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Novel computational tools for swine vaccine development can expand the range of
immunization approaches available to prevent economically devastating swine diseases
and spillover events between pigs and humans. PigMatrix and EpiCC are two new
tools for swine T cell epitope identification and vaccine efficacy analysis that have been
integrated into an existing computational vaccine design platform named iVAX. The iVAX
platform is already in use for the development of human vaccines, thus integration of
these tools into iVAX improves and expands the utility of the platform overall by making
previously validated immunoinformatics tools, developed for humans, available for use
in the design and analysis of swine vaccines. PigMatrix predicts T cell epitopes for a
broad array of class I and class II swine leukocyte antigen (SLA) using matrices that
enable the scoring of sequences for likelihood of binding to SLA. PigMatrix facilitates
the prospective selection of T cell epitopes from the sequences of swine pathogens for
vaccines and permits the comparison of those predicted epitopes with “self” (the swine
proteome) and with sequences from other strains. Use of PigMatrix with additional tools
in the iVAX toolkit also enables the computational design of vaccines in silico, for testing
in vivo. EpiCC uses PigMatrix to analyze existing or proposed vaccines for their potential
to protect, based on a comparison between T cell epitopes in the vaccine and circulating
strains of the same pathogen. Performing an analysis of T cell epitope relatedness
analysis using EpiCC may facilitate vaccine selection when a novel strain emerges in a
herd and also permits analysis of evolutionary drift as a means of immune escape. This
review of novel computational immunology tools for swine describes the application
of PigMatrix and EpiCC in case studies, such as the design of cross-conserved T
cell epitopes for swine influenza vaccine or for African Swine Fever. We also describe
the application of EpiCC for determination of the best vaccine strains to use against
circulating viral variants of swine influenza, swine rotavirus, and porcine circovirus type
2. The availability of these computational tools accelerates infectious disease research
for swine and enable swine vaccine developers to strategically advance their vaccines
to market.
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INTRODUCTION

Pigs are an important component of the agricultural economy
worldwide and are an important contributor to protein intake for
populations living in developed and developing world economies.
Due to the concentration of pigs in industrial farming operations
and concern about the overuse of antibiotics for food animals,
the control and prevention of infectious diseases in swine
has become an important topic that is not only relevant to
animal health and wellbeing but also to global food security
and economic stability. Vaccine development for swine is likely
to be facilitated by the emergence of computational tools
for vaccine design. These same tools may also contribute to
research on the spread of swine pathogens within herds and
across geographical borders. For example, influenza is more
diverse in swine populations than in humans. Spillover of
influenza strains from pigs to humans was observed in 2009,
and efforts to predict the next such event may be improved
by comparisons of circulating strains in different species, a
process that can be enabled by computational tools. Such tools
may also contribute to the development of novel vaccines for
important pathogens of swine for which effective vaccines are
not yet available, such as African Swine Fever Virus (ASFV),
a pathogen that is affecting swine populations in Asia and
Europe (1).

Veterinary vaccines are one of the more cost-effective means
of controlling, eradicating diseases and protecting herd health.
Nevertheless, culling infected animals and strict containment are,
in many instances, the only method available to limit the spread
of disease during outbreaks (2). In order to move away from
culling and quarantining infected animals, new types of vaccines
and new vaccine methodologies that reduce the susceptibility
of swine to infections bear serious consideration. Given the
emergence of new strains of influenza and diseases that become
endemic in new locations such as ASF in swine populations,
and ethical considerations related to the culling of animals
in industrial farming operations, there is a critical need for
tools that can enable novel vaccine design, accelerate vaccine
design, and assess the efficacy of vaccines against circulating
strains, in silico.

Most veterinary vaccines are developed using standard
methods, such as inactivating the pathogen using chemical or
physical methods and then injecting killed organism directly into
the animals (a process that can be called “shake and bake”).
Alternatively, molecular tools are used to selectively modify a
pathogen so as to limit virulence, resulting in an attenuated
version that can be used as a vaccine. These vaccine approaches
do not adequately address strain variation, which is a significant
problem for the development of swine vaccines, as many of the
pathogens affecting swine are highly variable. Additionally, viral
pathogens have been shown to modify T cell epitopes to evade
host immune response (immune escape) and more recently,
selected epitope sequences of pathogens have been shown to
resemble epitopes found in their hosts (immune camouflage) (3).
Research in the field of human immunology has contributed to
the development of tools that permit the evaluation of pathogen
variation and immune camouflage. Although no examples of

immune camouflage have been demonstrated in pigs, evolution
of pathogens in pigs and the close resemblance of human
and swine immune systems, including the Th1/Th2/Th17/Treg
paradigm, suggests immune camouflage may occur in pigs like in
humans. The availability of tools that discover pathogen epitopes
that resemble their host sequences may lead to improvement
in the process of antigen selection and enabling researchers to
improve the efficacy of vaccines for swine.

Computational tools for vaccine design usually start with
T cell epitope prediction due to the important role of T
cell epitopes in cell-mediated immunity (CMI). T cell epitope
mapping algorithms enable the analysis of complete proteomes
of any size to identify vaccine candidates for experimental
validation. Despite the demonstrated utility of computational
vaccinology in human vaccine development (4), computational
tools for vaccine design are very limited for non-human species.
This is mainly due to the limitations on available experimental
data that is required to develop prediction models. However,
methods for extracting similarities between human and swine
immune system orthologs exist and have been applied to
develop new epitope prediction tools for swine (5), and this
makes it possible to imagine further improvements in epitope-
prediction models and further expansion of computational
vaccinology tools. The fact that swine are both “patient” and
“experimental model” facilitates the testing of hypotheses and
will enable the development of at least as many applications of
immunoinformatics tools as for humans and the acceleration of
porcine immunology research.

Here, we review new immunoinformatics tools for swine
developed by a team of scientists at EpiVax in partnership with
researchers based in academic settings (University of Rhode
Island, University of Georgia), that have been integrated into
an existing toolkit for human vaccine design. The hybrid toolkit
has been applied to design and evaluation of novel vaccines for
influenza and African Swine fever, and to the analysis of vaccine
for protective efficacy against circulating strains of influenza and
porcine circovirus. We also discuss current challenges and future
perspective in the field.

THE iVAX TOOLKIT

Computational vaccinology is a term that incorporates epitope
mapping, antigen selection and vaccine construct design using
computational tools. In silico tools are at the core but validation
is used to improve the efficacy of prediction and to measure
the impact on immune responses to pathogens. A wide range of
tools have been developed in the past 20 years that dramatically
accelerate the design of novel and next generation vaccines. In
a recent publication, we have described the utility of iVAX for
human vaccine design and analysis (4). Here we will focus on the
integration of PigMatrix into a pre-existing toolkit, and describe
applications of the combined tools to swine vaccines.

The iVAX toolkit has been in development since 1998. It
is an interactive internet-based platform that integrates user
input, immunoinformatics algorithms and several sequence
databases, enabling users to rapidly identify and triage candidate
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antigens, select immunogenic T cell epitopes, eliminate
potential regulatory T cell epitopes, and optimize antigens
for immunogenicity and protection against disease. Detailed
descriptions of the tools are published [see references (4, 6–8)].
While the tools were designed for humans, swapping out the
tools used for epitope prediction from Human Leukocyte
Antigen (HLA) to Swine Leukocyte Antigen (SLA) has enabled
EpiVax vaccine developers to apply these advanced tools to
infectious disease problems affecting swine.

Overview of the iVAX Toolkit
iVAX contains a compilation of tools that implement information
derived from the T cell epitope mapping tool, EpiMatrix (9). This
tool accepts sequence input for human, swine, and murine major
hisotocompatability complex (MHC) class I and class II epitope
prediction. The generated predictions can then be incorporated
into further analysis using a variety of tools including the
Conservatrix, ClustiMer, EpiAssembler (4) and VaxCAD
algorithms (10). Conservatrix enables a search for sequences
across variable pathogens, for example, swine influenza A, or

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV).
ClustiMer finds regions of class II SLA-binding epitopes that
cluster into a single longer sequence, and EpiAssembler is
used for identifying epitopes that are conserved across several
different strains of the same pathogen. Additional tools include
JanusMatrix, a unique homology analysis tool that predicts the
potential of a given peptide to contain epitopes exhibiting cross-
reactivity between a pathogen and a host (such as swine) based
on the conservation at the MHC-T cell receptor (TCR) interface.
A list of the tools is provided in Figure 1 with a short description
of their function.

Immunogenicity Scale – Triaging
Antigens
During the process of selecting candidate vaccine antigens,
the overall immunogenic potential should be taken into
consideration as it directly relates to the cytotoxic T cell (CTL)
or T helper (Th) T cell epitope content. We have observed that
the greater the concentration of HLA ligands and putative T cell

FIGURE 1 | Integration of PigMatrix and EpiCC into the iVAX Toolkit. The iVAX toolkit is a comprehensive set of tools for in silico analysis and computational vaccine
design for humans. PigMatrix analyzes protein sequences for Class I and Class II SLA-restricted T cell epitopes. EpiCC defines the relatedness of sequences based
on their T cell epitope content. The integration of PigMatrix and EpiCC into the existing iVAX toolkit allows them to be applied for the development of accelerated and
improved swine vaccines.
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epitopes that are contained in an antigen, the more likely it will
induce an immune response.

T cell epitope concentration can be expressed as an overall
EpiMatrix score called the EpiMatrix Protein Score, which is
the difference between the number of T cell epitopes predicted
in a given protein and the number of T cell epitopes expected
to be found in a random protein sequence, normalized for
length (per 1,000 amino acids). The average number of T
cell epitopes contained in 10,000 randomly generated protein
sequences is set to zero, proteins considered to have a significant
immunogenic potential score above 20 on the normalized
scale, on which several swine pathogen antigens included for
comparison, in Figure 2.

Regional Immunogenicity
While the normalized EpiMatrix Protein Score provides an
approximation of the overall protein immunogenicity, regional
immunogenicity also plays a role in the immunogenic potential.
T cell epitopes tend to cluster in regions of protein sequences.
ClustiMer was developed to identify regions with unusually high
densities of putative T cell epitopes. For a given region, ClustiMer
calculates a T cell epitope cluster score. Clusters with scores above
10 are considered potentially immunogenic. The length of T

cell epitope clusters ranges from nine to approximately twenty-
five residues and can contain from four to forty HLA binding
motifs. T cell epitope clusters usually contain one or more 9-mer
frame sequences predicted to bind to four or more HLA alleles.
This epitope bar feature (EpiBar) is highlighted in the iVAX
report. T cell epitope clusters can be highly immunogenic. An
example is given of a Swine Influenza A Hemagglutinin epitope
cluster (Figure 3). Human T cell epitope clusters that have a
similar EpiBar have been defined for Tetanus toxin 825–850,
GAD65 557–567 and are often used as controls for T cell assays
(11). In our experience, these clusters are recognized in outbred
populations of humans (12, 13); however similar epitopes have
not yet been defined for swine.

JanusMatrix and Self-Like T Cell
Epitopes
Although T cells possessing anti-self TCRs were previously
thought likely to be eliminated in the thymus, evidence emerged
showing that anti-self immune response is also controlled by
regulatory T cells recognizing the same antigens (14, 15).
The phenotype of these regulatory T cells may be reinforced
by repetitive re-exposure to their cognate self-antigens (16).
Thus, immune response to new antigens is shaped by previous

FIGURE 2 | EpiMatrix immunogenicity scale. The immunogenicity scale shows swine pathogen antigens that have been reported to be immunogenic, and
non-immunogenic antigens. Sequence accession numbers in GenBank are provided in the parentheses. The EpiMatrix immunogenicity scale is set to zero based on
the average epitope content in a randomly generated protein sequence. Normalization of SLA scoring enables the ranking and direct comparison of candidate
antigens; for example, candidate vaccine antigen A would be preferred over candidate vaccine antigen B for inclusion in a vaccine designed to elicit T helper immune
response and to drive humoral response.
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experience in the thymus and by exposure-driven reinforcement
in the course of immune system maturation.

We observed that certain pathogens contain critical antigens
with T cell epitopes that are highly conserved with self-antigens.
This is true for humans and consequently deserves attention in
swine. We hypothesized that pathogens use these epitopes as
a means of “immune camouflage”; thus, these epitopes might
be tolerated or actively tolerogenic upon vaccination (17). In
retrospective studies, we determined that peptide epitopes that
have identical TCR-facing residues and similar MHC binding
anchors can be potentially tolerogenic and/or activate T cells that
have a regulatory T cell phenotype or induce immunosuppressive
responses (3). To identify these self-like epitopes, we developed
the JanusMatrix tool. Using this tool, we are studying the impact
of mutating these epitopes to enhance vaccine immunogenicity
in humans (18) and anticipate that we will extend this work
in collaborations that will evaluate the impact of self-like
epitopes for swine.

For any given putative T cell 9-mer epitope, JanusMatrix
analyzes residues in contact with the MHC molecule, and those in
contact with the T cell receptor (TCR). Positions 1, 4, 6, and 9 are
assumed to interact with MHC class II molecules and positions 2,
3, 5, 7, and 8 are assumed to interact with TCRs (Figure 4). For
class I epitopes, the TCR-facing residues vary from allele to allele.

The JanusMatrix algorithm then searches a reference database
for similar epitopes, considering both MHC- and TCR-facing
residues. The reference database (to which pathogen epitopes
are compared) can be human, swine, murine, or any other
organism (including other pathogens from the same, or similar
species). JanusMatrix finds reference epitopes with identical
TCR-facing residues that are predicted to bind to the same
MHC molecule despite amino acid differences. JanusMatrix
calculates a Homology Score as the average depth of coverage
within the reference database for the putative MHC binding
epitopes identified in the input peptide. JanusMatrix Homology
Scores above two are considered to be significant, indicating

FIGURE 3 | PigMatrix class II analysis. The cluster report of a swine influenza hemagglutinin sequence shows a 9-mer frame that contains three top 1% hits (strong
binding likelihood) and four top 5% hits for SLA class II alleles. This feature is called an EpiBar and is characteristic of highly immunogenic epitopes.

FIGURE 4 | JanusMatrix and self-like epitopes. Predicted SLA ligand with identical TCR-facing residues with the swine proteome (presented in blue) and variant
SLA-binding residues (presented in green) may stimulate cross-reactive tolerizing or Treg responses, if both bind to the same SLA allele.
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an elevated level of conservation between putative epitopes
in the input peptide and epitopes in the reference database.
Using this threshold, we identified epitopes that are more
likely to be tolerated or actively regulatory (19). For a given
EpiMatrix Score, a high JanusMatrix Homology Score suggests
that T cells recognizing that epitope may exhibit a bias toward
immune tolerance, which has been validated in retrospective
and prospective studies (3) in the human context. More
remains to be done to evaluate whether the same observation
is true in swine.

PIGMATRIX

In general, the development of models for prediction of T cell
epitopes requires a large amount of experimental data for training
and testing. A variety of approaches provide data that can be
used to define peptide:MHC binding rules and enable binding
predictions, all of which have been applied to identification
of SLA ligands. High throughput methods that define MHC
binding peptides include biochemical assays that measure
peptide:MHC binding affinity or a proteomics approach that uses
immunoprecipitation of solubilized peptide:MHC complexes
from the cell surface followed by peptide elution and liquid
chromatography/mass spectrometry (20–22). Additionally, in a
low throughput manner, epitope-specific T cell lines are used
to define binding anchor residues by assaying epitope variants
at anchor positions for T cell stimulation as measured by
cytokine or chemokine release (23). While such binding data
are abundantly available for HLA, they are limited for MHC
of other species. Only one online tool algorithm has been
trained and evaluated for prediction of SLA class I alleles (24).
Prediction tools have not been available for SLA class II alleles.
To overcome this lack of binding data for SLA, PigMatrix
leverages similarities between the secondary structure of HLA
and SLA molecules and predefined HLA binding preferences
to generate SLA epitope predictors based on the pocket profile
method (5, 25).

The crystallographic structure of HLA molecules reveals
that the peptide-binding groove contains a number of pockets
and that polymorphic residues in the HLA sequence are often
involved in forming these pockets (26). Consequently, the
residues in the pocket define allele-specific binding preferences
for particular amino acid side chains of the antigenic peptides
(27). Thus, for each MHC molecule, the profile of a given binding
pocket can be defined by its residues and binding preferences.
Sturniolo et al. demonstrated that each “pocket profile” was
nearly independent of other pockets in the HLA-DR binding
groove (25). The authors also showed that an MHC molecule
could be defined in terms of its individual pocket profiles as
a quantitative matrix of binding preferences. Therefore, once a
pocket profile is determined experimentally, it can be shared with
other HLA-DR molecules that have identical pocket residues.

A number of pan-specific algorithms for T cell epitope
prediction based on the pocket profile method have been
developed, including TEPITOPE (25), TEPITOPEpan (28), and
PickPocket (29). The predictive performance of these methods

for novel HLA alleles depends on the similarity of pocket
residues; performance decreases as similarity decreases (29). For
HLA alleles with limited quantitative data, algorithms based
on the pocket profile method have demonstrated better or
comparable performance when compared to methods, such as
artificial neural networks, that require a large amount of training
data (28, 29). NetMHCpan, an artificial neural network-based
algorithm, has been used for prediction of SLA class I-restricted
peptides (24, 30).

PigMatrix (5) is the first algorithm that was designed for the
prediction of SLA class II T cell epitopes. Using the Sturniolo
et al. approach described above, PigMatrix matrices were created
by integrating the binding preferences of the best-matched
HLA pocket for each SLA pocket, using SLA or HLA crystal
structures as a basis for pocket selection. PigMatrix achieved a
favorable predictive performance, comparable to or better than
PickPocket and NetMHCpan for SLA class I alleles (5). PigMatrix
class II epitope predictions were validated prospectively (see
section “Swine Influenza A Virus Vaccine” below). Overall,
using the pocket profile method for SLA, and defined binding
preferences from HLA, shows promise for developing T cell
epitope prediction tools for pigs.

Limitations of PigMatrix: Class I and II
SLA Coverage
To effectively harness epitope immunoreactivity data, the identity
of SLA alleles involved in peptide presentation to T cells is
required. This information is needed to establish knowledge of
the prevalence of allelic families on a population level, which is
used in turn to ascribe immunological significance to epitope-
specific T cell responses detected in infection and vaccine studies.
Furthermore, knowledge of MHC allele sequences is required for
T cell epitope prediction.

The diversity of SLA and the lack of information on SLA
frequencies represent a significant challenge for the development
of T cell epitope vaccines for swine (31). The problem of
SLA coverage is illustrated by a small swine influenza vaccine
immunogenicity study that was performed using PigMatrix-
identified T cell epitopes, SLA alleles expressed by the pigs in the
study cohort were different from those reported to be prevalent
in the United States swine population. Information about SLA
allele diversity in the United States swine population is critically
important to develop a more comprehensive set of predictions
that target the most prevalent SLA alleles. Once the prevalence
and diversity of United States swine SLA are better understood,
it may be possible to cluster SLA molecules into supertypes. The
concept of supertypes has been applied to HLA for selection of
few representative alleles from different clusters to cover a high
percentage of the HLA diversity in the human population (32,
33). An epitope-based vaccine containing peptides predicted to
bind SLA supertype alleles could induce immune responses in
pigs expressing diverse alleles.

Fortunately, the importance of SLA diversity for vaccine
development and studies to identify commonly expressed
haplotypes has been recognized and new studies are expanding
available information on prevalent SLA alleles in swine
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poulations (34). Currently, the Immune Polymorphism Database
lists 90 SLA-1, 96 SLA-2, 41 SLA-3, and 99 DRB1 alleles.
Continuing efforts to expand the identification of specific alleles
are needed, as are studies that will determine allelic frequencies
on a population level for prediction of T cell epitope binding
for vaccine development and analysis of epitope-specific T cell
responses in infection and vaccination.

SLA typing is commonly performed using sequence-specific
primers in PCR (PCR-SSP) (35, 36). This is a labor-intensive
approach that yields low resolution results at the allele group
level; e.g., SLA-1∗08XX refers to a group of alleles that encode
the SLA-1∗08 antigen or sequence homology to other SLA-
1∗08 alleles. Improved resolution to four digits is needed to
identify specific allele proteins (e.g., SLA-1∗0801, SLA-1∗0802).
High-resolution and high-throughput methods have also been
developed (37). Next generation sequencing is a widely used
technology for HLA typing (38, 39) and has been used
for SLA typing in a few studies (40, 41). A commercially
available high-throughput method for high-resolution SLA-
typing would improve the ability of researchers and producers to
determine SLA diversity.

EPITOPE CONTENT COMPARISON
(EpiCC)

Using PigMatrix, it is possible to identify potential T cell epitopes
and rank proteins based on their immunogenic potential. In
addition to immunogenicity, vaccines need to induce memory T
cells that will recognize epitopes contained in circulating strains.
In other words, the epitope content of a vaccine should be
similar to that of the circulating strains to elicit broad immune
recognition and protection.

To estimate the relationship between pathogen sequences
based on their putative T cell epitope content and predict cross-
protection potential, we developed the T cell Epitope Content
Comparison tool (EpiCC) which facilitates sequence pairwise
comparison based on epitope content rather than sequence
identity (42). EpiCC assesses the relatedness of T cell epitopes
contained in a protein sequence of one strain and those in
another based on a comparison of the epitope sequences and their
PigMatrix SLA binding score. T cell epitopes can be either shared
(cross-conserved) between sequences, or unique to each strain.
Thus, the EpiCC score for the comparison of two strains is based
on the PigMatrix scores of shared and unique epitopes, which are
defined using JanusMatrix. For a pair of protein sequences, the
EpiCC score is high if the epitope content shared between both
sequences is dense and similar. For comparison of a vaccine and
outbreak strains, vaccine sequences that share more T cell epitope
content with circulating strains have higher EpiCC scores.

EpiCC can be applied to estimate whether a given vaccine
would protect against circulating or newly emerging strains of a
pathogen. It can also potentially be used to assist in the selection
of live or killed organism vaccine candidates by comparing one
or multiple antigens and identifying the vaccine strain sequence
that best represents the T cell epitope content of circulating
strains and that may induce the broadest cross-reactive T cell
response. See for example, the publication by Bandrick, M. et al.,

comparing monovalent and bivalent PCV2 vaccines to field
strains (43). EpiCC also has applications for analysis of large-scale
surveillance data to identify circulating or novel viruses distantly
related to current vaccines for further experimental evaluation to
determine potential risk of vaccine failure.

CASE STUDIES

Vaccine Development Against Swine
Pathogens Using the iVAX Toolkit
Swine Influenza A Virus Vaccine
Influenza A virus (IAV) is considered one of the most important
infectious disease agents affecting North American swine (44).
The majority of currently licensed swine IAV vaccines consist
of whole inactivated viruses administered with adjuvants by
intramuscular injection (45). This platform primarily induces
systemic IgG antibody responses to the surface glycoproteins,
mainly HA (45, 46). However, antibody-mediated immunity does
not typically provide protection against divergent strains of IAV
(46, 47). In contrast, CMI can be broadly cross-reactive to a
variety of IAV subtypes (48, 49). Moreover, CMI contributes to
virus clearance, reduces symptom severity, and virus shedding
(50). A vaccine that can induce CMI and reduce morbidity could
prevent anorexia and weight loss in swine, which cause significant
economic loss to pork producers. Therefore, the identification
of T cell epitopes conserved in diverse strains of IAV represents
the first step toward the development of a potentially broadly
protective vaccine.

Using PigMatrix and Conservatrix, the complete proteomes of
representative IAV strains in a United States swine population
were screened for class I and II T cell epitopes (31). EpiAssembler
was used to construct immunogenic consensus sequences -
peptides of 16–25 amino acid containing SLA-DRB1-restricted
epitopes that were highly conserved in IAV strains, predicted
to bind to multiple alleles, and enriched for immunogenicity.
Using VaxCAD, 28 class I and 20 class II predicted epitope
sequences were concatenated into two multi-epitope genes
(one for SLA class I and one for class II epitopes). Cleavage
promoting spacers or binding inhibiting “breaker” sequences
were introduced where VaxCAD reordering did not eliminate
junctional immunogenicity. Vaccine genes were synthesized and
subcloned into vectors containing signals for proteasome or
secretory pathway targeting.

The immunogenicity of the 48 predicted T cell epitopes was
determined by measuring IFNγ recall responses using PBMCs
from pigs immunized intramuscularly with the prototype DNA
vaccine. Positive responses were observed upon restimulation
with pooled peptides as well as eleven individual peptides. Recall
responses to peptides were not observed in pigs immunized with
a tetravalent inactivated commercial vaccine, despite containing
similar internal antigens. This result suggested that the epitope-
based DNA vaccine promoted more efficient processing and
presentation of its own epitopes as compared to whole-protein-
based vaccines.

In a vaccine challenge study, intradermal immunization with
the epitope-based DNA vaccine followed by an intramuscular
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tetravalent inactivated vaccine boost was effective against H1N1
homosubtypic challenge. Pigs had reduced lung lesions and no
detectable IAV antigen at necropsy. Moreover, IFNγ secreting
cells, recognizing vaccine epitope-specific peptides and pH1N1
challenge virus were highest in PBMCs from pigs vaccinated
using the prime-boost approach (51).

African Swine Fever Vaccine
African swine fever virus (ASFV) is the etiological agent of
African swine fever (ASF), a highly contagious hemorrhagic
disease of swine that affects domestic pigs and wild boars of all
ages and breeds. Several clinical forms of ASF are presented in
swine and include a hyper-acute or acute disease, a sub-acute
disease and a chronic disease with mortality rates ranging from
100 to 3% depending on the virulence of the viral isolate, route of
infection, and the host (52, 53). ASFV transmission to unexposed
domestic pigs occurs by direct contact with an infected animal
or the body fluids and carcasses of infected animals, or by
indirect contact with contaminated materials or through the
consumption of contaminated products (54). Wild pigs and soft
ticks of the genus Ornithodoros are the natural reservoir for the
ASF virus (55).

ASF poses a devastating threat to the global pig industry and
has been spreading at an alarming rate in the past few years,
affecting more than 55 countries in three different continents:
Africa, Asia, and Europe (56). The introduction of ASF into these
countries has dramatically impacted their socio-economics, pig
production and status for international trade (57). Prevention,
control, and eradication measures for ASF are mainly based
on early detection and on the implementation of strict sanitary
measures (58). However, successful control of ASF has proven to
be challenging and the risk of introducing the virus into ASF-free
countries is increasing. A vaccine against ASF is urgently needed
to improve prevention and control strategies and mitigate major
economic losses in endemic and non-endemic areas.

No licensed vaccine currently exists against ASF. The
complexity of the virus and the large number of encoded proteins,
with some involved in the modulation of host immune responses
(59, 60), has made it challenging to identify immunogenic
targets and hindered the development of an efficacious ASF
vaccine. Another challenge is the genetic diversity of the
ASFV and the limited knowledge of antigens involved in
conferring cross-protection. Thus far, little to no cross-protection
has been reported (61–63); however, pigs that survive ASFV
infection generate protection against subsequent infections with
a homologous ASFV (58). Several efforts have been made to
develop an ASF vaccine with a current focus on the induction
of both humoral and cellular immune responses due to their
potential role in conferring ASF protection (64–67).

Using iVAX, we developed a T cell-directed ASF vaccine
composed of swine MHC class I and class II epitopes conserved
across 21 European, Asian and African isolates covering
genotypes I, II, IX, and X. T cell epitopes identified by
JanusMatrix as potentially regulatory (highly cross-conserved
with the swine proteome) were excluded. Multi-epitope
genes encoding class I and class II epitopes separately were
each subcloned into plasmids to produce a DNA vaccine.
The vaccine has undergone immunogenicity testing and is

immunogenic (unpublished collaboration); further development
is currently anticipated in collaboration with a commercial
animal vaccine company.

Applications of EpiCC
Swine Influenza A Virus Vaccine Analysis
For influenza and other viruses, sequence data and antibody
cross-reactivity are commonly used to predict vaccine-
induced protection (45, 46). However, previous efficacy
studies demonstrated that even in the absence of cross-reactive
antibodies, a commercial swine IAV vaccine was capable
of inducing protection or partial protection (reduced lung
lesions, reduced viral titers in lungs and/or nasal swabs) against
heterologous challenge strains (46, 68–72).

To determine the potential role of T cell epitope-driven
CMI in vaccine-induced protection in the absence of cross-
reactive antibodies, an EpiCC analysis was performed to compare
the T cell epitope content of HA sequences from swine IAV
strains representing the major H1 clusters circulating in the
North American swine population and those of H1 viruses in
a commercial vaccine. Using experimental data from previous
vaccine efficacy studies testing one of the H1 viruses in the
commercial vaccine against different challenge viruses (46, 68–
70, 72), a threshold level of T cell epitope relatedness associated
with protection was identified. The published results provided
supportive evidence that T cell epitopes that are conserved
between vaccine sequences and circulating strains contributed to
vaccine efficacy. We have provided a typical EpiCC analysis, using
example influenza vaccines and strains, for illustration purposes,
in Figure 5A.

For the initial influenza study, EpiCC analysis was restricted
to HA sequences from 23 viruses representing diverse clusters
of field strains, assuming limited T cell epitope variation of
other antigens. However, the same approach is currently being
applied to multiple antigens or to complete proteomes of
influenza strains, and to hundreds of variant strains representing
other pathogens such as PCV2. We anticipate that EpiCC may
complement existing methods for vaccine selection in outbreak
situations and could be used by animal vaccine companies for
strain selection during vaccine development.

Swine Rotavirus Vaccine Analysis
We have also applied EpiCC to understand vaccine strain
selection for swine rotavirus. Swine rotavirus serogroups A and
C (RVA and RVC, respectively) are a significant cause of piglet
morbidity and mortality across the world. The outer capsid
of the RV particle is composed of the viral proteins VP7 and
VP4, both of which are targets for neutralizing immunity and
they also determine the G and P genotypes of RV strains
(73). Cross-protection between RVA and RVC is non-existent
while heterotypic immunity across different G and P genotypes
remains limited (74). Given the large genetic diversity of RV
genotypes, vaccination efforts have been limited. There is one
currently available commercial vaccine that only contains three
strains of RVA (75, 76). RV vaccine strains with high T cell
epitope conservation with circulating strains may induce broader
cross-protective immunity. Using EpiCC and PigMatrix, we
investigated the presence of SLA class II putative T cell epitopes
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FIGURE 5 | EpiCC radar plot. Radar plots are used to visualize the relationship between vaccine strains and circulating strains. In the top plot, Panel (A) for illustration
purposes, 16 typical circulating swine influenza A virus strains are presented on the perimeter of the chart. The EpiCC scores of their HA antigens (hemagglutinin) are
indicated by their distance from the center to the perimeter. Vaccine efficacy thresholds for protection (white area), partial protection (light gray area) and no
protection (dark gray area) have been based on experimental data from efficacy studies of swine Influenza A virus vaccines (17). The blue line represents an example
of an ideal vaccine strain that contains T cell epitopes fully matched to all the circulating strains. The green line represents an example of an influenza vaccine strain
HA protein that contains T cell epitopes well matched to the majority of circulating strains. The orange line represents an example of a vaccine strain HA protein that
contains T cell epitopes not well-matched to any of the circulating strains. This example is intended to illustrate how EpiCC provides guidance on vaccine selection
but does not provide data on any specific influenza strains. An example of how EpiCC can be used is provided for a set of swine rotavirus vaccines and circulating
rotavirus strains. Rotaviruses (RVs) are among the most common causes of acute diarrheal disease in humans and swine. Speciation of RVs is based on sequencing
of the viral protein (VP) 6, the middle capsid protein. Rotavirus group A (RVA) is the most prevalent and pathogenic species of RV. The VP7 and VP4 proteins
stimulate neutralizing antibodies and are used as a binary classification system for genotypes (G and P genotypes, respectively). Due to the binary classification
system, we have performed an EpiCC analysis based on comparisons of the VP7 and VP4 components of each strain and their equivalent viral protein-specific
vaccine components VP7 and VP4. In Panel (B), we compare RVA strain VP7 proteins to the VP7 component of the vaccine, and in Panel (B) we compare RVA
strain VP4 proteins to the VP4 component of the vaccine. The viruses are sorted by genotype (by G for Panel (B) and by P for Panel C); the classification is
highlighted by the color of the outermost circle (orange for G3 and green for G4 and so on). Each of the three RVA strains in the ProSystems vaccine is represented
with a different colored line: the blue line represents the A2 RVA strain which contains viral proteins derived from genotypes G9 and P7), the orange line the Gottfried
RVA strain (which contains G4 and P6) and the green line the OSU RVA strain (G5 and P7). In Panel (B), the EpiCC scores of the A2 vaccine strain (G9P7) are highest
against strains that fall into the same genotype (G9) and low for all other genotypes. The EpiCC scores of the Gottfried strain (G4P6) are highest for strains that are in
genotype G4 but low against other strains. This suggests that vaccine strains are more related to homologous field strains than to other strains. Therefore, the T cell
epitope content of circulating swine rotavirus strains is highly genotype specific explaining why it is necessary to use genotype-specific RVA vaccines to protect
against field strains. Panel (D) illustrates the expected finding that swine RVA vaccine strain VP7 has no conservation against circulating strains from rotavirus group
C (RVC) VP7. If T cell epitopes are protective against swine rotavirus, a ‘universal’ RV vaccine would need to include T cell epitopes representing all of the genotypes.

in the VP7 and VP4 of circulating porcine RVA and RVC strains
and assessed the degree of their cross-conservation with the RVA
strains in the ProSystems Rota vaccine (77). This data is shown in
Figures 5B,C.

To perform this analysis, we first used PigMatrix to identify
SLA class II-restricted T cell epitopes in a set of VP7 and VP4

proteins of RVA and RVC strains circulating in the United States
as well as in the RVA strains Gottfried (G4P[6]), OSU (G5P[7])
and A2 G9P[7]) (76) that are used in the ProSystems Rota
vaccine. We then performed an EpiCC analysis to assess the
relationship between the T cell epitopes found in VP7 and VP4
of circulating RVA strains and the T cell epitope content of the
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RVA vaccine. The analysis demonstrated that T cell epitope cross-
conservation between circulating strains and the RVA vaccine is
genotype-specific and is limited to homologous strains as seen in
(Figures 5B,C). In other words, T cell epitopes from the vaccine’s
G9 genotype strain (called A2) are only conserved with field
strains that belong to the G9 genotype, and this was also true
for the G4 (Gottfried) and G5 (OSU) vaccine strains. There was
very limited conservation between the T cell epitopes of the VP7
protein in the RVA vaccine with T cell epitopes found in non-
homologous VP7 proteins in other genotypes of RVA (Panel B).
This was also true when the VP4 protein is considered (Panel
C). Thus, the existing RVA vaccine has genotype-specific T cell
epitope content.

We then performed the same EpiCC analysis to assess the
relationship between the VP7 of circulating RVC strains and
RVA vaccine strains. The results again show that swine RVA
VP7 T cell epitopes are serogroup specific and are not at all
cross-conserved with the VP7 of RVC strains (Figure 5D). This
study demonstrates that T cell epitopes found in circulating
swine and vaccines are serogroup and genotype-specific, and
may explain why vaccines to protect against swine rotavirus have
to be multivalent.

Porcine Circovirus Type 2
Porcine circovirus type 2 (PCV2) is one of the top infectious
agents in the porcine industry. Eight PCV2 genotypes have been
described based on ORF2 phylogenetic analysis (78). Due to its
remarkable evolutionary rate, further genetic variation of PCV2
is expected, limiting the usefulness of single vaccine strains.
Currently, PCV2a, PCV2b, and PCV2d are considered to be
clinically relevant causes of disease in swine populations, and
PCV2d is currently the predominant genotype. However, most
of the commercial vaccines available are based on the PCV2a
genotype (79).

PCV2 vaccines were based on the 2a genotype because this was
the first genotype that was discovered. Currently, eight genotypes
of PCV2 viruses are known to circulate in swine populations, and
further variation in PCV2 is expected. For these reasons, there is
a need to determine how well existing and future vaccines cover
field strains. We therefore used EpiCC to analyze the sequences
of two major structural proteins, the replicase (encoded by
ORF1) and the capsid (encoded by ORF2) from selected vaccines
and compared the epitopes in the vaccines to those found in
field strains. The two commercial vaccines that were analyzed
in this study were based on PCV2a, PCV1-PCV2a chimeric
virus (cPCV2a), an experimental PCV1-PCV2b chimeric virus
(cPCV2b), and an experimental combination of cPCV2a and
cPCV2b provided by the study’s co-authors at Zoetis.

The putative T cell epitope content of these vaccines was
compared to that of 161 field strains representing PCV2
genotypes a-f using EpiCC (43). The analysis, performed using
EpiCC and PigMatrix, demonstrated that the combination
cPCV2a-cPCV2b vaccine had, on average, the highest EpiCC
score against circulating strains. EpiCC scores of this vaccine
were higher than those of the monovalent vaccines not only
for PCV2a and PCV2b, but also PCV2d, which suggested
that developing the combination vaccine would be preferable

to developing a monovalent vaccine against the predominant
circulating strain. EpiCC analysis suggested that the combination
of cPCV2a and cPCV2b would confer the broadest cross-reactive
cell-mediated immunity and protection against field strains (43).

CONCLUSION

Recent developments in computation and genomics usher
in new opportunities to address these unmet needs using
immunoinformatic tools for accelerated design of safe and
effective vaccines starting from sequence data. However, more
research is needed. For example, further development of
PigMatrix is necessary, to enable prediction for the broad range
of SLA alleles that exist in global pig populations. Larger datasets
of SLA-restricted peptides are required to further evaluate
the PigMatrix approach and improve predictions. To generate
quantitative binding data and test PigMatrix, binding assays
for commonly expressed SLA molecules could be developed.
Currently, these assays have been developed for a limited number
of SLA class I and II alleles (24, 80–82). Binding assays provide
valuable information to better define binding preferences and
potentially develop predictions based on SLA specificities rather
than pocket preferences. High-throughput binding assays using
planar peptide microarrays have been applied to produce large
amount of data (83). This technology could generate the data
required to train and test SLA-specific models. One of the most
significant interventions that would promote progress on new
epitope-prediction models for additional SLA would be funding
to carry out these studies.

Improvements to current methods of vaccine development
are needed to protect swine from devastating pathogens and to
stabilize the global food supply. Introduction of PigMatrix into
the iVAX vaccine design platform has enabled demonstration
of a heterologous prime-boost immunization strategy that
protects against IAV and can be applied to other pathogens
(51). Additionally, integrating PigMatrix into iVAX enables the
comparison of related strains of highly variable pathogens to
guide rational selection of candidate vaccine strains to advance to
field trials and implementation. These novel computational tools
are a valuable resource for countering pig-associated zoonotic
disease to lower burden on pig production and human health.

In the context of epidemic outbreaks of infectious diseases,
SLA-restricted epitopes can be identified and vaccines designed
in under 48 h (84). Therefore, this computational “vaccines
on demand” approach can be applied to other swine diseases
of economic importance to accelerate vaccine development
timelines by rapidly generating vaccine designs ready for
production and testing. We note that requests for access to the
tools for academic research can be directed to the University
of Georgia technology transfer office, where two of the authors
(ADG and LM) now have faculty appointments.

As illustrated here, vaccine design using the PigMatrix and
the iVAX toolkit, may offer some advantages over standard
approaches to developing vaccines for pathogens affecting the
pork industry. PigMatrix and iVAX tools can be used to (i)
accelerate vaccine design for new and emerging pathogens;
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(ii) identify highly conserved epitopes from the sequences of
diverse strains that are able to drive cross-protective immune
responses, reducing the need for developing a vaccine for each
new strain of a pathogen; (iii) identify potential regulatory T cell
epitopes; (iv) improve existing vaccines by engineering in more
T cell epitopes or removing regulatory T cell epitopes; and (v) to
predict the efficacy of existing vaccines against newer circulating
strains of pathogens.
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