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Abstract

In this study, we introduce a new web-based simulation framework (“MoBPSweb”) that combines a unified language to describe breeding
programs with the simulation software MoBPS, standing for “Modular Breeding Program Simulator.” Thereby, MoBPSweb provides a
flexible environment to log, simulate, evaluate, and compare breeding programs. Inputs can be provided via modules ranging from
a Vis.js-based environment for “drawing” the breeding program to a variety of modules to provide phenotype information, economic
parameters, and other relevant information. Similarly, results of the simulation study can be extracted and compared to other scenarios via
output modules (e.g., observed phenotypes, the accuracy of breeding value estimation, inbreeding rates), while all simulations and down-
stream analysis are executed in the highly efficient R-package MoBPS.
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Introduction
Since early prehistory, selective breeding has been a tool that hu-
manity has used to, among others, ensure the food supply with
examples spanning back to the development from teosinte to
maize in Mesoamerica and animal breeding for war horses and
dogs in the Roman Empire (Sidnell 2007). Over time, breeding has
become more refined with concepts like genetic inheritance
(Mendel 1866), quantitative genetics (Galton 1889; Fisher 1918)
and population genetics (Wright 1922) being introduced. Today,
breeders have a large toolbox of procedures and methods at their
disposal, ranging from high-throughput genotyping and pheno-
typing (Solberg et al. 2006; Cabrera-Bosquet et al. 2012) to highly
advanced biotechnology (Jinek et al. 2012) to complex quantitative
models for breeding value estimation and QTL detection
(Meuwissen et al. 2001; Klein et al. 2005; VanRaden 2008). These
advanced methods are both a blessing and a curse, as managing
and optimizing such a breeding program is a highly complex
problem (Henryon et al. 2014).

In recent years a variety of tools to simulate breeding pro-
grams (Sargolzaei and Schenkel 2009; Faux et al. 2016; Liu et al.
2019; Pérez-Enciso et al. 2020; Pook et al. 2020) have been devel-
oped to aid breeders in their management decisions as they pro-
vide a controlled and repeatable environment to modify
individual parameters of a breeding scheme and by that draw
conclusions on their impact on the breeding objective. Potential
selection goals usually include traits such as productivity, fitness,
adaptation, and inbreeding. In contrast to deterministic analysis
approaches like ZPLANþ (Täubert et al. 2010), the mentioned

simulators use stochastic simulations, thus allowing to draw
conclusions on the variance of outcomes and provide more flexi-
bility in the design of the breeding program.

A common problem of software to perform stochastic simula-
tions is that they are complex to set up, as sound knowledge of
available parameters and functions is required [e.g., the main
function of MoBPS (Pook et al. 2020) breeding.diploid() has over 200
parameters]. This leads to available features not easily being
found or used incorrectly by potential users. Thus, simulation
studies are oftentimes carried out via new and self-written code
that is tailor-made for the problem at hand. However, this leads
to the problem of inefficient and error-prone code that poten-
tially neglects less-intuitive but still important factors that none-
theless affect the breeding scheme.

In a companion paper, Simianer et al. (2020) proposed a unify-
ing concept to describe breeding programs. Even though the focus
in that work was mostly on animal breeding, concepts can readily
be extended to plant breeding. The key idea of the concept intro-
duced by Simianer et al. (2020) is to describe each breeding pro-
gram via a set of nodes and edges, with nodes representing
cohorts of individuals and edges representing a set of potential
breeding actions (e.g., generation of offspring, performing pheno-
typing or selection of individuals). By this, Simianer et al. (2020)
are providing a comprehensive, unambiguous, and reproducible
way to describe a breeding program.

In this study, we combine the ideas of Simianer et al. (2020)
with the highly efficient breeding program simulator MoBPS
(Pook et al. 2020) to provide a web-based application
(“MoBPSweb”) to log, simulate, evaluate, and compare breeding
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programs in an user-friendly and intuitive web-based

environment.

Materials and methods
MoBPSweb is a web-based application running on a NodeJS server

that uses the VueJS and ExpressJS frameworks in the frontend

and backend, respectively. We further employ MongoDB as a

backend database (Chodorow 2013) and provide access to the ap-

plication via nginx. The simulation of the breeding program and

all downstream analyses are performed in R (R Core Team 2021)

by using wrapper functions of the R-package MoBPS. An overview

of the modules contained in the framework is given in Figure 1

with all sub-modules being described in more detail in the follow-

ing subsections.

Breeding scheme
As described in Simianer et al. (2020) a breeding scheme can be

represented by a set of cohorts (nodes) and breeding actions

(edges). This is implemented in an interactive environment based

on the dynamic and browser-based visualization library Vis.js. To

detect potential issues (e.g., loops, missing required information),

the resulting set of nodes and edges is constantly checked and

potential issues are reported as warnings.

Input modules
In addition to the breeding scheme itself, we provide a variety of

different input modules to enter further information:

• General Information
• Phenotype Information
• Culling Information
• Multiple Subpopulations
• Economy Parameters

Except for the “General Information module,” these modules

are optional and can be activated based on the need for the re-

spective study. The basic functionality of each respective input

module is described in the following subsections.

General information
In this module, basic information like the species and the under-

lying genomic map (including used arrays) can be chosen. Maps

can either be uploaded, manually created, or imported from the

Ensembl database (Zerbino et al. 2018). Furthermore, smaller sub-

modules are provided to control optional and very specific

parameters such as the litter size, computational parameters

that are mainly relevant for simulations with a high number of

generations as in population genetic studies or to scale the size of

each cohort (number of individuals) to reduce computational

load and thus test the conformity of the breeding program on a

smaller scale.

Phenotype information
In this module, the underlying set of traits and their architectures
can be defined. This includes defining phenotypic mean and vari-
ance, as well as the heritability, repeatability, and the number of
underlying QTL for each trait. Potential correlations between
traits need to be given for both the genetic and residual compo-
nents. Furthermore, selection indices to later perform selection
based on multiple traits can be defined here. Exemplary sets of
traits for a variety of species are provided as templates.

Culling information
In this module, rules for individuals leaving the breeding nucleus
can be defined. In contrast to breeding actions via edges, no new
individuals are generated. Input parameters are in line with
parameters of the culling options in breeding.diploid() in the MoBPS
R-package with the added benefit that the age of individuals is
tracked and culling actions are automatically performed as soon
as an individual reaches a given age.

Multiple subpopulations
In this module, rules to generate founder individuals of different
genetic origins can be defined, e.g., for representing different
breeds or lines in a crossbreeding scenario. This is only relevant
in case no genotype information is imported for some of the
founders and will lead to simulated genotypes being drawn from
different per marker allele frequencies.

Economy parameters
In this module, basic information regarding the cost of different
breeding actions can be entered. This includes both fixed and
variable costs like genotyping, phenotyping, and housing costs
that are automatically discounted according to provided interest
rates.

JSON to R conversion
The output of the web-interface is a JavaScript Object Notation
(JSON)-file containing all entered information of the breeding
scheme. Subsequently, this JSON-file is translated into interpret-
able R-code. All this is implemented in the function json.simula-
tion() in the R-package MoBPS (Pook et al. 2020). The translation
procedure for all advanced modules is relatively straight-
forward, as most parameters directly correspond to a parameter
in the MoBPS R-package. For example, the size of the genome and
the selected underlying array will be set as the map parameter in
creating.diploid() and the phenotyping module is feeding in infor-
mation for a separate call of creating.trait() from the MoBPS
R-package.

The conversion of the breeding scheme itself is done by first
detecting if the breeding scheme has any “Repeat” edges
(Simianer et al. 2020), which are used to indicate that a given part
of the breeding program is carried out multiple times (breeding
cycles). If that is the case, it will subsequently check which nodes

Figure 1 Schematic overview of the MoBPSweb framework.
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can be generated without the use of any repeat. Next, all repeats

that can be executed based on the already available nodes are ex-

ecuted by generating copies of all nodes between the node of ori-

gin and the target node of the repeat (including the node of origin

and excluding the target node). Nodes generated via repeat are

serial-numbered via “_1,” “_2” etc. to indicate the repeat number.

This procedure is repeated until all repeat edges are resolved,

leading to a breeding program without any repeats remaining.
Next, the actual breeding scheme is simulated by first generat-

ing all founder nodes via creating.diploid(). All remaining cohorts

are generated by separate calls of breeding.diploid(). All necessary

information for this is stored in incoming edges and the node it-

self. For edges, this includes the breeding type, but also respective

subsequent details (e.g., for selection: the method for breeding

value estimation, cohorts used for breeding value estimation,

and so on.). For nodes, information includes the phenotyping

class, the share of genotyped individuals, and the housing class.

The order of generation will be derived based on generation times

assigned to each edge and cross-dependencies (e.g., when pheno-

typing information from one cohort is needed to generate breed-

ing values for another cohort).

Evaluating simulation outputs
After successfully simulating a breeding program, the resulting

population-list is stored and can be analyzed. In the web-

interface itself, we provide five implemented analysis modules,

each corresponding to an analysis function from the MoBPS R-

package:

• Observed Phenotypes—get.pheno()
• True Genomic Values—get.bv()
• Accuracy of Breeding Value Estimation—analyze.bv()
• Relationship and Inbreeding within Cohorts—kinship.emp.-

fast()
• Major QTLs—get.geno()

All these modules can either be applied on a single run of the

simulation or be averaged across multiple random replicates of

the same simulation scenario. Furthermore, the “Compare

Project module” is providing an environment to compare differ-

ent breeding schemes with each other by use of the same analy-

sis functions.
Note that it is also possible to directly extract pedigree and

phenotype information, VCF (Danecek et al. 2011)/PedMap

(Purcell et al. 2007)-files for selected cohorts or the population-list

itself (.RData) to proceed with own analyses in R.

Results and discussion
In the following, we will discuss an exemplary use case of the

web-interface for a dairy cattle breeding program on farm level. A

variety of other breeding schemes that can be simulated via

MoBPSweb including a commercial layer breeding program

[Supplemental File S2, (Simianer et al. 2020)], the inclusion of

health traits in horse breeding [Supplemental File S3, (Büttgen

et al. 2020)], a cock rotation to preserve genetic diversity in

chicken (Supplemental File S4) and the generation of a MAGIC

population in maize (Supplemental File S5) are given as tem-

plates at www.mobps.de.

Baseline scenario
The breeding scheme for the dairy cattle breeding scheme, as en-

tered in the flash application of MoBPSweb, is given in Figure 2.

At each time point, the farm has spots for 184 animals consist-
ing of five cohorts (calf, heifer, cow-L1, cow-L2, and cow-L3) that
are split based on age. New animals are generated by the use of
semen from a breeding company with heifers and older cows be-
ing used for reproduction. These offspring are then merged into a
joined cohort and subsequently used as the calf-cohort (“calfþ”;
Figure 2) in the next repeat. New animals for the other four
cohorts are chosen by selecting the required number of animals
from the respectively 1 year younger cohort (“heiferþ1,” “cow-
L1þ1,” “cow-L2þ1,” “cow-L3þ1”; Figure 2). For this selection pro-
cedure, five traits are simulated and animals are selected based
on a selection index formed from those traits (Table 1), with phe-
notypes only being partially available based on age. It is assumed
that already combined traits, as being used in the standard
German breeding evaluation system are measured on each cow.
The five traits RZM (milk), RZE (type), RZR (fertility), RZS (somatic
cell score), RZKm (calving traits) were chosen according to
Vereinigte Informations systeme Tierhaltung v.W (2020) and
standardized to have a starting mean of 100 with a genetic stan-
dard deviation (gSD) of 12 to allow a better comparative assess-
ment. Genetic correlations were taken from Vereinigte
Informations systeme Tierhaltung v.W (2020) and residual corre-
lations are assumed to be the same (Table 2). For simplicity rea-
sons, longevity traits are ignored here as phenotyping of those
traits can be more complex to model. Since longevity (RZN) with
an index weight of 20 was removed from the analysis, the index
weights of the remaining traits add up to 80. As traits given here
already represent combinations of other traits, no heritability or
repeatability values are given in Vereinigte Informations systeme
Tierhaltung v.W (2020). Instead, reasonable values were esti-
mated based on the given sub-trait heritabilities and using esti-
mates in the literature (Roman et al. 2000; Oyama et al. 2002).

In the baseline scenario, the selection on the farm is assumed to
be solely based on individual phenotypes and paternal breeding
material is received in the form of semen from the breeding com-
pany. The underlying breeding scheme from the side of the breed-
ing company is simplified with just one male and one female
cohort per cycle and small animal numbers (250 bulls, 2,000 cows)
as it is not the main focus of this study. Selection for the bulls is
done via single-step breeding value estimation (Aguilar et al. 2010;
Christensen and Lund 2010) with only bulls being genotyped and
phenotypes of the last two repeats of cows being used. Cows of the
breeding company are assumed to have the same number of phe-
notypic observations per trait as cows after the third lactation pe-
riod (“cow-L3,” Table 1). The breeding cycle was repeated 20 times
with additional five burn-in repeats to build up some linkage dis-
equilibrium and obtain an initial pedigree structure. An exemplary
node and edges from the web interface are given in Figure 3, with
details on all edges and nodes given in Supplemental File S1.

The results of the simulation predict that the selection pro-
gram achieves sustained gains with the highest increase for RZM
(7.4 gSD in 20 repeats, Figure 4A). The corresponding results for
the other traits are given in Supplementary Figures S1–S4. In ad-
dition, inbreeding rates increased by about 0.01 per cycle
(Figure 4B). Prediction accuracies for the breeding value estima-
tion of the bulls were relatively low with values ranging between
0.44 for RZR and 0.58 for RZE (which could easily be increased by
enlarging the training population).

Comparative scenarios
In addition to the baseline scenario, we will consider a variety of
modifications of the original breeding program and analyze their
impact:
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1) Use of pedigree-based breeding value estimation for the
selection of cows to be kept in the next cycle (“pedigree_BVE”)

2) Genotyping of the calves and subsequent selection via
single-step BLUP on the farm (“ssBLUP_BVE”)

3) Reducing the selection intensity in the breeding company
by 50% (Top 50 instead of Top 25 sires;
“Low_SelectionIntensity”)

4) Modification of the selection index to put less weight on
milk gain (RZM: 30, RZE: 20, RZR: 15, RZS: 10, RZKm: 5)
(“Change_IndexWeights”)

To achieve reliable results, all scenarios were simulated 100
times and reported results represent averages across these runs.

JSON-files of all scenarios can be found in Supplementary File S1.
An overview of the development in the different scenarios for the
traits and the rates of inbreeding are given in Figure 5. By the use
of a breeding value estimation (“pedigree_BVE”/ “ssBLUP_BVE”) all
traits can be considered for selection, even when no phenotypes
are available for the respective cohort. Even though both scenar-
ios led to a statistically significant increase in RZM (t-test,
p¼ 0.0096/0.033, Figure 5A), the practical differences between
scenarios were small, as most of the genetic gain generated on
the male side of the breeding program. The prediction accuracies
achieved by both prediction methods were relatively low (e.g., for
RZM around 0.42 for calves, Supplementary Figure S5). To in-
crease the effectiveness of such intra-herd selection, one could
further consider to select only half of the cows to produce heifers,
while the other half could be mated to beef bulls to produce fat-
tening calves. Note that this would require the use of sexed se-
men.

The reduction of the selection intensity on the side of the
breeding company by 50% led to a 57% reduction of the inbreed-
ing rates, and thus resulted in inbreeding rates of less than 0.005
per repeat (Figure 5F). This however came at the cost of a 20% re-
duction of genetic progress for RZM (Table 3, Figure 5A).
However, the ratio between genetic gain and inbreeding is highest
in this scenario. Note that when considering a longer time

Figure 2 A dairy cattle selection program within a herd, with animals separated into age groups. Details on the attributes of all nodes and edges can be
found in Supplementary Material S1.

Table 1 Overview of the simulated traits for heritability, repeatability, index weights, and whether traits are phenotyped for each cohort
(Vereinigte Informations system Tierhaltung w. V. 2020). Numbers in brackets indicate the accumulated number of observations for the
respective trait.

Trait Heritability Repeatability Index weighting Calf Heifer Cow-L1 Cow-L2 Cow-L3

RZM (milk) 0.30 0.50 45 No No Yes (1) Yes (2) Yes (3)
RZE (type) 0.25 0.25 15 No No Yes (1) Yes (1) Yes (1)
RZR (fertility) 0.02 0.06 10 No Yes (1) Yes (2) Yes (3) Yes (4)
RZS (somatic cell score) 0.15 0.22 7 No No Yes (1) Yes (2) Yes (3)
RZKm (calving traits) 0.05 0.09 3 No No Yes (1) Yes (2) Yes (3)

Table 2 Genetic/residual correlation for considered traits given in
Table 1 in the lower/upper triangle matrix.

Trait RZM RZE RZR RZS RZKm

RZM (milk) 1 0.00 �0.25 �0.05 �0.05
RZE (type) 0.00 1 0.10 0.20 0.00
RZR (fertility) �0.25 0.10 1 0.20 0.25
RZS (somatic cell

score)
�0.05 0.20 0.20 1 0.10

RZKm (calving traits) �0.05 0.00 0.25 0.10 1
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horizon, genetic progress in this scenario might even be highest
as genetic gains in other scenarios will potentially diminish due
to lower remaining genetic diversity. To analyze this in detail,
more breeding cycles would have to be simulated. Furthermore,
potential countermeasures like the introduction of new diversity
into the breeding nucleus should be considered then.

Modification of the selection index to put less weight on the
RZM led to a 22% smaller increase in this trait (Table 3). However,
for all other traits performance was best, as this was the only sce-
nario where an improvement for RZR was obtained and genetic
gains for RZS were doubled (Figure 5, C and D).

Computing times for each simulation were about 20.5 minutes
with about 15 minutes used for breeding value estimation,
4 minutes to generate new animals, and 30 seconds for both
JSON-to-R conversion and initialization of the founder population
using a single core of an Intel(R) Xeon(R) Gold 6132 CPU 2.60 GHz.

Discussion
MoBPSweb provides an interactive, flexible, and efficient plat-
form to simulate, evaluate, and compare breeding programs.
Simulation studies are a valuable tool for breeders to quantify
the effects of their chosen breeding actions, to complement their
experience and quantitative genetics theory (e.g., expected gains
via the breeders’ equation). This is particularly relevant, as breed-
ing programs are complex by nature and breeding actions are
interconnected. Examples of this are lower rates of inbreeding
when switching from pedigree-based to genomic breeding values
(de Roos et al. 2011) or the loss of genetic diversity when increas-
ing the selection intensity. By the use of a simulation study, a

variety of output variables of a breeding program can be analyzed

jointly, allowing to select the best solution for achieving a given

breeding objective and thus optimize the breeding program. This

solution will of course be highly dependent on the breeding objec-

tive, the general framework, and potential auxiliary conditions.
More fundamentally, the concepts introduced in Simianer

et al. (2020) and the input environment given via MoBPSweb are

providing a standardized, unambiguous, and reproducible way to

describe breeding programs and by this are solving common

problems of unclear terminology for breeding programs. Thereby,

the described framework can also be seen as a management tool

for breeding programs in general and will be useful for planning

costs, time, and resources required.
With this, MoBPSweb makes the execution of complex simula-

tion studies more accessible to researchers, breeders, and stu-

dents and thus provides a platform to be used in teaching. In

general, we would highly encourage other researchers to make

their software programs more accessible via similar web-based

applications and thus make their tools available to potential

users who are less familiar with the respective back-end pro-

gramming language.
All simulations in MoBPSweb can be executed without the use

of R for the user. However, in case the output modules are not

sufficient to extract the exact information one is interested in, it

is also possible to download the resulting population-list and per-

form manual analyses in R. A further potential reason for the use

of the R-package is the overall higher flexibility in the design of

the breeding program, for instance, when considering complex

phenotypes like longevity in cattle or when working with

Figure 3 Exemplary node (A) and edge (B) of the baseline scenario (Figure 2) and the genomic selection edge used in the scenario “ssBLUP_BVE” (C).

Figure 4 Genetic gain for the trait RZM (milk) with average genomic value standardized to 100 after 5 repeats (A) and increase in inbreeding (B) in the
reference dairy cattle breeding scheme (Figure 2) with 95% confidence bands. Note that as deviations are extremely low, confidence bands are virtually
invisible. These figures are exemplary outputs of the “True Breeding Values” and “Relationship and Inbreeding within Cohorts” modules in MoBPSweb
(www.mobps.de).
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sophisticated selection schemes that are using new and/or own
methodology.

Although the MoBPSweb interface does not provide additional
functionality compared to the direct use of the R-package, it still
offers major advantages in terms of use, as available parameter
settings are provided more naturally and the order of breeding
actions (e.g., which cohort to generate when, when to generate
phenotypes or individuals leading the breeding nucleus due to
age/culling) is automatically taken care of. This in turn reduces

potential error sources when setting up a simulation study. For
reference, we implemented the simulation of the baseline breed-
ing program via the R-package directly, which required about 200
lines of code (Supplemental File S5), while ignoring economic
tracking and performing no downstream analysis. As the com-
plexity of the breeding program increases in practice (e.g., more
nodes, aging and complex breeding value estimations), R-scripts
can quickly become much longer and more complex. Note that
although MoBPSweb was created for the MoBPS R-package, in

Figure 5 Genetic gain and the increase in inbreeding for the different scenarios of the cattle breeding program with 95% confidence bands for the traits
RZM (A), RZE (B), RZR (C), RZS (D), RZKm (E), and inbreeding rates (F). Genomic values for all traits were standardized to an average of 100 after 5
repeats. This figure is an exemplary output of the “Compare Project module” in MoBPSweb (www.mobps.de).
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principle any stochastic simulator for breeding programs should

be usable to perform the required back-end simulations.
Finally, note that no simulation study will be able to fully cap-

ture reality in its entirety. Nevertheless, the key strength of simu-

lation approaches lies in the fact that, in contrast to real-world

experiments and field trials, far less time and money are needed

to carry them out and potential harm to animals, such as adverse

fitness effects, are avoided. Furthermore, experiments can be re-

peated and modified without any practical issues, which leads to

much higher statistical power when comparing scenarios. Even if

the absolute size of estimated effects might be off due to simplifi-

cations of reality, these effects should usually affect all consid-

ered scenarios and thus still ensure comparability between

scenarios.

Web resources
All code underlying MoBPSweb can be found at https://github.

com/tpook92/MoBPS_web. A running version of MoBPSweb can

be found at www.mobps.de. JSON-files for all compared scenarios

discussed can be found in Supplemental File S1 with the refer-

ence also being included as a template at www.mobps.de.

Supplemental Files S2, S3, S4, S5 provide JSON-file for other ex-

emplary breeding programs, including a commercial layer breed-

ing program (S2), the inclusion of health traits in horse breeding

(S3), a cock rotation to preserve genetic diversity in chicken (S4),

and the generation of a MAGIC population in maize (S5).

Supplementary File S6 is providing exemplary R-code to simulate

the presented baseline scenario. Supplementary Figures S1–S4

display the genetic gain for the traits RZR, RZE, RZS, RZKm for

the reference dairy cattle breeding scheme. Supplementary

Figure S5 provides information on the accuracy of the breeding

value estimation for the different scenarios. Supplementary files

are available at FigShare: https://doi.org/10.25387/g3.13573505.
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