHTS (MSIP) microtiter plates (Millipore, Medford, MA)
were treated with 100 �l of 90% ethanol for 30 s and washed 5 times with sterile PBS. Plates were coated
with 100 �l of each capture antibody (Ab) mixed with PBS. Plates containing capture Abs were incubated
overnight at 4°C. Plates were then blocked with 1% bovine serum albumin (BSA; Sigma-Aldrich, St. Louis,
MO, USA)–PBS and washed 6 times with PBS. Cryopreserved PBMCs were thawed in R10 medium and
incubated overnight at 37°C. PBMCs were washed 2 times with PBS and seeded at 2 � 105 cells/well in
a final volume of 100 �l/well. LFn-DENV and LFn-ZIKV proteins were added to each well. As a positive
control, PBMCs were stimulated with phytohemagglutinin (PHA; Sigma-Aldrich, St. Louis, MO, USA). As a
negative control, wells received LFn. After incubation for 24 to 28 h at 37°C in 5% CO2, the cells were
discarded and plates were washed 3 times with PBS and 3 times with PBS– 0.05% Tween 20 (PBST;
Bio-Rad Technologies, Hercules, CA) to remove cells. The detection antibodies were added, and plates
were incubated overnight at 4°C. Plates were then washed 6 times with PBST and then incubated for 2 h
at room temperature with mixtures containing the enzymatic conjugates. To develop spots, plates were
washed 4 times with PBST, 3 times with PBS, and 1 time with water. Vector Blue substrate solution (Vector
Laboratories, Burlingame, CA) was added for 5 to 15 min before rinsing with water and air drying.
Digitized images were analyzed for spots using a CTL immunosorbent spot reader (Cellular Technology
Limited, Cleveland, OH, USA). DENV and ZIKV spots were calculated by subtracting the mean of the
negative-control value from the mean value of the specific stimulation. Positive responses had to be
greater than 4 times the mean background and 3 standard deviations above the background, with �55
spot-forming cells (SFC)/106 PBMCs.

ROC analysis. The ELISPOT tests were validated using PBMCs from individuals who were confirmed
by ELISA and/or neutralization tests to be DENV infected and/or ZIIV infected. Values of ratios of DENV
and ZIKV NS3 protease to helicase were calculated, resulting in normalized test ratios (ZIKV NS3 protease
divided by DENV NS3 protease) ranging from 0.15 to 2.95. On the basis of these data, we determined the
optimal cutoffs between 0.15 and 2.95 by calculating the sensitivity (number of true positives divided by
total confirmed positive values) and specificity (number of true negatives divided by the total confirmed
negative values) at increments of 0.05 to the theoretical cutoff values. After calculation of the sensitivity
and specificity values, the optimal cutoffs were defined as the highest sum of sensitivity and specificity
such that the optimal cutoff values reflected the optimal sensitivity and specificity. The optimal cutoff
values obtained for IFN-� and TNF-� were 1.05 and 1.048, respectively (Prism 7; GraphPad Software, Inc.,
San Diego, CA).

Multiple-sequence alignment and percent homology analysis. Multiple-sequence alignment of
DENV1 to DENV4 and ZIKV NS3 was performed using the Clustal Omega program (EMBL-EB, Cam-
bridgeshire, United Kingdom). Averages for DENV and ZIKV NS3 protease and helicase proteins were
calculated using the ExPASy Bioinformatics Resource Portal (Swiss Institute of Bioinformatics, Lausanne,
Switzerland) on the basis of averages of the different homology values in the four DENV serotypes and
ZIKV. Average conservation was determined on a per-residue basis for NS3 protease, helicase, and
full-length protein.

Statistical analysis. Statistical analysis was performed using Prism 7 (GraphPad Software, Inc., San
Diego, CA). Where appropriate, data were expressed as geometric positive means on box whisker and bar
graphs � standard deviation. Data comparisons were conducted using the Wilcoxon rank-sum test. A
threshold P value of �0.05 was considered statistically significant.

Data availability. All relevant data have been included in the manuscript. We will provide any
additional data upon request.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio
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TABLE S1, DOCX file, 0.03 MB.
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