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Abstract

We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene

regulatory networks (GRNs) from protein-level time series data. The method uses an L1-

penalized regression adaptation of Granger Causality to model protein levels as a function

of time, stimuli, and other perturbations. When combined with a data-independent network

prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast

cancer network inference challenge. Our investigations reveal that PGC provides comple-

mentary information to other approaches, raising the performance of ensemble learners,

while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool

in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and

cell-specific interactions predicted by our method and find several novel interactions, dem-

onstrating the utility of the approach in charting new tumor wiring.

Introduction

A major goal of systems biology is to infer the genetic “circuitry” that governs how cells

respond to environmental stimuli, developmental cues, and therapeutic interventions. The

challenge is to find a gene regulatory network (GRN) that can accurately predict the conse-

quences of perturbations not seen during model construction. We use the term GRN loosely to

describe any set of directed influences between genes and gene protein products. This encom-

passes transcriptional regulatory networks that describe transcription factors acting alone or

in complexes to affect the mRNA production of target genes through activation of their cis-reg-

ulatory elements. It also includes protein-protein signaling modifications such as phosphoryla-

tion and ubiquitination that are either signal transducing or amplified by hierarchical cascades

of modifiers (e.g. MAP-kinases). While the time-scales of the transcriptional and post-tran-

scriptional interacting relationships cover a wide range, they all describe cause-effect relations

between genes and the products encoded by them. Reverse-engineering this wiring from high-

throughput datasets remains a difficult problem.

Nearly two decades of research in systems biology has introduced many approaches for infer-

ring GRNs from data. Some of the first approaches inferred genetic relationships from steady

state datasets using correlation (e.g. observed in multiple species [1]) or information-theoretic
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measures of dependence (e.g. Relevance Networks [2]). Later approaches provided insightful

advances including Weighted Gene Correlation Analysis to generalize network topology analy-

ses to use continuous measures of similarity [3], ARACNE [4] to eliminate redundant connec-

tions, Context Likelihood of Relatedness [5] to enrich for direct interactions using a Z-transform

on mutual information distributions, and Bayesian Networks [6] to infer consistent probabilistic

dependencies that formalize the previous mutual information approaches to name a few.

Machine-learning methods have also had success, exemplified by the decision tree approach of

the GENIE3 method [7] that has performed well in multiple benchmarks. A recent review and

comparison of methods for inferring GRNs from steady state data can be found in [8,9].

Perturbation and time series data provide key information for inferring causation, enabling

the directionality of protein-to-protein influence to be identified. Several methods for dynamic

modeling have been introduced to capitalize on the growing availability of such data including

Boolean Networks [10], Dynamic Bayesian Networks [11,12], Factor Graphs to capture Nested

Effects [13], and Granger Causality [14–16]. For a recent comparison of dynamic models see

[17] as well as the results of recent DREAM challenges [18–20].

One difficulty in the field of GRN inference is the ability to unequivocally evaluate methods

as gold standard datasets are in limited supply. The DREAM series of challenges was launched

to formalize the creation of benchmarks. While the choice of metric for DREAM challenges

may be somewhat arbitrary with several possible alternatives available, they have the distinct

advantage of eliminating the so called “self assessment trap” in which method’s developer’s

either consciously or unconsciously bias the evaluation in favor of their own methods [21].

DREAM has often found that ‘wisdom of crowds’ approaches combining several strategies

often perform better than any stand-alone approach [22], consistent with classic work on ensem-

bles that demonstrate weak learners can be combined to form a more accurate method as the

errors of the weak learners tend to be mutually uncorrelated and average out [23,24]. The accu-

racy of the top-performing ensembles reveal that considerable room for improvement exists in

the ability of individual methods to reverse-engineer GRNs. New methodology, or those that

draw inspiration from different fields of research, could complement existing algorithms.

In this paper, we describe a novel Prophetic Granger Causality (PGC) approach for infer-

ring a GRN from time series data. The method introduces a regularized regression framework

inspired by Granger Causality [25] that appropriately handles irregularly spaced time intervals.

In contrast to the traditional Granger Causality approach that uses only past observations, we

introduce a “prophetic” extension that also includes future observations, to consider interac-

tion evidence from the perspective of both the regulator and the target.

The PGC method, when augmented with the prior, was found to be more accurate than 73

other methods submitted to the Health Provider Network (HPN) 1A sub-challenge [26]. Con-

testants were given a time series of phosphoproteomics data on several breast cancer cell lines

following ligand stimulation and, for each cell line, asked to infer a directed protein-protein

signaling network. In this paper, we investigate PGC’s usefulness in providing novel predictive

information as part of an ensemble. We also demonstrate that the “prophetic” extension bene-

fits not only PGC but also improves on a method called GENIE3, a winning approach in previ-

ous DREAM network inference challenges. Finally, results on a yeast time series dataset

indicates the approach will generalize to other GRN inference problems.

Methods

Network inference with Prophetic Granger Causality

As input we are given a dataset X containing a collection of n separate time series, each probing

the levels of a set of m proteins (see Fig 1A for an example with the HPN DREAM challenge
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PLOS ONE | https://doi.org/10.1371/journal.pone.0170340 December 6, 2017 2 / 21

Research Institute 5U54HG006097, National

Institute for General Medical Sciences

5R01GM109031, and a National Science

Foundation Office of Cyberinfrastructure 0845783.

Supported by the West Coast Prostate Cancer

Dream Team supported by Stand Up to Cancer/

AACR/Prostate Cancer Foundation SU2C-AACR-

DT0812 (O.N.W. co-PI). This research Grant is

made possible by the generous support of the

Movember Foundation. Stand Up To Cancer is a

program of the Entertainment Industry Foundation

administered by the American Association for

Cancer Research. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0170340


data). We view X as a matrix where each of the n�m entries, xi,p, is a time series replicate for

protein p, each containing T observed levels across the time points t = 1. . .T. Entry xi,p,t repre-

sents the level of protein p in time series i at time point t. The time series are assumed to be in

register with each other such that the same proteins are measured at the same corresponding

time intervals. This allows the use of a fixed but arbitrary ordering over the protein-time pairs.

Denote such an ordering of pairs as the vector z and let π(zj) represent the jth protein and τ(zj)
the jth time point contained in the jth pair.

The Granger approach searches for explanatory states in the past that best predict observed

levels in the present. We consider predicting xi,p,t from the other observed levels and rewrite xi,
p,t as yi,p,t to indicate its use as the response variable in the regression formulations described

next. We begin with the LASSO-Granger method [27] in which the predicted level for yi,p,t is a

linear combination of the past and present:

ŷ i;p;t ¼
X

u<t

auxi;p;u þ
X

j : tðzjÞ � t;

pðzjÞ 6¼ p

bjxi;pðzjÞ;tðzjÞ
þ b0 ðEq 1Þ

where the vector α contains coefficients for the autoregression terms–the past states of protein

p represented in the first term of the summation–and β contains coefficients for the exogenous
terms–past and present states of all other proteins.

Fig 1. Prophetic Granger Causality method. (A) The method is given a set of probes (rows; y-axis) measuring the level of a particular phospho-protein

state at particular time points (columns; x-axis). Each probe value at each time point) is considered in turn as a linear regression of all other feature times and

probes. Depicted is probe A being considered at time t (green). The penalty parameter L1 is chosen such that autoregression contributions (red) are set to

zero. Any remaining non-zero regression coefficients for other probes suggest causality; past or concurrent time point probes (blue) are considered causal of

the target; future time point probes (yellow) are considered to be caused by the target. The different inhibitor conditions are treated as different examples in

the regression task. This process was repeated for each time and probe, with each regression task contributing to the final connectivity matrix. (B) Overview

of the overall PGC plus network prior approach for the HPN DREAM8 submission. Shown is a prediction for a single (cell line, ligand) pair task. (i.) 263

Pathway Commons pathways having at least two proteins in the DREAM dataset (colored shapes). (ii.) Heat diffusion kernel used to measure closeness

between protein pairs in each pathway (see S1 File) were combined into a single weighted “network prior,” represented as an adjacency matrix. (iii.) The

Prophetic Granger solution, obtained as shown in part A. (iv.) The final solution for the (cell line, ligand stimulus)-pair is produced by averaging the network

prior with the absolute value of the Prophetic Granger solution.

https://doi.org/10.1371/journal.pone.0170340.g001
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We introduce a prophetic extension to the above formulation to include future states. In

this situation, the regression is allowed to find target changes in the future that are predictive

of a regulator’s state in the past. Regressing in the usual forward-time direction, in which a tar-

get p is used as the response variable, may miss detecting the influence of a particular regulator

q when p has many regulators. This may happen because the other regulators provide enough

explanatory power to predict p’s state, making q’s information redundant (see Supplemental

S1 Fig). The intuition of the prophetic extension is that p’s state in the future could provide

(even partial) predictive power for q’s state in the past. We rewrite the regression to obtain the

prophetic extension:

ŷ i;p;t ¼
X

u<t

auxi;p;u þ
X

j:pðzjÞ6¼p

bjxi;pðzjÞ;tðzjÞ
þ b0 ðEq 2Þ

where the only difference between the above and Eq (1) is the inclusion of future state levels

represented in the time point selections of the summations.

We now turn to the task of solving for an optimal setting of the coefficients. A regulariza-

tion strategy selects for sparse models with few non-zero valued coefficients. In our approach,

we use the squared error loss combined with a LASSO regularization penalty:

mina;b

1

2

Xn

i¼1

ðyi;p;t � ŷ i;p;tÞ
2
þ l

X

u6¼t

jauj þ
X

j:pðzjÞ6¼p

jbjj

 !
8
><

>:

9
>=

>;
ðEq 3Þ

where yi,p,t is the observed level (i.e. equal to xi,p,t) and ŷ i;p;t is the estimated level given in Eq

(2). Note that all levels of p across all n time series are included. The λ parameter determines

the strength of the regularization and the sparsity of the regression coefficients. The regression

problem can be solved using coordinate descent [28], a standard optimization method for solv-

ing regression problems with a LASSO penalty term. It works particularly well because coeffi-

cients that get “snapped” to zero by the softmax operator (see Eqs (4) and (5) below) will often

remain at zero and require no further updates, which leads to efficient runtimes [29]. Specifi-

cally, the following update rule provides a new estimate for the uth (u6¼t) autoregression term:

au  
Sð
Pn

i¼1
xi;p;uðŷ i;p;t � ŷð� uÞi;p;t Þ; lÞ
Pn

i¼1
x2
i;p;u

ðEq 4Þ

where ŷð� uÞi;p;t ¼
P

v6¼t;uavxi;p;v þ
P

j:tðzjÞ6¼t;u
bjxi;pðzjÞ;tðzjÞ

þ b0 is a model that excludes terms from

time point u. Note that exogenous terms need not be included in u, since α is an autoregres-

sion term (i.e., weight for features that encode information from the same time series but other

time points). The update in Eq (4) is based on the difference between a model that contains,

and one that lacks, information from time point u. S(a,b) is a soft-threshold operator that elim-

inates terms with contributions deemed too small by “snapping” its first argument to zero

when the absolute value falls below the value of the second argument [30]; i.e. S(a,b) = sign(a)

(|a| − |b|)+.

An analogous update rule can be used for the β weights. If q is the jth protein (i.e. q = π(zj))
and u is the jth time point (i.e. u = τ(zj)), then the jth exogenous coefficient can be updated

using the rule:

bj  
S ð
Pn

i¼1
xi;q;uðŷ i;p;t � ŷð� ðq;uÞÞi;p;t Þ; lÞ
Pn

i¼1
x2
i;q;u

ðEq 5Þ
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and ŷð� ðq;uÞÞi;p;t ¼
P

v6¼tavxi;p;v þ
P

j : tðzjÞ 6¼ t; u;

pðzjÞ 6¼ p; q

bjxi;pðzjÞ;tðzjÞ
þ b0 is the model without the inclu-

sion of the jth protein-time pair from the exogenous terms.

The meta-parameter λ controls the sparsity of the resulting solution. Larger values result in

higher numbers of eliminated coefficients. The key Granger-inspired step is to set λ so that all

autoregression terms are zeroed out. This is consistent with the classical Granger approach

that measures the predictive power gained from another time series over simple auto-regres-

sion [2]. We follow this intuition by rearranging Eq (4) to obtain the upper bound on λ0 where

all the autoregression terms are zero:

l0 ¼ maxu
1

n

Xn

i¼1
xi;p;uðŷ i;p;t � ŷð� uÞi;p;t Þ

�
�
�
�

�
�
�
� ðEq 6Þ

One can verify that λ0 becomes the second argument in the soft-threshold operator of Eq

(4) when all of the weights in α are set to zero. Using this setting and solving the regression

problem in Eq (3) results in a solution where all of the autoregression terms are ignored and

any remaining predictors are contributed by exogenous terms recorded in β, which are inter-

preted as evidence of causal relationships. Of course, it is possible that setting λ = λ0 also causes

all β coefficients to vanish as well. Such cases are interpreted as a lack of evidence for causality

for p.

Construction of the predicted network in a connectivity matrix

We estimate the importance of protein q in predicting p’s levels in time series i by aggregating

all of its non-zero contributions recorded in the weight vector β. We accumulate causal infor-

mation across all regression tasks in a matrix C, where entry Cq,p represents the directed pre-

diction that q’s state exerts a causal influence on p’s state. Before any regressions are

performed, C is initialized to the matrix of all zeros. Then, after regressing on protein p, the fol-

lowing update rule is executed for every possible predictor q6¼p, extracting two types of causal

evidence from β recorded in C:

8j:pðzjÞ¼q

Cq;p  Cq;p þ
bj

P
kjbkj

; t zj
� �

� t

Cp;q  Cp;q þ
bj

P
kjbkj

; t zj
� �

> t
ðEq 7Þ

8
>>><

>>>:

In the top case, q is predictive of p’s future state; i.e., q has some non-zero entries in β with

associated time points before or concomitant with t. This is the usual Granger causality situa-

tion. On the other hand, the prophetic update on the bottom occurs if a predictor variable’s

state occurs in the future; i.e. q’s non-zero β entries occur after time t. In this case, the matrix

records that p may be a causal influence of q (see bottom part of Eq (7)). Note that the direc-

tionality of causality updated in this step may not match the predictor!target directionality of

the regression. In this way, a final set of directed protein! protein interactions are collected

in C after all proteins and all of their time points are considered as regression targets in turn.

Network inference with GENIE3

The “prophetic” concept can be used in conjunction with other regression models including

non-linear variants. To test its merits in an additional setting, we explored its use as an adden-

dum to GENIE3 [31], a method that won the DREAM5 network inference challenge and has

Prophetic Granger Causality
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been shown to be effective for inferring biological networks from expression data [22]. We

briefly describe here a prophetic Granger extension to GENIE3.

Eq (3) is a linear variant of the more general regression problem:

ŷ i;p;t ¼ f ðxð� ðp;tÞÞi Þ ðEq 8Þ

where xð� ðp;tÞÞi represent all of the data points excluding the particular protein p at time point t
that is the target of the regression. GENIE3 uses a random-forest classifier as the function f
and sets its parameters to minimize the squared error loss

Pn
i¼1
ðyi;p;t � ŷ i;p;tÞ

2
. A tree defines a

recursive nesting of training sample splits according to a set of binary tests, represented as

decision nodes. Each decision node uses either an autoregressive or exogenous variable from

xð� ðp;tÞÞi , as the binary split, chosen to reduce the variance of the time points in yi,p,t remaining

to be classified under the context of the current sub-tree. The selection of a term at a higher

level in a tree than another is evidence the first has more predictive information than the sec-

ond when both are used on their own.

Through bootstraps of the data, GENIE3 produces different random forests for the regres-

sion task. The importance of a predictor variable can then be estimated from the amount of

variance it splits each time it is used as a decision node across bootstrap replicates and across

all of the trees it is used in.

As in the Granger regression case, Genie3 produces an estimation of the importance of

every element of xð� ðp;tÞÞi in predicting yi,p,t called βGENIE3. Where in the PGC case the terms in

β associated with the autoregressive terms were zero by construction of the algorithm, in this

case we set them to zero so that they don’t contribute to CGENIE3. Once calculated, βGENIE3 is

then used in place of β in Eq (7) to derive GENIE3’s own causality matrix CGENIE3 across all

regression tasks.

Adding a network prior to the predicted GRN

Rather than use the inferred GRNs from regression methods alone, we tested their perfor-

mance when their predictions were added to a network prior. The network prior was computed

using only interactions found in the literature and without regard to the time series dataset. A

heat diffusion approach was used to find interactions among the set of proteins using a path-

way interaction database (see S1 File). The resulting network is an undirected Gene Interaction

Network (GIN), recorded in the symmetric matrix B.

The final matrix F, which describes the directed GRN, is obtained by combining the undi-

rected network prior B and C, an assymetric matrix encoding the causal relations inferred by

PGC. To facilitate combining the matrices (Fig 1B), all of the entries in the strictly positive

matrix B and C were scaled to the interval [0,1] by dividing by the largest entry in each matrix.

F was then computed by taking the arithmetic mean:

F ¼
1

2

jCj�;�
maxðjCj�;�

þ
B

maxðBÞ

 !

ðEq 9Þ

where |C|�,� returns a new matrix containing the element-wise absolute values of the matrix C.

Note that averaging the networks together has the effect of “orienting” some of the edges in the

undirected GIN defined by B using the weightings in the GRN C. This produces an overall

directed GRN because the result is a non-symmetric matrix of interactions recorded in F.

Other combinations of C and B are possible and were explored in the community-participa-

tion stage of the challenge [26], but the simple averaging scheme performed well enough to

take the top-performing position in the challenge. Other weighting schemes were also explored

Prophetic Granger Causality
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(S2 Fig), and while we observe a slight (3%) improvement on the simple averaging scheme, we

find that weightings between 50% and 90% are fairly comparable, with the 80% weighting on

the prior achieving the highest level of performance.

PCG and Prophetic GENIE3 code can be found at https://github.com/decarlin/prophetic-

granger-causality.git

Results

Description of the HPN DREAM 8 data set

The Heritage Provider Network DREAM 8 Breast Cancer Network Prediction Challenge was a con-

test to predict causal protein networks from time series reverse phase protein array (RPPA) data.

The in vitro portion of the challenge provided 4 cell lines (BT549, BT20, MCF7, and UACC812)

observed in the presence of 4 inhibitor conditions (AKT, AKT + MET, FGFR1 + FGFR3, and

DMSO control) exposed to one of 8 ligand stimuli (Serum, PSB, EGF, Insulin, FGF1, HGF, NRG1,

and IGF1). The RPPA data was taken at time points t = 0, 5 min, 15 min, 30 min, 1 hr, 2 hr, and

4 hr. From this data, challenge participants were asked to produce a network for each (stimulus

ligand, cell line) pair, resulting in a total of 32 networks.

The HPN dataset is indexed by five variables including time t, cell line l, stimulus ligand

condition c, inhibitor i, and phosphoprotein antibody probe p. We solve for a context-specific

network for each (stimulus ligand, cell line) pair. Therefore, the regression problems are set up

by setting the time-series matrix X for a (stimulus ligand, cell line) pair such that the inhibitors

are treated as the replicates. Probes represent the protein levels in X; any proteins with multiple

probes are first averaged together in X (see Fig 1A).

The contest organizers evaluated 73 different methods for this challenge. One inhibitor was

withheld from participants. Targets were identified as those proteins that had a significant

change in activity upon inhibition with the withheld agent. In this way, targets for each with-

held protein were determined for each (stimulus ligand, cell line) pair. A network submitted

by a challenge participant was evaluated by counting the number of predicted downstream

relations in common with the experimental results. Sweeping through a prediction score

threshold created an area under the receiver operator curve (AUROC) for each predicted

network. The average AUROC of all 32 networks was the final scoring metric used in the

challenge.

We report average AUROC alone for discussing results that pertain to the HPN-DREAM8

challenge. For non-HPN-related experiments, we also report area under the Precision-Recall

(AUPRC) as an additional metric. AUPRC is better-suited for datasets with a large discrepancy

between the numbers of positive and negative examples [32].

Prophetic Granger solution to the HPN challenge

The Methods section describes the top-performing PGC approach submitted to the HPN

DREAM8 1A sub-challenge. In that submission, each (stimulus ligand, cell line) pair was

treated as a separate regression task. Since the evaluation criteria of the challenge made no dis-

tinction between excitatory and inhibitory links, the absolute value of the connectivity matrix

C was used in order to consider both types of causal interactions. The AUROC achieved by

this approach after its combination with the network prior was 0.785, which was only a mar-

ginal improvement over the prior alone (average AUROC = 0.783). For reference, the next

best method was contributed by a different team and achieved an average AUROC of 0.755.

The method was based on a time-lagged linear correlation method that refined its predictions

against a prior based on the KEGG pathway database [26]. Indeed all of the top-scoring
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methods used some form of prior, reinforcing the benefit of using biological knowledge in this

challenge.

In the post-challenge analysis, we discovered that further improvements were possible. In

particular, defining the regression tasks on a per-cell-line basis in which all 8 ligand stimuli

were used together, providing 32 training examples (8 ligand stimuli across 4 inhibitors), gave

a higher performance. Combining the resulting cell-line-specific GRNs with the network

prior, followed by an averaging into a single consensus network yielded an average AUROC of

0.790 (see “solutions averaged across all experiments (PGC with SA)”, Fig 2). The improve-

ment in accuracy suggests that there is little biological variance across the different stimulus

ligands, allowing the regression models to make good use of the eight-fold increase in the sam-

ple size.

‘Prophetic’ use of past and future time points improves network inference

We asked whether the prophetic component of the Granger regression described above pro-

vided an advance over the regression alone, as well as whether similar prophetic augmentation

could improve an already extant algorithm, GENIE3. We considered both Granger regression

and GENIE3 in the context of the DREAM8 1A sub-challenge data to quantify the differences

in performance after each method was combined with the same network prior. For both meth-

ods, we found that considering future time points helped boost their performance for predicting

causality (Fig 2). Also, in both PGC and Prophetic GENIE3, failing to reverse the directionality

of an explanatory variable that occurred after the response variable (labeled “PGC w/ ICO” and

Prophetic Genie3 w/ ICO” where ICO indicates “ignorant of causal ordering” in Fig 2) lowered

performance. This suggests that the relative temporal position of observations does indeed pro-

vide information about the causal relationships between the proteins.

Prophetic GENIE3 obtained higher performance than PGC when using all available time-

points (past and future) for each regression task. As with PGC, combining the data across stimulus

ligands yielded higher accuracy (average AUROC = 0.696, data not shown) than formulating a

separate regression task for each (stimulus ligand, cell line) pair (average AUROC = 0.552, data

not shown). Furthermore, considering all of the data (i.e. from all cell line and stimuli) at once to

produce a single network gave the best performance of Prophetic GENIE3 (average AUROC =

0.722, when combined with the network prior, average AUROC = 0.815) This is the configuration

used for the analysis in Fig 2. This result provides further evidence that, when data is scarce,

exploiting the full dataset outweighs the possible advantage of fitting specific nuances present in

individual cell lines and stimulus ligands.

PGC provides complementary predictive power for ensemble learning

PGC outperformed several machine learning methods when used in conjunction with the bio-

logical prior network (see S3 Fig). Despite this fact, PGC on its own, without the addition of

the network prior, achieved mediocre performance on the HPN DREAM8 1A sub-challenge

(average AUROC = 0.55). This conundrum suggests that PGC’s errors were appreciable but

compensated by the biological prior more readily than errors from other approaches. The

information gleaned by PGC might then be orthogonal to other approaches and worth incor-

porating at some level with ensemble approaches. In an ensemble setting, several weak learners

can be highly accurate when used together, if their errors are uncorrelated [33].

Because the findings based on a single dataset could be anecdotal, we further measured

PGC’s network inference ability beyond its application to the HPN challenge. To do so, we

compared it to other leading network inference methods in the absence of prior knowledge,

using data from multiple studies. The methods we considered included the following:
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EBDBnet [34], which is a dynamic Bayes net approach; Context Likelihood of Relatedness

(CLR) [35], which computes a symmetrically normalized mutual information measure that

helps enforce relation specificity; ARACNE [36], which is another mutual information

approach that accounts for indirect interactions; and ScanBMA [37], a Bayesian method that

averages bootstrapped linear regression models using their posterior probabilities. In the case

Fig 2. Prophetic augmentations of Granger Causality and GENIE3 complement prior network knowledge. Performance on the

HPN DREAM8 1A sub-challenge after combining different methods with the network prior is shown. Performance of the prior alone is

represented by the dotted line. Prophetic Granger Causality, PGC; ignorant of causal ordering, ICO; solutions averaged across all

experiments, SA; only past and present time points used, OPP (since this regression framework does not use future points, it cannot be

called prophetic); only present time points used, OP. GENIE3 OP is the originally published version of the algorithm; since there are not

external time points used for this calculation, there is no equivalent Granger algorithm. GENIE3 error bars show one standard deviation

of performance with 10 different random seeds.

https://doi.org/10.1371/journal.pone.0170340.g002
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of ScanBMA, we report the results both with and without the prior provided by the authors of

the method. The so-called “g-prior” of ScanBMA allows interactions with external support to

have higher variance in the associated regression coefficients.

We applied the above methods to the yeast mRNA time series data provided by Yeung et al.
[38] and to the synthetic data provided by the DREAM4 challenge [39,40]. The Yeung data is a

regular mRNA time series generated at ten-minute intervals for 95 genetically diverse yeast

strains exposed to rapamycin. The DREAM4 dataset is a simulated dataset created with the

GeneNetWeaver software. It simulated regular transcriptional time series for five subnetworks

of a gold standard network with ten genes each over 21 time points. The results for the individ-

ual methods appear in S1 Table. On these datasets, PGC achieved lower accuracy relative to

other approaches without prior knowledge. The GENIE3 method ranked the best on average,

although it did not perform as well in the HPN DREAM8. We found that no ensembles of

other methods improved on the performance of GENIE3 (data not shown).

To test the hypothesis that PGC provides weak, but complementary, network inferences

when run on the Yeung dataset, we constructed ensembles by scaling each method’s output

matrix to [0,1] (dividing by the largest value in the matrix) and taking the mean across all

matrices to arrive at a single ensemble network. In order to explore the combinatorial space of

possible ensembles, we used a forward selection method to construct ensembles. We started

with the best performing single method, GENIE3, and added all other methods (Fig 3). Of this

first round of ensembles, only Prophetic GENIE3, PGC, and EBDBnet improved on the results

of GENIE3 and of these, EBDBnet provided the largest increase. Consistent with our hypothe-

sis, PGC improved on GENIE3’s performance when added to it alone or when added to the

GENIE3+EBDBnet combination.

Biological implications of the PGC HPN network

To investigate the properties and biological themes of the inferred PGC network for the HPN

challenge, we selected the strongest top 10 percent (226) of the interactions in the consensus

network for further analysis (see Fig 4). Mutual regulation and feedback was highly enriched

in the consensus network: 176 of the consensus interactions had the reciprocal interaction also

in the network (see S2 Table).

Network interactions reflect cell type over stimulus ligand

We asked if the inferred networks are enriched more for cell line-dependent or stimulus

ligand-dependent interactions. Differentiation confers cells with tissue-specific regulatory wir-

ing. Transcriptional profiling by array platforms and RNA-sequencing have revealed that

genome-wide gene expression follows a distinct tissue-specific pattern [41,42]. Cell of origin is

readily classified from gene expression profiles using standard supervised learning methods, a

trend that also holds for cell lines [43,44]. With few exceptions, the transcriptomes of primary

tumors reflect the tissue from which they arise, suggesting that cell-of-origin still dominates

tumor regulatory wiring rather than the numerous genomic perturbations [45]. Analyses

using reverse-phase protein array data also confirm this observation. Thus, it seems plausible

that the protein-level signaling networks inferred for the HPN cell lines might be cell-type

dependent. In the case of the HPN challenge, all of the cell lines were derived from breast

tumors. However, breast cancers are known to classify along several major subtypes, including

the basal and luminal subtypes represented in the HPN dataset. Each subtype may represent a

distinct cell-of-origin reflected in their highly pronounced transcriptional differences [46,47].

To test the cell-type dependency hypothesis, we considered the Granger coefficients as a

function of the cell line and stimulus ligand condition under which it was derived and
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performed a two-way ANOVA to detect significant differences in interaction strength in the

different conditions (S3 Table). We found 82 (33%) of the interactions to have cell-line-depen-

dent Granger coefficients (p< 0.05). In contrast, only eight interactions (~3%) were found to

be stimulus ligand-dependent. The cell type dependence of interactions can be observed in the

differences between each cell line network, shown in S4–S7 Figs. As expected, this result

Fig 3. Tests on the Yeung dataset reveal PGC adds orthogonal information to improve performance of ensembles. Ensembles are

constructed with methods added to the top performing method, GENIE3 (X-axis). Area under the Precision-Recall Curve (AUPRC) was

used to measure performance (Y-axis). Only Prophetic GENIE3, Prophetic Granger Causality (PGC), and dynamic Bayes (EBDBnet)

yielded additional performance improvement over the baseline GENIE3. The GENIE3, PGC and EBDBnet combination had the best

performance.

https://doi.org/10.1371/journal.pone.0170340.g003
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supports the idea that cellular signaling networks inferred for a cell type under one state are

likely to be applicable to another state for the same cell type.

In addition, several known subtype-dependent interactions were revealed from this analy-

sis. For example, we observed a cluster of cell type dependent interactions involving the S6,

p70S6K, GSK3B, and Akt proteins (Fig 4), which involve a set of cell proliferation-related

genes that respond to nutrient signals such as the mTOR-AKT pathway. In support of these

findings, p70 S6 kinase, which targets the ribosomal subunit S6 also in this subnetwork, has

been found to act as an alternate route for downstream signaling when Akt is inhibited [48].

Thus, the cell-specific interactions in this subnetwork may reflect tissue-dependent growth-

related signaling. Another strong cluster of cell type dependent interactions found by the

method involve EGFR and HER2, which direct growth signaling in response to binding

growth factors produced by the stromal environment. The EGFR-family protein, HER2, does

not bind ligand on its own but instead modulates the activity of other EGFR-family members

through heterodimerization. HER2 plays a well-documented role in aberrant growth signaling

in breast and other cancers where HER2 gene copies are amplified and/or overexpressed

Fig 4. Cell-type vs. Stimulus ligand influence on the inferred HPN consensus network reveals a

preponderance of cell-type interactions. Here we show the top 10 percent of interactions in the consensus

network. ANOVA analysis on Granger coefficients was used to determine if interactions were cell-type

dependent (red lines) or independent (grey) and if they were stimulus ligand-dependent (dotted) versus stimulus

ligand-independent (solid). Line thickness reflects the inferred interaction strength. Cell-type-dependent

interactions were much more common over stimulus ligand-dependent interactions suggesting that cellular

context has an important influence on the underlying GRN. Proteins with more than one phosphorylation site

are disambiguated with lower case letters following the protein name. Disambiguation of the identity of these

probes appears in Supplemental S4 Table.

https://doi.org/10.1371/journal.pone.0170340.g004
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leading to homodimerization and self-activation [49]. Therefore, the inference of a subtype-

associated HER2-EGFR interaction reflects the observation that HER2 levels exert a strong

regulatory influence on EGFR phosophoprotein levels in the HER2-amplified UACC812 cell

line and only a small to moderate influence in the non HER2-amplified cell lines (MCF7,

BT20 and BT549).

We also found a mutual regulation between p70S6K and the retinoblastoma protein (Rb)

(see S8 Fig), representing a potentially novel cell-dependent interaction uncovered by PGC.

Rb plays a critical role in regulating the entry into DNA synthesis during the cell cycle through

interaction with chromatin modifying enzymes. Rb is downstream of estrogen receptor signal-

ing, which is important in the ER-positive MCF7 cell line. The predicted mutual regulation of

Rb and p70S6K is pronounced in MCF7, and may be an important previously uncharacterized

source of crosstalk between ER signaling and canonical mTOR signaling.

Novel interactions implicated in breast cancer signaling

PGC was able to reveal novel, previously undocumented (in the network prior) interactions

beyond those already present in the network prior. Fifty-three of the 226 interactions in the con-

sensus network were not in the top 10 percent of prior-supported interactions. These novel

interactions (S8 Fig) are mutually distant in the network prior, but the time series data suggest

causal relationships. While some links are likely false positives, others may suggest important

new avenues of cancer research. For instance, the interaction between YAP and MEK1, previ-

ously undocumented in Pathway Commons [50] and not appearing in the prior, is suggested to

have a role in liver cancer [51], in a study that was published concurrently with the DREAM8

contest. Rb and SRC were also detected to interact despite not being in the prior; some evidence

for this interaction are also present in the literature [52].

Interestingly, YAP and NF-kB were implicated as mutually regulating in our analysis

despite not having any previous support in the prior literature. These interactions would sug-

gest a putative mechanism for linking the Hippo tumor suppressor pathway (of which Yap is a

member [53]) to NF-kB-related apoptotic signaling.

Genomic alterations underlie cell type specific wiring

We investigated the cell line dependency of the inferred network links from the HPN dataset.

Specifically, we asked whether loss-of-function mutations influence the inferred regulatory

networks. The unique combination of genomic lesions and mutations can result in major dif-

ferences in the proteomes and their network wiring across subtypes as well as subtle differ-

ences within subtypes. The “natural” interaction neighborhood of a gene’s protein signaling

network might be nearly or fully randomized in cell lines harboring loss-of-function mutations

in the gene. In other words, a cell line with a loss-of-function mutation in gene X would be

expected to have a different set of protein-protein signaling interactions involving the protein

product of X compared to cell lines that have a wild-type copy of gene X. In this way, muta-

tions could influence the disorder of a protein’s interactions and thereby help explain the cell

type-dependent inferences. This type of “rewiring” due to mutations has previously been

observed in a controlled setting [54].

To test the hypothesis that mutations influence cell type-dependent protein interactions, we

retrieved all annotated coding mutations from the Cancer Cell Line Encyclopedia that occur in

the cell lines and proteins queried by the DREAM8 challenge. Six mutations occur in the pro-

teins and cell lines of interest (see Table 1). We looked at the upstream and downstream inter-

actions involving the mutated proteins to determine if these interactions were noticeably

perturbed in the cell lines where the mutation occurred. To measure this, we compared the
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normalized PGC coefficients |C|�,�/ max (|C|�,�) on interactions involving genes mutated in a

cell line to coefficients computed for cell lines in which the gene is not mutated.

We found that five out of six mutated genes had detectable decreases in interaction coeffi-

cients, either downstream or upstream of the gene, compared to the wild-type cell lines. Four

out of six of the mutated genes had significant decreases in downstream interactions (P<0.05;

Wilcoxon non-parametric test), indicating a loss-of-function of these genes. Three out of the

six genes had significant decreases in the Granger coefficients associated with their upstream

interactions, which may represent a decrease in their coherent regulation, phosphorylation or

detection. The strongest disruption of gene function occurred in MAPK8 in the UACC812 cell

line (Fig 5).

Discussion

A number of methods have been published for inferring gene regulatory networks from time

series data since the end of the DREAM contest. For instance Zhou et al. 2015 [55] have uti-

lized an ensemble resampling method to increase robustness of their method over competing

methods. Liu et al. (2015) [56] take a Bayesian approach to add and prune edges to maximize

the posterior likelihood of the data. Agdham et al. (2015) [57] attacked the inference problem

with an information-theoretic approach, which performs well in their benchmark but cannot

infer edge directionality. Zhang et al. (2014) [58] used a conditional mutual information mea-

sure to prune down from a fully connected graph by eliminating nodes with mutual informa-

tion explained by intermediaries very much like the previously published ARACNe method

[36]. Nair et al. (2015) [59] combine a Bayes net framework with additional topological node

degree constraints that mimic observed biological networks, thereby reducing the complexity

of the search space. All of these approaches bring a new aspect to regulatory network inference.

However, considering information from future time points at each regression point remains

novel and, as PGC and Prophetic GENEI3 here reveal, should be considered when approach-

ing future network inference challenges.

We have adapted Granger’s Nobel Prize winning work on inferring economic relations in

time series data to predicting causal protein interactions. The Prophetic Granger Causality

(PGC) method was a top-performer in the DREAM8 competition, producing interactions with

a higher likelihood of representing causal connections compared to other methods. DREAM8

evaluated methods using wet lab experiments conducted after all algorithm predictions were

collected. Thus, the results of the challenge provide compelling evidence that the Granger

approach is worth considering for causal inference problems of the sort presented by the chal-

lenge. While any particular challenge has a certain element of randomness in the methods that

it nominates, the fact that the Prophetic Granger method outperformed 73 other submissions in

Table 1. Impact of mutations on local network.

Mutation Cell line Mutation type Downstream interaction Wilcoxon p-value Upstream interaction Wilcoxon p-value

CHEK2 UACC812 nonsense 0.011 0.19

MAPK8 UACC812 missense 0.032 0.00033

MET MCF7 intron deletion 0.67 0.03

PRKCQ UACC812 missense 0.0009 0.23

RB1 BT20 missense 0.29 0.092

RPS6KB1 BT20 3’ UTR insertion 0.0018 0.032

Wilcoxon tests were used to determine if the weight of the interactions involving a particular gene have decreased in cell lines for which the gene is mutated

compared to those cell lines in which it is not. Mutations with significant (p<0.05) loss of interaction strength appear in bold.

https://doi.org/10.1371/journal.pone.0170340.t001
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the final scoring round lends credibility to its strength. The goal of any DREAM challenge is to

provide an unbiased platform for method comparison. Bootstrap samples of the data are used

by the organizers to ensure that the final rankings are robust. Here, we attempted to characterize

the ability of PGC to generalize to a new yeast dataset and found that, while a weak predictor on

its own, it significantly improves the performance of ensembles, likely through the contribution

of independent predictive power.

Granger Causality has been applied to systems biology in the past [27]. Indeed, upon con-

clusion of the HPN 1A sub-challenge, a closely related approach was published [60]. However,

the non-uniform temporal intervals of the DREAM8 data prevent the straightforward applica-

tion of the method; the Granger approach is typically used when the time series is made up of

regularly spaced intervals, leading to all time points in the series contributing to the same

regression model. In the DREAM8 case, the observations cannot be viewed as states in a dis-

crete Markov process since the interval between time points t and (t + 1) could be different

from the interval between (t + 1) and (t + 2).

Fig 5. Evidence of mutational disruption network activity of MAPK8. Interaction strengths involving JUN N-terminal Kinase

(MAPK8) in the mutant UACC812 cell line are lower than in wild type cell lines. Interaction strengths were calculated as the normalized

Granger coefficients derived in each cellular context. Each point is an interaction and points that appear above the line of equality (Y = X)

indicate loss of function. Interaction strengths derived from all other interactions not involving MAPK8 are shown as the background

(grey dots). Both the upstream and downstream interactions of MAPK8 (red) are significantly disrupted.

https://doi.org/10.1371/journal.pone.0170340.g005
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As we demonstrate with the augmented GENIE3 approach, the use of both past and future

time points in deriving causal links can be extended to other methods, such as non-linear

regression or mutual information networks. The prophetic augmentation may benefit from

picking up subtle dependencies detected by reverse regression that are missed by forward

regression. Regressing in the usual forward direction, in which the target is the response vari-

able, may miss a connection between an upstream regulator and one of its targets because the

influence from the regulator may be subtle (e.g. below some noise threshold), or it may be

redundant when possibly other regulators are considered. However, regressing in the reverse

direction, when the regulator is used as the response variable, provides a second opportunity to

detect the link because the target’s data may be partially predictive of the regulator’s past state.

The prophetic extension also has the advantage of using all of the data for each link predic-

tion task to boost statistical power, regardless of what method is used. The modest gain in per-

formance obtained by averaging the PGC solutions, along with the good performance of the

Prophetic GENIE3 approach (which used all of the data simultaneously) suggests that the use

of more data outweighs the importance of describing cell line-dependent differences in the

networks. In addition, the prior helped to cut down on the apparent false positives resulting

from the regression step, which can be viewed as another example in which the incorporation

of background knowledge is useful for tasks in which limited training data is provided.

In deriving the PGC solution to the HPN-DREAM challenge, there are two aspects that

were ignored: 1) the sign of influence defining if an interaction is activating or repressive and

2) the length of time between predictors and response variables. In such cases where different

time scales are queried by an experiment, as was true for the DREAM8 challenge, one could

obtain prediction rules associated with both fast and slow acting mechanisms. For example,

interaction “speed” could be estimated with Granger coefficients associated with each interval

to form a weighted average of interaction time. While the HPN challenge data may be under-

powered for this analysis, other datasets with more proteins and observations might uncover

biological underpinnings and gene functions correlated to such estimated interaction

timescales.

The PGC solution to the HPN challenge provides several new biological insights. In addi-

tion to the interactions identified mTOR-AKT pathway genes and the EGFR family, several

novel interactions such as MEK1-YAP and RB1-p70S6K were uncovered. PGC provides con-

text-dependent information about under what cell types and perturbations interactions could

operate.

We find a propensity of cell type- over stimulus ligand-dependent protein-protein interactions

among the inferred links. If this trend generally holds it would suggest pooling together datasets

to construct cell-specific protein networks to use as a backdrop for further fine-tuned modeling

of particular perturbations. Interestingly, we were able to show a quantifiable change in the pro-

tein interaction circuitry as a function of a cell’s genetic background. Mutations of a gene in a cell

line disrupt the circuitry of the network neighbors of the gene’s protein product. Thus, the cell

type specificity of signaling networks can be explained at least in part by the hard-coded alter-

ations in a cell’s genome. As new epigenetic data become available, such as those from the Epige-

netic Roadmap [61], network reconstruction methods will be able to leverage a rich set of

information to create accurate cellular models across tissues and developmental stages.
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S1 Table. Performance on other datasets- area under the precision-recall and receiver-

operator curves for the in silico DREAM 4 data and the Yeung yeast regulation dataset.

Temporality Considered shows this methods use which time points in attempting to determine

causality; “all” means all time points, before, during and after the time point being considered,

“current” means only the present time point, and “t-1” means only the immediately previous

time point.
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S2 Table. Phosphosites with inferred mutual regulation- these probes demonstrated

mutual causality, increasing belief that they are involved in common functional modules.

(XLSX)

S3 Table. Edge weights are reported for the consensus, cell type-specific, prior alone, and

consensus Prophetic Granger Solutions. We also include the Prophetic GENIE3 results here,

since this algorithm performed best in the post-contest analysis. We indicate for each edge

whether it was found to depend on the cell type or the stimulus ligand condition by an

ANOVA test (p<0.05).

(XLSX)

S4 Table. Disambiguation for phosphosites on the same gene. Six genes had multiple phos-

phosites, each one indicated with a different lowercase letter after the protein name. Letters

indicate the particular phosphosite of a protein.

(XLSX)

S1 Fig. HPN DREAM8 1A performance of PGC mixed with the heat-diffusion prior. Con-

tribution of the prior increases to the right. Error bars correspond to the standard error of the

mean produced by subsampling the test data 100 times. The grey horizontal lines correspond

to the top 2 entries in the contest; the winning entry, which was a 50–50 mix of the heat diffu-

sion prior and the PGC solution, and the second best entry, which was the prior alone. The

best performing mix was the 80/20 prior to PGC ratio, which achieved an average AUROC of

0.797.

(PDF)

S2 Fig. The performance of the heat diffusion prior alone as a function of the diffusion

time parameter d. Mean AUC is the mean area under the receiver-operator curve used for

evaluation in the HPN DREAM Challenge 1A.

(PDF)

S3 Fig. The top 10 percent of edges obtained from the heat diffusion prior.

(PDF)

S4 Fig. Performance of various methods on the HPN DREAM8 challenge 1A after combi-

nation with the prior. All combinations were done in the same manner as PGC; each was

divided by the largest entry so that the scaling existed on [0,1], then averaged with the prior.

Team Names appear in parentheses. See 2 for method details.

(PDF)

S5 Fig. The top 10 percent of all interactions detected in the UACC812 cell line after com-

bining with the prior.

(PDF)
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S6 Fig. The top 10 percent of all interactions detected in the MCF7 cell line after combin-

ing with the prior.

(PDF)

S7 Fig. The top 10 percent of all interactions detected in the BT549 cell line after combin-

ing with the prior.

(PDF)

S8 Fig. The top 10 percent of all interactions detected in the BT20 cell line after combining

with the prior.

(PDF)

S9 Fig. The top 10 percent of consensus interactions that were not also in the top 10 per-

cent of prior interactions. These interactions suggest novel (or undocumented by Pathway

Commons) biology. Red interactions are cell-line dependent.

(PDF)

S10 Fig. Illustration of how a regulatory interaction from a regulator R to a target T,

which is undetected using forward regression can be detected using the reverse analysis.

(Top) Forward regression, where T is the response, misses the link R->T due to presence of

other regulators R1, R2, and R3 that explain target T’s state sufficiently when used as predictor

variables (i.e. R’s information is redundant as a predictor given the other regulators). (Bottom)

Reverse direction, where R is the response, detects the R->T link since T provides some partial

explanatory power as a predictor of R’s state in the past.

(PDF)
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34. Rau A, Jaffrézic F, Foulley J-L, Doerge RW. An empirical Bayesian method for estimating biological net-

works from temporal microarray data. Stat Appl Genet Mol Biol. 2010; 9: Article 9.

35. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and val-

idation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS

Biol. 2007; 5: e8. https://doi.org/10.1371/journal.pbio.0050008 PMID: 17214507

36. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algo-

rithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinfor-

matics. 2006; 7 Suppl 1: S7.

37. Young WC, Raftery AE, Yeung KY. Fast Bayesian inference for gene regulatory networks using

ScanBMA. BMC Syst Biol. 2014; 8: 47. https://doi.org/10.1186/1752-0509-8-47 PMID: 24742092

38. Yeung KY, Dombek KM, Lo K, Mittler JE, Zhu J, Schadt EE, et al. Construction of regulatory networks

using expression time-series data of a genotyped population. Proc Natl Acad Sci U S A. 2011; 108:

19436–19441. https://doi.org/10.1073/pnas.1116442108 PMID: 22084118

39. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weak-

nesses of methods for gene network inference. Proc Natl Acad Sci U S A. 2010; 107: 6286–6291.

https://doi.org/10.1073/pnas.0913357107 PMID: 20308593

40. Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating realistic in silico gene networks for perfor-

mance assessment of reverse engineering methods. J Comput Biol. 2009; 16: 229–239. https://doi.org/

10.1089/cmb.2008.09TT PMID: 19183003

41. Müller F-J, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, et al. Regulatory networks define pheno-

typic classes of human stem cell lines. Nature. 2008; 455: 401–405. https://doi.org/10.1038/

nature07213 PMID: 18724358

42. Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, et al. Expression Atlas

update—a database of gene and transcript expression from microarray-and sequencing-based func-

tional genomics experiments. Nucleic Acids Res. Oxford Univ Press; 2013; gkt1270.

43. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line

Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483: 603–607.

https://doi.org/10.1038/nature11003 PMID: 22460905

44. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-

expression signatures to connect small molecules, genes, and disease. Science. 2006; 313: 1929–

1935. https://doi.org/10.1126/science.1132939 PMID: 17008526

45. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12

cancer types reveals molecular classification within and across tissues of origin. Cell. 2014; 158: 929–

944. https://doi.org/10.1016/j.cell.2014.06.049 PMID: 25109877

46. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature.

2012; 490: 61–70. https://doi.org/10.1038/nature11412 PMID: 23000897

47. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcrip-

tomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486: 346–352.

https://doi.org/10.1038/nature10983 PMID: 22522925

Prophetic Granger Causality

PLOS ONE | https://doi.org/10.1371/journal.pone.0170340 December 6, 2017 20 / 21

https://doi.org/10.1038/nmeth.3773
http://www.ncbi.nlm.nih.gov/pubmed/26901648
https://doi.org/10.1093/bioinformatics/btq377
http://www.ncbi.nlm.nih.gov/pubmed/20823316
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.1371/journal.pone.0012776
http://www.ncbi.nlm.nih.gov/pubmed/20927193
https://doi.org/10.1371/journal.pbio.0050008
http://www.ncbi.nlm.nih.gov/pubmed/17214507
https://doi.org/10.1186/1752-0509-8-47
http://www.ncbi.nlm.nih.gov/pubmed/24742092
https://doi.org/10.1073/pnas.1116442108
http://www.ncbi.nlm.nih.gov/pubmed/22084118
https://doi.org/10.1073/pnas.0913357107
http://www.ncbi.nlm.nih.gov/pubmed/20308593
https://doi.org/10.1089/cmb.2008.09TT
https://doi.org/10.1089/cmb.2008.09TT
http://www.ncbi.nlm.nih.gov/pubmed/19183003
https://doi.org/10.1038/nature07213
https://doi.org/10.1038/nature07213
http://www.ncbi.nlm.nih.gov/pubmed/18724358
https://doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
https://doi.org/10.1126/science.1132939
http://www.ncbi.nlm.nih.gov/pubmed/17008526
https://doi.org/10.1016/j.cell.2014.06.049
http://www.ncbi.nlm.nih.gov/pubmed/25109877
https://doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pubmed/23000897
https://doi.org/10.1038/nature10983
http://www.ncbi.nlm.nih.gov/pubmed/22522925
https://doi.org/10.1371/journal.pone.0170340


48. Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. S6K1 regulates GSK3 under conditions of

mTOR-dependent feedback inhibition of Akt. Mol Cell. 2006; 24: 185–197. https://doi.org/10.1016/j.

molcel.2006.09.019 PMID: 17052453

49. Press MF, Lenz H-J. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs.

2007; 67: 2045–2075. PMID: 17883287

50. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, et al. Pathway Commons, a web

resource for biological pathway data. Nucleic Acids Res. 2011; 39: D685–90. https://doi.org/10.1093/

nar/gkq1039 PMID: 21071392

51. Li L, Wang J, Zhang Y, Zhang Y, Ma L, Weng W, et al. MEK1 promotes YAP and their interaction is criti-

cal for tumorigenesis in liver cancer. FEBS Lett. 2013; 587: 3921–3927. https://doi.org/10.1016/j.

febslet.2013.10.042 PMID: 24211253
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