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Abstract: Beta cells in the pancreatic islets of Langerhans are precise biological sensors for 

glucose and play a central role in balancing the organism between catabolic and anabolic 

needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane 

potential that are tightly coupled with oscillatory changes in intracellular calcium 

concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential 

and calcium changes spread from one beta cell to the other in a wave-like manner. In order 

to assess the properties of the abovementioned responses to physiological and pathological 

stimuli, the main challenge remains how to effectively measure membrane potential and 

calcium changes at the same time with high spatial and temporal resolution, and also in as 
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many cells as possible. To date, the most wide-spread approach has employed the 

electrophysiological patch-clamp method to monitor membrane potential changes. 

Inherently, this technique has many advantages, such as a direct contact with the cell and a 

high temporal resolution. However, it allows one to assess information from a single cell 

only. In some instances, this technique has been used in conjunction with CCD camera-based 

imaging, offering the opportunity to simultaneously monitor membrane potential and 

calcium changes, but not in the same cells and not with a reliable cellular or subcellular 

spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter 

dyes in combination with high temporal and spatial confocal calcium imaging allows for 

simultaneously detecting membrane potential and calcium changes in many cells at a time. 

Since the signals yielded from both types of reporter dyes are inherently noisy, we have 

developed complex methods of data denoising that permit for visualization and pixel-wise 

analysis of signals. Combining the experimental approach of high-resolution imaging with 

the advanced analysis of noisy data enables novel physiological insights and reassessment 

of current concepts in unprecedented detail. 

Keywords: calcium sensors; membrane potential sensors; calcium imaging; membrane 

potential imaging; beta cell; pancreas; denoising; patch-clamp 

 

1. Introduction: Beta Cell as a Sensor 

Beta cells from the pancreatic islets of Langerhans are a crucial functional element in the negative 

feedback loop controlling plasma concentration of energy-rich nutrients, such as glucose, amino acids, 

and fatty acids. These cells serve as biological sensors which detect increases in the concentration of 

fuel molecules, and through a series of events collectively termed “stimulus-secretion coupling” they 

respond by secreting insulin [1–5]. Insulin, as an anabolic hormone, acts on cells within target organs, 

such as the liver, skeletal muscle, and adipose tissue, promoting use, uptake, and storage of energy-rich 

nutrients and effectively completing the feedback loop [6,7]. A substantial lack of insulin effects 

manifests itself clinically as diabetes mellitus and studying and understanding the stimulus-secretion 

coupling in ever-increasing detail is crucial to understanding the pathophysiology of diabetes mellitus  

and to find new treatment modalities [8,9]. Here, we briefly summarize the crucial steps in beta cell  

stimulus-secretion coupling to provide a logical framework for the following chapters on experimental 

and analytical approaches to studying this process. 

The fuel secretagogues glucose, amino acids, and fatty acids enter the beta cell via glucose 

transporters, amino acid transporters, and by diffusion, respectively, and are subsequently metabolized 

in the cytosol and mitochondria. The metabolism of fuels seems to be the necessary condition for  

fuel-induced insulin secretion (FIIS) and yields a number of different intermediates and cofactors that 

mediate the stimulus-secretion coupling process and are collectively termed metabolic coupling factors  

(MCFs) [10–12]. Glucose is the principal fuel secretagogue and induces the so-called glucose stimulated 

insulin secretion (GSIS) also termed glucose induced insulin secretion (GIIS). GIIS consists of two 

principal pathways: a triggering and an amplifying pathway. The first transduces an increase in 
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concentration of glucose to an increase in intracellular calcium ion (Ca2+) concentration ([Ca2+]i), which 

triggers insulin secretion [1,2,5,12]. It involves metabolism of glucose via glycolysis and mitochondrial 

oxidation yielding adenosine triphosphate (ATP), an ATP-induced decrease in open probability of  

ATP-dependent potassium (KATP) channels, the subsequent plasma membrane depolarization, and 

opening of voltage-dependent calcium channels (VDCCs). The influx of Ca2+ then produces an  

increase in intracellular calcium concentration, thereby triggering exocytosis of insulin-containing 

granules [1,2,4,5,13]. The triggering signal can be further modulated by uptake and release of Ca2+ into 

and from a number of intracellular stores and the dynamics of global and local [Ca2+]i changes may  

differ [2,14–16]. ATP is an example of what is called an effectory MCF since its target (the KATP 

channel) is a membrane effector protein [12]. The amplifying pathway on the other hand requires the 

triggering Ca2+ signal but promotes insulin secretion distally of changes in [Ca2+]i [1,2,4,16].  

The effectory MCFs in this pathway are less well established, but ATP, reduced nicotinamide adenine 

dinucleotide phosphate (NADPH), and cyclic adenosine monophosphate (cAMP) are some of the 

candidates [1,12] and their putative modes of action involve increasing the release competence of 

secretory granules and the likelihood of their undergoing exocytosis in response to a given Ca2+  

signal [4,14]. In addition to the effectory MCFs of the triggering and amplifying pathway which act 

distally in the stimulus-secretion coupling process by directly influencing effector proteins, the so called 

regulatory MCFs act upstream in the stimulus-secretion coupling process and influence key intracellular 

metabolic processes. For instance, in GIIS citrate is an important regulatory MCF and influences Krebs 

cycle activity, but also the activity of two additional metabolic cycles that generate MCFs, the pyruvate 

cycle and the glycerolipid/free fatty acid cycle [11,12]. 

The other two classes of fuels also generate MCFs that play a central role in the in vivo setting where 

mixed meals, rather than glucose alone, are sensed by the beta cell. Fatty acids are not sufficient to 

provide the triggering stimulus and this is especially important in the fasted state when fatty acids are 

metabolized via beta oxidation and intracellular lipid MCFs do not accumulate [10,11]. Postprandially, 

glucose inhibits beta oxidation (via malonyl-coenzyme A), provides glycerol triphosphate for 

esterification, and activates lipolysis, which together with free fatty acids provide MCFs for insulin 

secretion [10,11]. Amino acids are able to induce insulin secretion, especially in certain combinations, 

and they also importantly augment GIIS. Alanine and arginine are able to depolarize the beta cell upon 

entry and likely contribute to the triggering pathway. The metabolism of alanine and other amino acids 

also yields MCFs that support GIIS [11]. Finally, the metabolic pathways of glucose, FFAs, and AAs 

are strongly interconnected and details on MCFs, the metabolic cycles, as well as their interplay are 

covered in detail in exhaustive reviews [10–12,17–22]. 

To complicate things further, fuel secretagogues may influence intracellular signaling pathways via 

membrane receptors. Glucose can stimulate metabolism in the beta cell via the sweet taste receptor  

T1R3 [23], and fructose can promote insulin secretion via the T1R2 receptor [24], reviving the  

decade-old idea that the effects of glucose upon the beta cell are mediated via membrane receptors [25] 

and defining the so called sweet taste receptor pathway in beta cell stimulus-secretion coupling [26]. 

Moreover, the FFA receptor GPR40/FFAR1 is probably responsible for approximately half of the  

FFA-induced insulin secretion [27–30] and the heterodimeric amino acid taste receptor Tas1R1/Tas1R3 

may be responsible for a part of glutamate- and arginine-induced insulin secretion [31]. 
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Beta cells receive paracrine input from other islet cell types [32–35] and islets are richly perfused and 

innervated [36–42], therefore in vivo GIIS is modulated by hormones, such as somatostatin, glucagon, 

glucose-dependent insulinotropic peptide (GIP) and glucagon-like-peptide-1 (GLP-1), as well as by 

neurotransmitters, such as acetylcholine, noradrenaline, glutamate, and gamma-amino butyric acid 

(GABA). Somatostatin inhibits cAMP production via Gi/o protein-coupled SSTR2 and SSTR5 

somatostatin receptors [43], whereas glucagon, GIP, and GLP-1 raise the concentration of intracellular 

cAMP via membrane Gs protein-coupled receptors [44,45]. Acetylcholine increases [Ca2+]i through the 

muscarinic M3 and M5 receptors [46,47], noradrenaline predominantly inhibits insulin secretion by 

inhibiting cAMP production via Gi/o protein-coupled α-2 adrenergic receptors [45,48], glutamate 

possibly limits the duration of MP and [Ca2+]i oscillations via the NMDA receptor [49,50], and GABA 

may stimulate insulin secretion by membrane depolarization via the ionotropic GABAA receptor which 

functions as a chloride channel [51,52] or inhibit insulin secretion via the metabotropic GABAB receptor 

which is coupled with the Gi/o protein [52,53]. Together, these influences constitute the so-called 

neurohormonal pathway [15,26]. 

Finally, in addition to fuel and endogenous neurohormonal secretagogues, pharmacological 

substances can be employed to influence beta cell stimulus-secretion coupling. So far, the only two 

approved classes of small molecules that directly target the beta cell are sulphonylureas and glinides, 

which induce insulin secretion via inhibition of the KATP channel independently of glucose, producing 

the triggering signal [45,54,55]. Additionally, sulphonylureas also influence the amplification  

pathway [54,56–58]. Due to their glucose-independence, both sulphonylureas and glinides are associated 

with the risk of hypoglycemia [59]. 

So far, our discussion has assumed a paradigmatic or average beta cell including all of the 

abovementioned pathways. In an islet of Langerhans, approximately a thousand heterogeneous beta cells 

are coupled through gap junctions, which reduces the heterogeneity and improves their functional 

responses [60–69], but the coupled cells retain some heterogeneity which allows for at least partly 

selective and gradual regulation of their function. Consequently, there is no such thing as an average  

beta cell and a complete picture of the physiological function of islets can only be understood by 

assessing the information flow throughout interconnected beta cells that leads to coordinated activity of 

cell populations and regulated hormone release [60,65,68,70–73]. With the advance in experimental 

techniques and computational abilities, studies that regard ensembles of beta cells as networks of 

interconnected dynamical elements are therefore gaining prominence [70,72–77]. Moreover, recently 

we and others studied populations of beta cells by means of graph-theoretical approaches and, thereby, 

succeeded in showing that the beta cells form a complex network [78]. The extracted non-trivial 

topological features importantly determine the heterogeneity of individual cells [79,80], and can be 

modulated by physiological [48,81] and pathophysiological influences [82–84]. 

In order to reliably dissect the differential effects of various secretagogues upon different crucial 

functional parameters in a given beta cell, such as MCFs, MP, [Ca2+]i, and exocytosis, we need methods 

that enable simultaneous measurements of all the given parameters or at least two of the parameters at a 

time. Since the dynamics of these parameters may be fast, the method should have a sufficient temporal 

resolution. Moreover, if we want to assess whether each of the above pathways is equally important in 

every beta cell in an islet of Langerhans, we need to study many beta cells at a time. In the following 

chapters, we will briefly present the tissue slice method and its combination with the classical 
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electrophysiological patch-clamp technique [85] and CCD-camera-based imaging [86], as well as the 

modern confocal imaging modalities [86,87] to detect changes in MP and [Ca2+]i. 

Recently, methods have become available to measure the most distal event in beta cell stimulus-secretion 

coupling, i.e., exocytosis in many beta cells at a time [88–95]. Analogously, methods exist that enable 

detection of some of the crucial MCFs, e.g., ATP, cAMP, and NADPH, involved in more proximal 

metabolic steps in stimulus-secretion coupling [96–98]. However, they have not yet been combined with 

each other or with methods to detect MP or [Ca2+]i with sufficient temporal and spatial resolution in 

tissue slices and, thus, remain beyond the scope of this article. Successfully studying proximal, 

intermediate, and more distal steps in the transduction pathway simultaneously in a large number of cells 

will shed light on the importance of various events in the stimulus secretion coupling during different phases 

of insulin secretion, in different cells, and for different physiological and pharmacological secretagogues. 

Due to possible differences in rodent and human beta cell structure and function [38,99–106], findings 

obtained in mice will have to be validated on human tissue slices [107,108]. 

2. Part I: Assessing Beta Cell Function Using MP and [Ca2+]i Sensors 

2.1. Measuring MP with a Patch-Clamp Pipette and [Ca2+]i with Fluorescent Dyes Using a  

CCD Camera 

In principle, the patch-clamp method electrically isolates a patch of plasmalemma from the external 

solution [109,110]. This isolation is done by making a tight contact (seal) between a fire-polished glass 

pipette filled with an intracellular-like electrolyte solution and the surface of the cell. Applying light 

suction helps to form a tight seal with an electrical resistance as high as 10 GΩ. This seal allows to 

record current or MP over the patch of membrane while holding MP or current, respectively, at a desired 

clamped value. Rupturing the patch of membrane isolated by the patch pipette yields the so called  

whole-cell patch-clamp configuration which connects the cytosol and the pipette interior, thereby 

allowing clamping of the whole plasmalemma instead of just a small part of it. This approach, which 

can be applied also to cells within tissue slices, has been effective in measuring MP dynamics in beta 

cells in mice [68,111] and rats [112], as well as in pituitary cells in mice [113]. It was effectively used 

to study MP dynamics in spite of inherent equilibration of the cytosol compartment with the pipette 

content and subsequent wash-out of the cytosol. We have been able to upgrade the classical 

electrophysiological setup with [Ca2+]i imaging using a water-cooled CCD camera and have applied this 

method on acute mouse pancreas tissue slices (Figure 1). The pancreas tissue slice technique was first 

introduced by Speier and Rupnik in 2003 [85] as an alternative to most widely-used approaches of 

isolating islets or single cells [107]. Agarose is injected into the ductal tree and serves as a scaffold 

allowing to cut pancreas into thin slices. Perhaps the most important functional advantage of this 

approach is that dyes are not limited mostly to the islet periphery as is the case in isolated islets  

(e.g., [114]); rather all layers of islets are accessible [87]. This is important since in mice beta cells are 

located mainly in the islet core [102,103,115–117] and therefore relatively inaccessible in isolated islets. 

Moreover, no enzymes are added and enzymes from the exocrine tissue are inhibited during slicing and 

mechanical disruption of cells is limited to the outermost layer. In deeper layers, starting from two to 

three cells below the surface, cells are viable and intact [87]. There are also disadvantages of the tissue 
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slice approach. The islet innervation is discontinued and the perfusion via blood vessels is disrupted and 

replaced by perifusion which supplies the tissue differently from the in vivo situation. To assess the 

influence of nerves and vessels, an approach closer to the in vivo situation is required, such as 

transplanting islets into the eye [40,118–120]. However, the in vivo recording inherently lacks the ability 

of precisely controlling stimulatory conditions. Taken together, at present the tissue slice technique is 

probably the best compromise or middle ground approach allowing researchers to reliably record [Ca2+]i 

from many beta cells simultaneously. 

 

Figure 1. Experimental methods used to simultaneously measure MP and [Ca2+]i. (A) A 

schematic representation of the whole-cell patch-clamp measurement of MP combined with 

recording [Ca2+]i in the neighboring cells employing a CCD camera. MP from a single cell 

is monitored via a patch pipette (depicted with green lines), whereas the neighboring cells 

were loaded with Oregon Green BAPTA-1 AM to monitor changes in [Ca2+]i; and (B) a 

schematic representation of confocal MP measurement using the voltage sensitive dye 

Voltage Fluor 2.1 (VF) combined with [Ca2+]i recordings using Rhod-2 AM. 

Generally, two types of calcium indicators are used to monitor [Ca2+]i, namely genetically-encoded 

calcium indicators and chemical indicators. Examples of the former are fluorescent proteins derived 

from GFP or its variants that allow for single wavelength excitation [121], chameleon proteins utilizing 
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FRET-based emission shift upon calcium binding [122]; and auto-luminescent BRET-based luciferase 

constructs [123]. The chemical indicators, on the other hand, are chemical fluorescent probes which 

must be loaded into cells in order to report [Ca2+]i on site. The most frequently used fluorescent probes 

are based on BAPTA, the EGTA homologue, which chelates calcium ions and has a high selectivity for 

calcium. Fluorescent probes are nowadays most widely used in the form of acetoxymethyl (AM) esters. 

These probes have a masked carboxyl group that chelates calcium ions and can be loaded into cells due 

to their lipophilic nature. In general, the lipophilicity of different ester probes differs, therefore, in some 

cases, assistance of amphiphilic polymers (e.g., Pluronic®) is required to increase the efficacy of dye 

loading into cells [124]. When the fluorescent probes are loaded, the intracellular esterases cleave the 

carboxyl groups form the probes, thereby unmasking the functional part of the dye and therefore 

rendering the indicator molecule capable to report [Ca2+]i changes. Figure 1A depicts the setup when 

[Ca2+]i imaging is combined with the electrophysiological approach in pancreas tissue slices. MP is 

monitored via a patch-pipette, whereas an AM-based fluorescent probe (in this case Oregon Green 488 

BAPTA-1 AM calcium dye (OGB-1, Invitrogen, Eugene, OR, USA)) is loaded into neighboring cells 

and monitored with a CCD camera [86,87]. This method has many advantages but also some drawbacks. 

The whole-cell patch-clamp technique has a very high temporal resolution (>1 kHz) and is able to record 

changes in membrane potential in a range of a few millivolts. On the other hand, only a single cell within 

an islet can be monitored at a time. [Ca2+]i imaging using a CCD camera has, compared to the confocal 

imaging, a lower spatial resolution. Furthermore, also the temporal resolution is smaller due to 

unresponsiveness of cells when they are exposed to the fluorescent light for a longer period of time or 

at higher sampling frequencies [63,87,125–130], and the recording times are more limited due to 

photobleaching triggered by longer exposure times. Finally, a CCD camera-based recording does not 

allow one to reliably resolve the origin of the signal to a single cell within an islet due to thicker  

optical sections [86]. 

Figure 2 depicts a typical result that can be obtained using a combination of electrophysiology  

and CCD camera recording in a mouse pancreas tissue slice. When beta cells are exposed to a  

non-stimulatory concentration of glucose (6 mM), the MP of the patched cell is polarized and the [Ca2+]i 

in surrounding beta cells within the islet is low. After applying a stimulatory glucose concentration  

(12 mM glucose), beta cells respond in a characteristic pattern that allows for their functional  

discrimination [131–133]. The transient first phase of the response is composed of a depolarization 

superimposed by frequent individual bursts which can blend into continuous bursting (Figure 2B, trace 

labelled “patch”). Subsequent to the first phase, a stable second phase consists of intermittent bursts of 

activity. The neighboring cells respond with a transient increase in [Ca2+]i followed by [Ca2+]i 

oscillations superimposed on a sustained plateau (Figure 2B, traces 1–5). Figure 2C shows magnification 

of the same record revealing that using this approach, the pattern of [Ca2+]i in the neighboring cells seems 

to exactly follow that of the MP [86,87]. MP and [Ca2+]i oscillations during the stable second phase have 

the same frequency and similar shape and are in phase with oscillations in [Ca2+]i in mice [127,128].  

A careful analysis of Figure 2C reveals that each MP oscillation during the stable second phase is 

followed by an oscillation in [Ca2+]i. This delay is well-explained by the fact that MP and [Ca2+]i 

oscillations spread over the islet in a wave-like manner in mice [86,87]. The wave-like nature results in 

temporal shifts between [Ca2+]i oscillations recorded in distant cells (indicated with numbers 1–5 in 

Figure 2A), with respect to the MP signal in the patched cell (indicated with + in Figure 2A). 
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Unfortunately, this approach lacks the ability to measure MP and [Ca2+]i from the same cell, and even 

more, in many cells simultaneously. 

 

 

Figure 2. Simultaneous measurement of changes in MP using whole-cell patch-clamp and 

[Ca2+]i using Oregon Green BAPTA-1 AM. (A) The [Ca2+]i sensitive dye OGB-1 labels 

intracellular compartments of cells. The numbers indicate cells shown in panels B and C. 

The patched cell is indicated with +; (B) the green trace represents oscillations in MP after 

increasing the concentration of glucose from 6 to 12 mM. The upper five red traces (1–5) 

represent [Ca2+]i dynamics obtained from the five cells indicated in A. The red rectangle 

encloses the area shown in panel C under magnification; and (C) a more detailed depiction 

of the response from panel B. Note that each burst in MP (green) is followed by a [Ca2+]i 

(red) oscillation in other cells. 

2.2. Measuring MP with Novel Voltage-Sensitive Dyes and [Ca2+]i with Fluorescent Dyes Using 

Confocal Microscope 

Fluorescence imaging surpasses the limits of the conventional electrophysiological approach and 

provides a useful tool to map the activity of many cells simultaneously. Due to its advantageously-high 
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sensitivity, [Ca2+]i imaging is used most commonly [134] and was successfully employed to indicate the 

degree of synchronicity between beta cells in mouse [73,127,135–137] and human islets [83,103,138–142]. 

Recently, data on [Ca2+]i dynamics in mice provided valuable novel insight into the physiology of  

beta cells [78–81,87]. However, since beta cell stimulus-secretion coupling is complex in the sense that 

it involves many additional steps upstream and downstream from changes in [Ca2+]i, deducing the whole 

signaling from the input in the form of glucose and other nutrients to the output in the form of insulin 

secretion by analyzing changes in [Ca2+]i only is not possible. Conceivably, the most important processes 

upstream of the Ca2+ signal involve metabolic pathways generating MCFs and the change in MP which 

activates VDCCs. In our quest to simultaneously study different parameters, as a first step, we have 

chosen the combination of MP and [Ca2+]i due to its being practically feasible and due to the fact that 

simultaneous recording of MP and [Ca2+]i changes could help further our understanding of the 

differential effects of various secretagogues that increase [Ca2+]i via membrane depolarization and/or 

via stimulating release from intracellular stores. As mentioned in introduction, recording changes in MP 

and [Ca2+]i together with the most proximal metabolic and distal exocytotic events in tissue slices 

remains a challenge for the foreseeable future. 

Generally, two approaches are used to optically monitor MP in biological membranes. On the one 

hand, electrochromic dyes modulate the amplitude of the emitted fluorescence due to a shift in their 

emission spectra provoked by changes in the electric field across the plasma membrane. The main 

advantage of these dyes are fast response times, but they have a relatively low sensitivity of 10%–28% 

ΔF/F per 100 mV [143,144]. In the context of beta cell research, this approach was successfully used  

on cultured cell lines [145–148]. On the other hand, the fluorescence resonance energy transfer  

(FRET)-based voltage sensors utilize two components, a lipophilic anion embedded in the membrane 

and a fluorophore located on one side of the plasma membrane. A change in the transmembrane potential 

translocates mobile anions between the inner and the outer membrane leaflet. Depending on the MP, 

translocation of the anions to the side of the membrane on which the immobile fluorophore resides allows 

for a FRET-based change in fluorescence. Although these FRET-based voltage sensors exhibit a much 

better sensitivity of up to 80% ΔF/F per 100 mV [149], the translocation of the anion through the lipid 

bilayer hinders the time resolution of these dyes. Acknowledging the temporal resolution limits, this 

approach was successfully applied on mouse isolated islets displaying slow [Ca2+]i dynamics [150].  

An alternative approach that bypasses conventional loading techniques represent the genetically encoded 

voltage indicators. These are attractive for experimental use since they can be specifically delivered to 

target tissue and surpass diffusion during conventional loading; however they are limited in their use 

since they share low sensibility, low brightness, or slow kinetics [151–154]. Recently, a voltage-sensitive 

fluorescent protein (VSFP) has been constructed that expresses a shift in its activation curve towards 

sub-threshold potential changes allowing to reliably optically record local field potentials in situ and 

sensory evoked potentials in vivo in mice [155]. 

Concurrently, a novel family of voltage sensitive dyes was introduced that combines advantages of 

both electrochromic and FRET-based voltage sensitive dyes. The dye was termed VoltageFluor (VF) 

and it utilizes a photo-induced electron transfer (PeT) [134,151,156]. Briefly, the fluorophore part of VF 

localizes to the plasma membrane and its synthetic molecular part protrudes into the lipophilic membrane 

core and is also called the molecular wire. At the hyperpolarized resting potential, the local electric field 

promotes electron transfer from the electron donor on the molecular wire to the fluorophore, in turn 
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quenching the fluorescence of the fluorophore. Upon membrane depolarization during activation of a 

cell, PeT becomes less favorable and, thus, the fluorescence increases due to unquenching. The 

sensitivity of this system allows for a linear change in fluorescence, with a large sensitivity that can 

reach up to 48% ΔF/F per 100 mV [151], which is approximately a two-fold improvement over the best 

dyes of the earlier generations [143]. 

 

Figure 3. Simultaneously measuring changes in membrane potential using VF and changes 

in [Ca2+]i dynamics using Rhod-2. (A) The voltage-sensitive dye VF preferentially labels 

membranes (upper left), which enables to discriminate single cells (lower left). The [Ca2+]i 

sensitive dye Rhod-2 labels intracellular compartments (upper right). The VF-obtained 

outlines of cells were used to discriminate Rhod-2 signal of single cells. Numbers are used 

to indicate cells whose temporal traces are shown in C; (B) representation of the 

experimental setup: two laser lines and two state-of-the-art detectors were used to 

discriminate signals emitted from VF and signals emitted from Rhod-2; (C) [Ca2+]i dynamics 

(red) obtained from 9 cells of a single islet were correlated to simultaneously obtained MP 

dynamics (green) from the same cells during stimulation with 12 mM glucose and 10 mM 

tetraethylammonium (TEA). Traces are numbered according to labels in A; and (D) a 

detailed presentation of the response of a cell depicted in C. Note that both signals are noisy 

and that the [Ca2+]i oscillation (red) has different dynamics than the MP oscillation (green). 

Profiting from both the superior sensitivity of VF and from the benefits provided by the tissue slice 

method [85], we were able to scrutinize changes in MP in the mouse islet of Langerhans with 

unprecedented temporal and spatial resolution (Figure 1B) [86,150]. Moreover, spectral properties of 

the VF dye enable double-loading of cells with MP and [Ca2+]i reporter dyes simultaneously, as depicted 

in Figure 1B. In this case, VF is restricted to cell membranes, whereas the [Ca2+]i reporter dye Rhod-2 

is localized in the cell interior. Figure 3B briefly summarizes our experimental setup. A considerable 

spectral difference between the two dyes, together with the abovementioned spatial separation between 
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the two dyes allowed for a reliable signal discrimination [86]. Recently, a novel PeT-based dye named 

Berkeley Red Sensor of Transmembrane Potential (BeRST) has been introduced [157]. Compared to the 

VF, the probe has right-shifted spectral properties and a greatly increased photostability. Due to its 

spectral properties, BeRST can be used together with green [Ca2+]i reporter dyes (e.g., Fluo-4, OGB-1), 

thus presenting an alternative to the combination of the green MP dyes (e.g., VF) and the red [Ca2+]i 

reporter dyes (e.g., Rhod-2). In contrast with the CCD camera-based recording, confocal microscopy 

allows for subcellular discrimination of changes in MP and [Ca2+]i in many cells within an islet of 

Langerhans. Cellular activity is seen as oscillatory deflections from baseline for both the MP signal 

(green, Figure 3C) and the [Ca2+]i signal (red, Figure 3C). A detailed analysis revealed that the shape of 

the MP oscillations differs considerably from that of the [Ca2+]i oscillations. Furthermore, in every cell, 

the increase in MP typically precedes the increase in [Ca2+]i by >100 ms [86]. Finally, a multilayer 

network representation and analysis of the MP and [Ca2+]i signal propagation assessed in mice by means 

of our double stain paradigm showed that the largest delays between the MP and the [Ca2+]i signal are 

present in the most connected cells in the tissue [80]. This observation can be a consequence of  

various reasons that are principally related with the well-known heterogeneity of beta cells [60,65]. 

Presuming that the largest cells with the highest number of gap-junctions on their cell surfaces are the 

most interconnected cells in the functional network, the finding could be a consequence of differences 

in the abundance of cytosolic calcium buffering proteins. More specifically, a higher number of cytosolic 

buffers in larger cells would evoke a slower rise in [Ca2+]i. Alternatively, the slower rise could be a 

consequence of more active pumping into the ER and out of the cells, which has recently been suggested 

by the higher energy consumption found in the most connected cells [80]. These properties remained 

undiscovered in previous studies on cell lines [148] and isolated islets [150]. 

3. Part II: Analytical Methods Used to Analyze Noisy Signals of MP and [Ca2+]i 

When capturing fluorescent time series with a low signal-to-noise ratio (SNR), image denoising is 

arguably the most important step in pre-processing of data for further analysis. Over the last decade, 

several methods have been developed to solve the problem for removing noise while preserving the 

structures and edges of elements in the images [158–160]. Current edge-preservation image denoising 

methods do not perform well on fluorescence time series when analyzing signal oscillations and 

therefore we have recently developed a new denoising method [161]. State of the art denoising  

methods, like Non-Local Means (NLM), Block Matching 3D (BM3D), and Locally Adaptive Regression 

Kernels (LARK), perform noise removal on a single image and do not use temporal information [159]. 

Additionally, wavelet-based methods can be successfully applied for image denoising [162,163] and 

have also turned out to be very effective for confocal microscopy [164,165]. However, all parameters in 

these methods are focused on removal of spatial noise only. By denoising of time series, on the other 

hand, a lot of information is stored in the temporal domain and this information can be efficiently used 

for noise removal also in the spatial domain. Therefore, a different set and type of parameters must be 

available for the fine-tuning of the denoising process in both spatial and temporal domains [166,167]. 

However, known denoising methods cannot amplify the signal or overlay the signal with a different color. 

When dealing with noisy time series data in which we are trying to analyze signal oscillations of MP 

and [Ca2+]i, an efficient algorithm is needed which is able to effectively separate noise from the signal. 
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It is important to pre-process data in order to analyze signal characteristics (such as duration and 

amplitude of an oscillation or time constants for oscillatory upstroke and relaxation), which depend on 

the frequency of data sampling, spatial resolution, and bleaching of the fluorescent signal. This 

information is crucial for efficient extraction of signal information. In ideal circumstances, such  

pre-processing is automated, thereby increasing both efficacy and speed of analysis. However, in 

practical terms, nowadays the abovementioned parameters are still defined by the user or obtained by 

fitting in most cases [168,169]. 

Visualization of signal oscillations of time series data in the spatial domain presents an additional and 

effective tool for a researcher. To perform such a visualization on noisy time frame videos, advanced 

denoising is a prerequisite for several reasons. First, oscillations in noisy data can be discriminated only 

by trained and experienced experts, inherently introducing user bias and unnecessary variability. 

Moreover, visualization of noisy data does not allow to precisely detect and quantify space-time events. 

We have solved these issues by our new method, which facilitates the visualization of oscillations by 

coloring and amplifying the signal to discriminate it from the noisy background. 

Our method for the improved analysis and monitoring of [Ca2+]i and MP oscillations in time-series 

data (i.e., a video) consists of three steps, as schematically presented in Figure 4. First, detection of 

changes in fluorescence signal is achieved by decomposing individual images in the time-series 

(inputImg) into a series of high-frequency differences (hFreqDiff) and a low-frequency mean image 

(meanImg). This is achieved by smoothing within the temporal domain in order to obtain a representative 

image of cell structures and, as a consequence, identify potential candidates for noise or signal. 

Smoothing the images through the time domain into meanImg should, therefore, allow for an efficient 

estimation of the structural part, whilst the textural part (i.e., inputImg-meanImg) should contain most 

of the [Ca2+]i and MP signal, as well as noise. This is possible since no changes are expected in the 

positions of the cells over a short period of time. A noise removal filter is then applied on each hFreqDiff, 

such that the meaningful signal containing information about oscillations is preserved. In the filter, alpha 

trimming and Gaussian smoothing are used through the temporal and spatial resolution of hFreqDiff and 

the filtered series without noise is calculated (hFreqDiffFiltered). Since hFreqDiff contains no information 

about cell structures and edges, all this information is preserved in the final result. Finally, output images are 

constructed by adding hFreqDiffFiltered to meanImg. This produces a reconstructed image (outputImg) with 

cell structure and edges stemming from meanImg and the overlaid filtered signal from hFreqDiffFiltered. In 

the final step, the signal can be amplified by multiplying hFreqDiffFiltered with a selected factor and overlay 

hFreqDiffFiltered images with different colors to visualize the spatio-temporal dynamics of beta cells more 

clearly. A more detailed description of this method can be found elsewhere [161]. 

Figure 5 exhibits a typical high frequency confocal [Ca2+]i imaging. The sampling rate during this 

recording was set at 50 Hz at spatial resolution of 256 × 64 pixels. First, such a high temporal resolution 

inherently yields noisy data. For example, a single frame (inputImg, Figure 5A) does not provide reliable 

spatial information about cells. Cell outlines and subcellular structures emerge only after smoothing of 

images within the temporal domain (meanImg, Figure 5B). Second, in the time domain, raw information 

extracted from individual pixels appears noisy (Figure 5C), rendering determination of signal properties 

(e.g., start of upstroke, peak, relaxation) unreliable. Applying the denoising protocol described above 

significantly improves the signal-to-noise ratio allowing to reliably extract temporal profiles. Since a 

beta cell is typically covered by approximately 300–400 pixels, the described approach allows to  
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extract information from subcellular structures and to compare [Ca2+]i responses from several different 

cellular compartments. 

 

Figure 4. Flowchart representing the algorithm used to pre-process data obtained from  

confocal imaging of [Ca2+]i and MP in pancreas tissue slices. See text for detailed description 

of the algorithm. 

Due to the lower sensitivity of the MP probes compared with [Ca2+]i indicators and to the smaller 

excitable area (thin membrane), high frequency confocal imaging of MP yields data that are even more 

noisy. Figure 6 depicts a typical result from confocal imaging of MP in beta cells during stimulation 

with 10 mM glucose. The plasmalemma is hardly distinguishable on individual frames, but becomes 

clearly visible when images are averaged within the temporal domain (Figure 6A,B, respectively).  

The MP signal from area covering few cells or a small part of plasmalemma (square, Figure 6A,B) is 

exceedingly noisy in the time domain (Figure 6E,G). Upon denoising, three oscillatory deflections 

clearly emerge (Figure 6F,H). Comparing this result with the one we obtained with the patch clamp 

technique (Figure 2), one can notice that bursts lack the superimposed spikes, most probably due to the 

sampling frequency used during the optical sampling of the MP. Importantly, this denoising protocol 

allows us to visualize the MP deflections in the spatial domain (Figure 6C,D). Such a visualization is 

very helpful in analyzing the spreading of the depolarization over many beta cells [86]. 
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Figure 5. Extraction of spatial and temporal information from [Ca2+]i time series using our 

analytical approach. (A) A single image from a [Ca2+]i time series. Cells were loaded with  

OGB-1 AM. The resolution was 256 × 64 pixels @ 50 Hz; (B) the average image reveals outlines 

of cells with cell nuclei stained more intensely than the cytoplasm. The image was averaged over 

18,000 frames; (C) [Ca2+]i signal obtained from 3 × 3 pixels indicated with rectangles in panels 

A and B;  and (D) the same signal after denoising. Noise was removed using a Gauss convolution 

kernel 3 × 3 and a standard deviation of 1 for the spatial domain and moving average filter with 

a window of length 7 with low cut 1 and high cut 1. The signal has not been amplified. 

 

Figure 6. Cont. 
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Figure 6. Extraction of spatial and temporal information from MP time series using our 

analytical approach. (A) Single image from a MP time series. Cell membranes were loaded 

with the membrane potential probe VF. The resolution was 256 × 128 pixels @ 4 fps;  

(B) the average image emphasizes cell outlines. The image was averaged over 720 frames; 

(C) visualization of MP change before onset of MP deflection. hFreqDiffFiltered is shown 

in green and meanImg in gray; (D) visualization of MP change (green) during MP deflection. 

Colors as on panel C; (E) the MP signal from the larger area enclosed by the rectangle in 

panels A and B before denoising; (F) the MP signal from the respective ROI after denoising; 

(G) the MP signal from the smaller area enclosed by the rectangle in panels A and B before 

denoising; and (H) the MP signal from the respective ROI after denoising. The noise was 

removed using a Gauss convolution kernel 3 × 3 and a standard deviation of 1 for the spatial 

domain and moving average filter with a window of length two. The signal has been 

amplified by a factor of four. 
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4. Conclusions 

Since its advent, confocal imaging has helped us a lot in elucidating the normal and pathological 

responses to various stimuli in beta cells as well as in other cells in the islets of Langerhans and many  

other cell types. Two issues have longed remained unaddressed due to our inability to record 

simultaneously from many cells at a time and due to our inability to simultaneously capture signals at 

different steps along the stimulus-secretion response: first, what are the in situ properties of the beta cell 

response at a population level and second, what is the exact relationship between the various signals 

along the stimulus-secretion response. Recent advances in indicator and detector sensitivity, together 

with the tissue slice method and the analytical tools to filter and denoise experimentally obtained data 

and to understand them within the realm of complex network theory have enabled us to start  

addressing these issues. To be precise, the proposed methodology facilitates the exact extraction  

of the interaction patterns among beta cells thereby providing a firm description of the functional 

organization within the islets of Langerhans. Most importantly, by this means not only the physiology 

of beta cells can be assessed at a higher organizational level, but also fertile ground is provided for 

drawing a line between normal and pathological function and predict or detect the development of 

diabetes mellitus. Namely, recent studies put forward the idea of impaired cell-to-cell pathways in both  

type-1 and type-2 diabetes [71,83,170–172], and even suggest that modulations of gap-junctional 

communication might lead to the development of novel diabetes therapies [71,84]. To make a step 

further in our understanding of beta cell physiology, in the future the above approaches need to be 

applied and validated on human tissue. Moreover, some new approaches need to be developed, for 

instance approaches to track the exocytotic process simultaneously with the more upstream changes in 

MCFs, MP and [Ca2+]i. 

Acknowledgments 

The authors acknowledge the support from the Slovenian Research Agency (Programs I0-0029 and 

P3-0396). This work was produced within the framework of the operation entitled Centre of Open 

Innovation and Research UM. The operation is co-funded by the European Regional Development  

Fund and conducted within the framework of the Operational Programme for Strengthening Regional 

Development Potentials for the period 2007–2013, Development priority 1: Competitiveness of 

companies and research excellence, Priority axis 1.1: Encouraging competitive potential of enterprises 

and research excellence. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Henquin, J. Regulation of insulin secretion: A matter of phase control and amplitude modulation. 

Diabetologia 2009, 52, 739–751. 

2. Henquin, J.-C. The dual control of insulin secretion by glucose involves triggering and amplifying 

pathways in β-cells. Diabetes Res. Clin. Pract. 2011, 93 (Suppl. 1), S27–S31. 



Sensors 2015, 15 27409 

 

 

3. Huypens, P.R.; Huang, M.; Joseph, J.W. Overcoming the spatial barriers of the stimulus secretion 

cascade in pancreatic beta-cells. Islets 2012, 4, 1–9. 

4. Henquin, J.C.; Nenquin, M.; Ravier, M.A.; Szollosi, A. Shortcomings of current models of 

glucose-induced insulin secretion. Diabetes Obes. Metab. 2009, 11, 168–179. 

5. Rorsman, P.; Braun, M. Regulation of insulin secretion in human pancreatic islets. Ann. Rev. 

Physiol. 2013, 75, 155–179. 

6. Kahn, S.E.; Cooper, M.E.; del Prato, S. Pathophysiology and treatment of type 2 diabetes: 

Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. 

7. Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and 

type 2 diabetes. Nature 2006, 444, 840–846. 

8. Halban, P. 50 years forward: Beta cells. Diabetologia 2015, 58, 1688–1692. 

9. Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.;  

Powers, A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. Β-cell failure in type 2 diabetes: Postulated 

mechanisms and prospects for prevention and treatment. Diabetes Care 2014, 37, 1751–1758. 

10. Keane, K.; Newsholme, P. Metabolic regulation of insulin secretion. Vitam. Horm. 2014, 95,  

1–33. 

11. Nolan, C.J.; Prentki, M. The islet β-cell: Fuel responsive and vulnerable. Trends Endocrinol. Metab. 

2008, 19, 285–291. 

12. Prentki, M.; Matschinsky, F.M.; Madiraju, S.R.M. Metabolic signaling in fuel-induced insulin 

secretion. Cell Metab. 2013, 18, 162–185. 

13. Islam, M.S. Calcium signaling in the islets. In The Islets of Langerhans. Advances in Experimental 

Medicine and Biology; Islam, M.S., Ed.; Springer Netherlands: Heidelberg, Germany, 2010; 

Volume 654, pp. 235–259. 

14. Gilon, P.; Chae, H.-Y.; Rutter, G.A.; Ravier, M.A. Calcium signaling in pancreatic β-cells in health 

and in type 2 diabetes. Cell Calcium 2014, 56, 340–361. 

15. Rutter, G.A.; Pullen, T.J.; Hodson, D.J.; Martinez-Sanchez, A. Pancreatic beta-cell identity, 

glucose sensing and the control of insulin secretion. Biochem. J. 2015, 466, 203–218. 

16. Rorsman, P.; Braun, M.; Zhang, Q. Regulation of calcium in pancreatic α- and β-cells in health 

and disease. Cell Calcium 2012, 51, 300–308. 

17. Henquin, J.-C.; Nenquin, M.; Stiernet, P.; Ahren, B. In vivo and in vitro glucose-induced biphasic 

insulin secretion in the mouse. Diabetes 2006, 55, 441–451. 

18. Jensen, M.V.; Joseph, J.W.; Ronnebaum, S.M.; Burgess, S.C.; Sherry, A.D.; Newgard, C.B. 

Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. 

Metab. 2008, 295, E1287–E1297. 

19. MacDonald, P.E. Signal integration at the level of ion channel and exocytotic function in pancreatic 

β-cells. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E1065–E1069. 

20. MacDonald, P.E.; Joseph, J.W.; Rorsman, P. Glucose-sensing mechanisms in pancreatic β-cells. 

Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2211–2225. 

21. Newsholme, P.; Gaudel, C.; McClenaghan, N.H. Nutrient regulation of insulin secretion and  

beta-cell functional integrity. In Islets of Langerhans; Islam, M.S., Ed.; Springer-Verlag Berlin: 

Berlin, Germany, 2010; Volume 654, pp. 91–114. 



Sensors 2015, 15 27410 

 

 

22. Newsholme, P.; Krause, M. Nutritional regulation of insulin secretion: Implications for diabetes. 

Clin. Biochem. Rev. Aust. Assoc. Clin. Biochem. 2012, 33, 35–47. 

23. Kojima, I.; Nakagawa, Y.; Ohtsu, Y.; Hamano, K.; Medina, J.; Nagasawa, M. Return of the 

glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in 

pancreatic β-cells. J. Diabetes Investig. 2015, 6, 256–263. 

24. Kyriazis, G.A.; Soundarapandian, M.M.; Tyrberg, B. Sweet taste receptor signaling in beta cells 

mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl. Acad. 

Sci. USA 2012, 109, E524–E532. 

25. Niki, A.; Niki, H.; Miwa, I.; Okuda, J. Insulin secretion by anomers of d-glucose. Science 1974, 

186, 150–151. 

26. Henquin, J.-C. Do pancreatic beta cells “taste” nutrients to secrete insulin? Sci. Signal. 2012, 5,  

doi:10.1126/scisignal.2003325. 

27. Ferdaoussi, M.; Bergeron, V.; Zarrouki, B.; Kolic, J.; Cantley, J.; Fielitz, J.; Olson, E.N.;  

Prentki, M.; Biden, T.; MacDonald, P.E.; et al. G protein-coupled receptor (GPR) 40-dependent 

potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 

2012, 55, 2682–2692. 

28. Kebede, M.A.; Alquier, T.; Latour, M.G.; Poitout, V. Lipid receptors and islet function: 

Therapeutic implications? Diabetes Obes. Metab. 2009, 11, 10–20. 

29. Kebede, M.; Alquier, T.; Latour, M.G.; Semache, M.; Tremblay, C.; Poitout, V. The fatty acid 

receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 2008, 57, 

2432–2437. 

30. Tan, C.P.; Feng, Y.; Zhou, Y.P.; Eiermann, G.J.; Petrov, A.; Zhou, C.; Lin, S.; Salituro, G.; 

Meinke, P.; Mosley, R.; et al. Selective small-molecule agonists of G protein-coupled receptor 40 

promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 2008, 

57, 2211–2219. 

31. Oya, M.; Suzuki, H.; Watanabe, Y.; Sato, M.; Tsuboi, T. Amino acid taste receptor regulates 

insulin secretion in pancreatic beta-cell line MIN6 cells. Genes Cells Devoted Mol. Cell. Mech. 

2011, 16, 608–616. 

32. Caicedo, A. Paracrine and autocrine interactions in the human islet: More than meets the eye. 

Semin. Cell Dev. Biol. 2013, 24, 11–21. 

33. Koh, D.S.; Cho, J.H.; Chen, L.Y. Paracrine interactions within islets of langerhans. J. Mol. Neurosci. 

2012, 48, 429–440. 

34. Rodriguez-Diaz, R.; Menegaz, D.; Caicedo, A. Neurotransmitters act as paracrine signals to 

regulate insulin secretion from the human pancreatic islet. J. Physiol. 2014, 592, 3413–3417. 

35. Unger, R.H.; Orci, L. Paracrinology of islets and the paracrinopathy of diabetes. Proc. Natl. Acad. 

Sci. USA 2010, 107, 16009–16012. 

36. Ahren, B. Autonomic regulation of islet hormone secretion—Implications for health and disease. 

Diabetologia 2000, 43, 393–410. 

37. Dai, C.; Brissova, M.; Reinert, R.B.; Nyman, L.; Liu, E.H.; Thompson, C.; Shostak, A.;  

Shiota, M.; Takahashi, T.; Powers, A.C. Pancreatic islet vasculature adapts to insulin resistance 

through dilation and not angiogenesis. Diabetes 2013, 62, 4144–4153. 



Sensors 2015, 15 27411 

 

 

38. Dolensek, J.; Rupnik, M.S.; Stozer, A. Structural similarities and differences between the human 

and the mouse pancreas. Islets 2015, 7, doi:10.1080/19382014.2015.1024405. 

39. Gylfe, E.; Tengholm, A. Neurotransmitter control of islet hormone pulsatility. Diabetes Obes. Metab. 

2014, 16 (Suppl. 1), 102–110. 

40. Ilegems, E.; Dicker, A.; Speier, S.; Sharma, A.; Bahow, A.; Edlund, P.K.; Leibiger, I.B.;  

Berggren, P.O. Reporter islets in the eye reveal the plasticity of the endocrine pancreas. Proc. Natl. 

Acad. Sci. USA 2013, 110, 20581–20586. 

41. Rodriguez-Diaz, R.; Abdulreda, M.H.; Formoso, A.L.; Gans, I.; Ricordi, C.; Berggren, P.-O.; 

Caicedo, A. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 

2011, 14, 45–54. 

42. Rodriguez-Diaz, R.; Caicedo, A. Novel approaches to studying the role of innervation in the 

biology of pancreatic islets. Endocrinol. Metab. Clin. North Am. 2013, 42, 39–56. 

43. Kailey, B.; van de Bunt, M.; Cheley, S.; Johnson, P.R.; MacDonald, P.E.; Gloyn, A.L.;  

Rorsman, P.; Braun, M. SSTR2 is the functionally dominant somatostatin receptor in human 

pancreatic beta- and alpha-cells. Am. J. Physiol.-Endoc. M 2012, 303, E1107–E1116. 

44. Campbell, J.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of incretin hormone 

action. Cell Metab. 2013, 17, 819–837. 

45. Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes.  

Nat. Rev. Drug Discov. 2009, 8, 369–385. 

46. De Azua, I.R.; Gautam, D.; Guettier, J.-M.; Wess, J. Novel insights into the function of β-cell M 

3 muscarinic acetylcholine receptors: Therapeutic implications. Trends Endocrinol. Metab. TEM 

2011, 22, 74–80. 

47. Molina, J.; Rodriguez-Diaz, R.; Fachado, A.; Jacques-Silva, M.C.; Berggren, P.O.; Caicedo, A. 

Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes 2014, 

63, 2714–2726. 

48. Peterhoff, M.; Sieg, A.; Brede, M.; Chao, C.M.; Hein, L.; Ullrich, S. Inhibition of insulin secretion 

via distinct signaling pathways in alpha2-adrenoceptor knockout mice. Eur. J. Endocrinol. 2003, 

149, 343–350. 

49. Marquard, J.; Otter, S.; Welters, A.; Stirban, A.; Fischer, A.; Eglinger, J.; Herebian, D.;  

Kletke, O.; Klemen, M.S.; Stozer, A.; et al. Characterization of pancreatic NMDA receptors as 

possible drug targets for diabetes treatment. Nat. Med. 2015, 21, 363–372. 

50. Wollheim, C.B.; Maechler, P. Beta cell glutamate receptor antagonists: Novel oral antidiabetic 

drugs? Nat. Med. 2015, 21, 310–311. 

51. Braun, M.; Ramracheya, R.; Bengtsson, M.; Clark, A.; Walker, J.N.; Johnson, P.R.; Rorsman, P. 

Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic  

beta-cells. Diabetes 2010, 59, 1694–1701. 

52. Braun, M.; Ramracheya, R.; Rorsman, P. Autocrine regulation of insulin secretion. Diabetes Obes. 

Metab. 2012, 14, 143–151. 

53. Taneera, J.; Jin, Z.; Jin, Y.; Muhammed, S.J.; Zhang, E.; Lang, S.; Salehi, A.; Korsgren, O.; 

Renstrom, E.; Groop, L.; et al. Gamma-aminobutyric acid (GABA) signalling in human pancreatic 

islets is altered in type 2 diabetes. Diabetologia 2012, 55, 1985–1994. 



Sensors 2015, 15 27412 

 

 

54. Ashcroft, F.M.; Rorsman, P. KATP channels and islet hormone secretion: New insights and 

controversies. Nat. Rev. Endocrinol. 2013, 9, 660–669. 

55. Vetere, A.; Choudhary, A.; Burns, S.M.; Wagner, B.K. Targeting the pancreatic beta-cell to treat 

diabetes. Nat. Rev. Drug Discov. 2014, 13, 278–289. 

56. Eliasson, L.; Ma, X.S.; Renstrom, E.; Barg, S.; Berggren, P.O.; Galvanovskis, J.; Gromada, J.; 

Jing, X.J.; Lundquist, I.; Salehi, A.; et al. SUR1 regulates PKA-independent cAMP-induced 

granule priming in mouse pancreatic B-cells. J. Gen. Physiol. 2003, 121, 181–197. 

57. Eliasson, L.; Renstrom, E.; Ammala, C.; Berggren, P.O.; Bertorello, A.M.; Bokvist, K.;  

Chibalin, A.; Deeney, J.T.; Flatt, P.R.; Gabel, J.; et al. PKC-dependent stimulation of exocytosis 

by sulfonylureas in pancreatic beta cells. Science 1996, 271, 813–815. 

58. Zhang, C.L.; Katoh, M.; Shibasaki, T.; Minami, K.; Sunaga, Y.; Takahashi, H.; Yokoi, N.;  

Iwasaki, M.; Miki, T.; Seino, S. The cAMP sensor Epac2 is a direct target of antidiabetic 

sulfonylurea drugs. Science 2009, 325, 607–610. 

59. Barnett, A.H.; Cradock, S.; Fisher, M.; Hall, G.; Hughes, E.; Middleton, A. Key considerations 

around the risks and consequences of hypoglycaemia in people with type 2 diabetes. Int. J. Clin. 

Pract. 2010, 64, 1121–1129. 

60. Benninger, R.K.; Piston, D.W. Cellular communication and heterogeneity in pancreatic islet 

insulin secretion dynamics. Trends Endocrinol. Metab. TEM 2014, 25, 399–406. 

61. Benninger, R.K.P.; Head, W.S.; Zhang, M.; Satin, L.S.; Piston, D.W. Gap junctions and other 

mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.  

J. Physiol. 2011, 589, 5453–5466. 

62. Bosco, D.; Haefliger, J.-A.; Meda, P. Connexins: Key mediators of endocrine function. Physiol. Rev. 

2011, 91, 1393–1445. 

63. Jonkers, F.C.; Henquin, J.-C. Measurements of cytoplasmic Ca2+ in islet cell clusters show that 

glucose rapidly recruits β-cells and gradually increases the individual cell response. Diabetes 2001, 

50, 540–550. 

64. Meda, P.; Schuit, F. Glucose-stimulated insulin secretion: The hierarchy of its multiple cellular 

and subcellular mechanisms. Diabetologia 2013, 56, 2552–2555. 

65. Pipeleers, D.; Kiekens, R.; Ling, Z.; Wilikens, A.; Schuit, F. Physiologic relevance of 

heterogeneity in the pancreatic beta-cell population. Diabetologia 1994, 37, S57–S64. 

66. Ravier, M.A.; Güldenagel, M.; Charollais, A.; Gjinovci, A.; Caille, D.; Söhl, G.; Wollheim, C.B.; 

Willecke, K.; Henquin, J.-C.; Meda, P. Loss of Connexin36 channels alters β-cell coupling, islet 

synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. 

Diabetes 2005, 54, 1798–1807. 

67. Salomon, D.; Meda, P. Heterogeneity and contact-dependent regulation of hormone secretion by 

individual B cells. Exp. Cell Res. 1986, 162, 507–520. 

68. Speier, S.; Gjinovci, A.; Charollais, A.; Meda, P.; Rupnik, M. Cx36-mediated coupling reduces  

β-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin 

release kinetics. Diabetes 2007, 56, 1078–1086. 

69. Head, W.S.; Orseth, M.L.; Nunemaker, C.S.; Satin, L.S.; Piston, D.W.; Benninger, R.K.  

Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and 

glucose tolerance in the conscious mouse. Diabetes 2012, 61, 1700–1707. 



Sensors 2015, 15 27413 

 

 

70. Bavamian, S.; Klee, P.; Britan, A.; Populaire, C.; Caille, D.; Cancela, J.; Charollais, A.; Meda, P. 

Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes. Metab. 2007, 

9, 118–132. 

71. Farnsworth, N.L.; Benninger, R.K.P. New insights into the role of connexins in pancreatic islet 

function and diabetes. FEBS Lett. 2014, 588, 1278–1287. 

72. Charollais, A.; Gjinovci, A.; Huarte, J.; Bauquis, J.; Nadal, A.; Martin, F.; Andreu, E.;  

Sanchez-Andres, J.V.; Calabrese, A.; Bosco, D.; et al. Junctional communication of pancreatic 

beta cells contributes to the control of insulin secretion and glucose tolerance. J. Clin. Investig. 

2000, 106, 235–243. 

73. Benninger, R.K.; Zhang, M.; Head, W.S.; Satin, L.S.; Piston, D.W. Gap junction coupling and 

calcium waves in the pancreatic islet. Biophys. J. 2008, 95, 5048–5061. 

74. Smolen, P.; Rinzel, J.; Sherman, A. Why pancreatic islets burst but single beta cells do not. The 

heterogeneity hypothesis. Biophys. J. 1993, 64, 1668–1680. 

75. Félix-Martínez, G.J.; Godínez-Fernández, J.R. Mathematical models of electrical activity of the 

pancreatic β-cell: A physiological review. Islets 2014, 6, doi:10.4161/19382014.2014.949195. 

76. Pedersen, M.G.; Toffolo, G.M.; Cobelli, C. Cellular modeling: Insight into oral minimal models 

of insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E597–E601. 

77. Pedersen, M.G.; Corradin, A.; Toffolo, G.M.; Cobelli, C. A subcellular model of glucose-stimulated 

pancreatic insulin secretion. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2008, 366, 3525–3543. 

78. Stožer, A.; Gosak, M.; Dolenšek, J.; Perc, M.; Marhl, M.; Rupnik, M.S.; Korošak, D. Functional 

connectivity in islets of langerhans from mouse pancreas tissue slices. PLoS Comput. Biol. 2013, 

9, e1002923. 

79. Gosak, M.; Stožer, A.; Markovič, R.; Dolenšek, J.; Marhl, M.; Slak Rupnik, M.; Perc, M. The 

relationship between node degree and dissipation rate in networks of diffusively coupled oscillators 

and its significance for pancreatic beta cells. Chaos (Woodbury, NY) 2015, 25, 

doi:10.1063/1.4926673. 

80. Gosak, M.; Dolenšek, J.; Markovič, R.; Slak Rupnik, M.; Marhl, M.; Stožer, A. Multilayer network 

representation of membrane potential and cytosolic calcium concentration dynamics in beta cells. 

Chaos Solitons Fractals 2015, 80, 76–82. 

81. Markovic, R.; Stozer, A.; Gosak, M.; Dolensek, J.; Marhl, M.; Rupnik, M.S. Progressive glucose 

stimulation of islet beta cells reveals a transition from segregated to integrated modular functional 

connectivity patterns. Sci. Rep. 2015, 5, doi:10.1038/srep07845. 

82. Hodson, D.J.; Tarasov, A.I.; Gimeno Brias, S.; Mitchell, R.K.; Johnston, N.R.; Haghollahi, S.; 

Cane, M.C.; Bugliani, M.; Marchetti, P.; Bosco, D.; et al. Incretin-modulated beta cell energetics 

in intact islets of langerhans. Mol. Endocrinol. 2014, 28, 860–871. 

83. Hodson, D.J.; Mitchell, R.K.; Bellomo, E.A.; Sun, G.; Vinet, L.; Meda, P.; Li, D.; Li, W.H.; 

Bugliani, M.; Marchetti, P.; et al. Lipotoxicity disrupts incretin-regulated human beta cell 

connectivity. J. Clin. Investig. 2013, 123, 4182–4194. 

84. Rutter, G.A.; Hodson, D.J. Beta cell connectivity in pancreatic islets: A type 2 diabetes target?  

Cell. Mol. Life Sci. CMLS 2015, 72, 453–467.  

85. Speier, S.; Rupnik, M. A novel approach to in situ characterization of pancreatic ß-cells.  

Pflügers Arch. Eur. J. Physiol. 2003, 446, 553–558. 



Sensors 2015, 15 27414 

 

 

86. Dolenšek, J.; Stožer, A.; Skelin Klemen, M.; Miller, E.W.; Slak Rupnik, M. The relationship 

between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in 

acute mouse pancreas tissue slices. PLoS ONE 2013, 8, e82374. 

87. Stožer, A.; Dolenšek, J.; Rupnik, M.S. Glucose-stimulated calcium dynamics in islets of 

langerhans in acute mouse pancreas tissue slices. PLoS ONE 2013, 8, e54638. 

88. Low, J.; Mitchell, J.; Do, O.; Bax, J.; Rawlings, A.; Zavortink, M.; Morgan, G.; Parton, R.; 

Gaisano, H.; Thorn, P. Glucose principally regulates insulin secretion in mouse islets by 

controlling the numbers of granule fusion events per cell. Diabetologia 2013, 56, 2629–2637. 

89. Takahashi, N.; Kishimoto, T.; Nemoto, T.; Kadowaki, T.; Kasai, H. Fusion pore dynamics and 

insulin granule exocytosis in the pancreatic islet. Science 2002, 297, 1349–1352. 

90. Do, O.H.; Low, J.T.; Gaisano, H.Y.; Thorn, P. The secretory deficit in islets from db/db mice is 

mainly due to a loss of responding beta cells. Diabetologia 2014, 57, 1400–1409. 

91. Low, J.T.; Zavortink, M.; Mitchell, J.M.; Gan, W.J.; Do, O.H.; Schwiening, C.J.; Gaisano, H.Y.; 

Thorn, P. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. 

Diabetologia 2014, 57, 1655–1663. 

92. Li, D.L.; Chen, S.W.; Bellomo, E.A.; Tarasov, A.I.; Kaut, C.; Rutter, G.A.; Li, W.H. Imaging 

dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic 

release (ZIMIR). Proc. Natl. Acad. Sci. USA 2011, 108, 21063–21068. 

93. Pancholi, J.; Hodson, D.J.; Jobe, K.; Rutter, G.A.; Goldup, S.M.; Watkinson, M. Biologically 

targeted probes for Zn2+: A diversity oriented modular “click-snar-click” approach. Chem. Sci. 

2014, 5, 3528–3535. 

94. Li, D.L.; Huang, Z.J.; Chen, S.W.; Hu, Z.P.; Li, W.H. Glp-1 receptor mediated targeting of a 

fluorescent Zn2+ sensor to beta cell surface for imaging insulin/Zn2+ release. Bioconjug. Chem. 

2015, 26, 1443–1450. 

95. Almaca, J.; Liang, T.; Gaisano, H.Y.; Nam, H.G.; Berggren, P.O.; Caicedo, A. Spatial and temporal 

coordination of insulin granule exocytosis in intact human pancreatic islets. Diabetologia 2015, in 

press. 

96. Li, J.; Yu, Q.; Ahooghalandari, P.; Gribble, F.M.; Reimann, F.; Tengholm, A.; Gylfe, E. 

Submembrane atp and Ca2+ kinetics in alpha-cells: Unexpected signaling for glucagon secretion. 

FASEB J. 2015, 29, 3379–3388. 

97. Rocheleau, J.V.; Head, W.S.; Piston, D.W. Quantitative NAD(P)H/Flavoprotein Autofluorescence 

Imaging Reveals Metabolic Mechanisms of Pancreatic Islet Pyruvate Response. J. Biol. Chem. 

2004, 279, 31780–31787. 

98. Tengholm, A. Cyclic amp dynamics in the pancreatic beta-cell. Ups. J. Med. Sci. 2012, 117,  

355–369. 

99. Arrojo e Drigo, R.; Ali, Y.; Diez, J.; Srinivasan, D.; Berggren, P.-O.; Boehm, B. New insights into 

the architecture of the islet of langerhans: A focused cross-species assessment. Diabetologia 2015, 

58, 2218–2228. 

100. Bonner-Weir, S.; Sullivan, B.A.; Weir, G.C. Human islet morphology revisited: Human and rodent 

islets are not so different after all. J. Histochem. Cytochem. 2015, 63, 604–612. 



Sensors 2015, 15 27415 

 

 

101. Bosco, D.; Armanet, M.; Morel, P.; Niclauss, N.; Sgroi, A.; Muller, Y.D.; Giovannoni, L.;  

Parnaud, G.; Berney, T. Unique arrangement of α- and β-cells in human islets of langerhans. 

Diabetes 2010, 59, 1202–1210. 

102. Brissova, M.; Fowler, M.J.; Nicholson, W.E.; Chu, A.; Hirshberg, B.; Harlan, D.M.;  

Powers, A.C. Assessment of human pancreatic islet architecture and composition by laser scanning 

confocal microscopy. J. Histochem. Cytochem. 2005, 53, 1087–1097. 

103. Cabrera, O.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Berggren, P.-O.; Caicedo, A. The unique 

cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. 

Acad. Sci. USA 2006, 103, 2334–2339. 

104. Chandrasekera, P.C.; Pippin, J.J. Of rodents and men: Species-specific glucose regulation and type 

2 diabetes research. Altex 2014, 31, 157–176. 

105. Levetan, C.S.; Pierce, S.M. Distinctions between the islets of mice and men: Implications for new 

therapies for type 1 and 2 diabetes. Endocr. Pract. 2013, 19, 301–312. 

106. Steiner, D.J.; Kim, A.; Miller, K.; Hara, M. Pancreatic islet plasticity interspecies comparison of 

islet architecture and composition. Islets 2010, 2, 135–145. 

107. Marciniak, A.; Cohrs, C.M.; Tsata, V.; Chouinard, J.A.; Selck, C.; Stertmann, J.; Reichelt, S.;  

Rose, T.; Ehehalt, F.; Weitz, J.; et al. Using pancreas tissue slices for in situ studies of islet of 

langerhans and acinar cell biology. Nat. Protoc. 2014, 9, 2809–2822. 

108. Rupnik, M. The physiology of rodent beta-cells in pancreas slices. Acta Physiol. 2009, 195,  

123–138. 

109. Ogden, D. Microelectrode Techniques: The Plymouth Workshop Handbook, 2nd ed.; Company of 

Biologists: Cambridge, UK, 1994; p. 448. 

110. Neher, E. Ion channels for communication between and within cells. Science 1992, 256,  

498–502. 

111. Speier, S.; Yang, S.B.; Sroka, K.; Rose, T.; Rupnik, M. Katp-channels in beta-cells in tissue slices 

are directly modulated by millimolar atp. Mol. Cell. Endocrinol. 2005, 230, 51–58. 

112. Rose, T.; Efendic, S.; Rupnik, M. Ca2+-secretion coupling is impaired in diabetic goto kakizaki 

rats. J. Gen. Physiol. 2007, 129, 493–508. 

113. Sedej, S.; Tsujimoto, T.; Zorec, R.; Rupnik, M. Voltage-activated Ca2+ channels and their role in 

the endocrine function of the pituitary gland in newborn and adult mice. J. Physiol. 2004, 555, 

769–782. 

114. MacDonald, P.E.; Rorsman, P. Oscillations, intercellular coupling, and insulin secretion in 

pancreatic β cells. PLoS Biol. 2006, 4, doi:10.1371/journal.pbio.0040049. 

115. Orci, L.; Unger, R.H. Functional subdivision of islets of langerhans and possible role of D cells. 

Lancet 1975, 2, 1243–1244. 

116. Ku, S.K.; Lee, H.S.; Lee, J.H. An immunohistochemical study on the pancreatic endocrine cells of 

the C57BL/6 mouse. J. Vet. Sci. 2002, 3, 327–333. 

117. Pfeifer, C.R.; Shomorony, A.; Aronova, M.A.; Zhang, G.; Cai, T.; Xu, H.; Notkins, A.L.;  

Leapman, R.D. Quantitative analysis of mouse pancreatic islet architecture by serial block-face 

SEM. J. Struct. Biol. 2015, 189, 44–52. 



Sensors 2015, 15 27416 

 

 

118. Speier, S.; Nyqvist, D.; Kohler, M.; Caicedo, A.; Leibiger, I.B.; Berggren, P.O. Noninvasive  

high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye.  

Nat. Protoc. 2008, 3, 1278–1286. 

119. Speier, S.; Nyqvist, D.; Cabrera, O.; Yu, J.; Molano, R.D.; Pileggi, A.; Moede, T.; Kohler, M.; 

Wilbertz, J.; Leibiger, B.; et al. Noninvasive in vivo imaging of pancreatic islet cell biology.  

Nat. Med. 2008, 14, 574–578. 

120. Ilegems, E.; van Krieken, P.P.; Edlund, P.K.; Dicker, A.; Alanentalo, T.; Eriksson, M.;  

Mandic, S.; Ahlgren, U.; Berggren, P.O. Light scattering as an intrinsic indicator for pancreatic 

islet cell mass and secretion. Sci. Rep. 2015, 5, doi:10.1038/srep10740. 

121. Takahashi, A.; Camacho, P.; Lechleiter, J.D.; Herman, B. Measurement of intracellular calcium. 

Physiol. Rev. 1999, 79, 1089–1125. 

122. Miyawaki, A.; Griesbeck, O.; Heim, R.; Tsien, R.Y. Dynamic and quantitative Ca2+ measurements 

using improved cameleons. Proc. Natl. Acad. Sci. USA 1999, 96, 2135–2140. 

123. Saito, K.; Hatsugai, N.; Horikawa, K.; Kobayashi, K.; Matsu-ura, T.; Mikoshiba, K.; Nagai, T. 

Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the 

single cell level. PLoS ONE 2010, 5, doi:10.1371/journal.pone.0009935. 

124. Bkaily, G.; Pothier, P.; D’Orleans-Juste, P.; Simaan, M.; Jacques, D.; Jaalouk, D.; Belzile, F.; 

Hassan, G.; Boutin, C.; Haddad, G.; et al. The use of confocal microscopy in the investigation  

of cell structure and function in the heart, vascular endothelium and smooth muscle cells.  

Mol. Cell. Biochem. 1997, 172, 171–194. 

125. Valdeolmillos, M.; Santos, R.M.; Contreras, D.; Soria, B.; Rosario, L.M. Glucose-induced 

oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single 

mouse islets of langerhans. FEBS Lett. 1989, 259, 19–23. 

126. Valdeolmillos, M.; Nadal, A.; Soria, B.; Garciasancho, J. Fluorescence digital image-analysis of 

glucose-induced Ca2+ oscillations in mouse pancreatic islets of langerhans. Diabetes 1993, 42, 

1210–1214. 

127. Santos, R.M.; Rosario, L.M.; Nadal, A.; Garcia-Sancho, J.; Soria, B.; Valdeolmillos, M. 

Widespread synchronous Ca oscillations due to bursting electrical activity in single pancreatic 

islets. Pflügers Arch. Eur. J. Physiol. 1991, 418, 417–422. 

128. Gilon, P.; Henquin, J.C. Influence of membrane potential changes on cytoplasmic Ca2+ 

concentration in an electrically excitable cell, the insulin-secreting pancreatic b-cell. J. Biol. Chem. 

1992, 267, 20713–20720. 

129. Zarkovic, M.; Henquin, J.-C. Synchronization and entrainment of cytoplasmic Ca2+ oscillations  

in cell clusters prepared from single or multiple mouse pancreatic islets. Am. J. Physiol. 

Endocrinol. Metab. 2004, 287, E340–E347. 

130. Ravier, M.R.; Sehlin, J.S.; Henquin, J.H. Disorganization of cytoplasmic Ca2+ oscillations and 

pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 2002, 45, 1154–1163. 

131. Nadal, A.; Quesada, I.; Soria, B. Homologous and heterologous asynchronicity between identified 

α-, β- and δ-cells within intact islets of langerhans in the mouse. J. Physiol. 1999, 517, 85–93. 

132. Quesada, I.; Nadal, A.; Soria, B. Different effects of tolbutamide and diazoxide in alpha, beta-, and 

delta-cells within intact islets of langerhans. Diabetes 1999, 48, 2390–2397. 



Sensors 2015, 15 27417 

 

 

133. Asada, N.; Shibuya, I.; Iwanaga, T.; Niwa, K.; Kanno, T. Identification of alpha- and beta-cells in 

intact isolated islets of langerhans by their characteristic cytoplasmic Ca2+ concentration dynamics 

and immunocytochemical staining. Diabetes 1998, 47, 751–757. 

134. Miller, E.W.; Lin, J.Y.; Frady, E.P.; Steinbach, P.A.; Kristan, W.B.; Tsien, R.Y. Optically 

monitoring voltage in neurons by photo-induced electron transfer through molecular wires.  

Proc. Natl. Acad. Sci. USA 2012, 109, 2114–2119. 

135. Gilon, P.; Shepherd, R.M.; Henquin, J.C. Oscillations of secretion driven by oscillations  

of cytoplasmic Ca2+ as evidenced in single pancreatic islets. J. Biol. Chem. 1993, 268,  

22265–22268. 

136. Fernandez, J.; Valdeolmillos, M. Synchronous glucose-dependent [Ca2+]i oscillations in mouse 

pancreatic islets of langerhans recorded in vivo. FEBS Lett. 2000, 477, 33–36. 

137. Bertuzzi, F.; Davalli, A.M.; Nano, R.; Socci, C.; Codazzi, F.; Fesce, R.; Di Carlo, V.; Pozza, G.; 

Grohovaz, F. Mechanisms of coordination of Ca2+ signals in pancreatic islet cells. Diabetes 1999, 

48, 1971–1978. 

138. Rojas, E.; Carroll, P.B.; Ricordi, C.; Boschero, A.C.; Stojilkovic, S.S.; Atwater, I. Control of 

cytosolic free calcium in cultured human pancreatic beta-cells occurs by external calcium-dependent 

and independent mechanisms. Endocrinology 1994, 134, 1771–1781. 

139. Hellman, B.; Gylfe, E.; Bergsten, P.; Grapengiesser, E.; Lund, P.; Berts, A.; Tengholm, A.; 

Pipeleers, D.; Ling, Z. Glucose induces oscillatory Ca2+ signalling and insulin release in human 

pancreatic beta cells. Diabetologia 1994, 37, S11–S20. 

140. Martin, F.; Soria, B. Glucose-induced [Ca2+]i oscillations in single human pancreatic islets.  

Cell Calcium 1996, 20, 409–414. 

141. Quesada, I.; Todorova, M.G.; Alonso-Magdalena, P.; Beltrá, M.; Carneiro, E.M.; Martin, F.; 

Nadal, A.; Soria, B. Glucose induces opposite intracellular Ca2+ concentration oscillatory  

patterns in identified α- and β-cells within intact human islets of langerhans. Diabetes 2006, 55, 

2463–2469. 

142. Rutter, G.A.; Hodson, D.J. Minireview: Intraislet regulation of insulin secretion in humans.  

Mol. Endocrinol. 2013, 27, 1984–1995. 

143. Kuhn, B.; Fromherz, P. Anellated hemicyanine dyes in a neuron membrane: Molecular stark effect 

and optical voltage recording. J. Phys. Chem. B 2003, 107, 7903–7913. 

144. Grinvald, A.; Fine, A.; Farber, I.C.; Hildesheim, R. Fluorescence monitoring of electrical 

responses from small neurons and their processes. Biophys. J. 1983, 42, 195–198. 

145. Merglen, A.; Theander, S.; Rubi, B.; Chaffard, G.; Wollheim, C.B.; Maechler, P. Glucose 

sensitivity and metabolism-secretion coupling studied during two-year continuous culture in  

INS-1E insulinoma cells. Endocrinology 2004, 145, 667–678. 

146. Hjortoe, G.M.; Hagel, G.M.; Terry, B.R.; Thastrup, O.; Arkhammar, P.O.G. Functional 

identification and monitoring of individual α and β cells in cultured mouse islets of langerhans. 

Acta Diabetol. 2004, 41, 185–193. 

147. Heart, E.; Yaney, G.C.; Corkey, R.F.; Schultz, V.; Luc, E.; Liu, L.; Deeney, J.T.; Shirihai, O.; 

Tornheim, K.; Smith, P.J.S.; et al. Ca2+, NAD(P)H and membrane potential changes in pancreatic 

β-cells by methyl succinate: Comparison with glucose. Biochem. J. 2007, 403, 197–205. 



Sensors 2015, 15 27418 

 

 

148. Goehring, I.; Gerencser, A.A.; Schmidt, S.; Brand, M.D.; Mulder, H.; Nicholls, D.G. Plasma 

membrane potential oscillations in insulin secreting INS-1 832/13 cells do not require glycolysis 

and are not initiated by fluctuations in mitochondrial bioenergetics. J. Biol. Chem. 2012, 287, 

15706–15717. 

149. Gonzalez, J.E.; Tsien, R.Y. Improved indicators of cell membrane potential that use fluorescence 

resonance energy transfer. Chem. Biol. 1997, 4, 269–277. 

150. Kuznetsov, A.; Bindokas, V.P.; Marks, J.D.; Philipson, L.H. Fret-based voltage probes for 

confocal imaging: Membrane potential oscillations throughout pancreatic islets. Am. J. Physiol. 

Cell Physiol. 2005, 289, C224–C229. 

151. Woodford, C.R.; Frady, E.P.; Smith, R.S.; Morey, B.; Canzi, G.; Palida, S.F.; Araneda, R.C.; 

Kristan, W.B., Jr.; Kubiak, C.P.; Miller, E.W.; et al. Improved pet molecules for optically sensing 

voltage in neurons. J. Am. Chem. Soc. 2015, 137, 1817–1824. 

152. Hochbaum, D.R.; Zhao, Y.; Farhi, S.L.; Klapoetke, N.; Werley, C.A.; Kapoor, V.; Zou, P.;  

Kralj, J.M.; Maclaurin, D.; Smedemark-Margulies, N.; et al. All-optical electrophysiology in 

mammalian neurons using engineered microbial rhodopsins. Nat. Methods 2014, 11, 825–833. 

153. St-Pierre, F.; Marshall, J.D.; Yang, Y.; Gong, Y.Y.; Schnitzer, M.J.; Lin, M.Z. High-fidelity optical 

reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 

2014, 17, 884–889. 

154. Akemann, W.; Sasaki, M.; Mutoh, H.; Imamura, T.; Honkura, N.; Knopfel, T. Two-photon voltage 

imaging using a genetically encoded voltage indicator. Sci. Rep. 2013, 3, doi:10.1038/srep02231. 

155. Akemann, W.; Mutoh, H.; Perron, A.; Park, Y.K.; Iwamoto, Y.; Knopfel, T. Imaging neural circuit 

dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 2012, 108,  

2323–2337. 

156. Li, L.S. Fluorescence probes for membrane potentials based on mesoscopic electron transfer.  

Nano Lett. 2007, 7, 2981–2986. 

157. Huang, Y.L.; Walker, A.S.; Miller, E.W. A photostable silicon rhodamine platform for optical 

voltage sensing. J. Am. Chem. Soc. 2015, 137, 10767–10776. 

158. Coupe, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal means-based speckle filtering for 

ultrasound images. IEEE Trans. Image Proc. Publ. IEEE Signal Proc. Soc. 2009, 18, 2221–2229. 

159. Milanfar, P. A tour of modern image filtering: New insights and methods, both practical and 

theoretical. Signal Proc. Mag. IEEE 2013, 30, 106–128. 

160. Akgun, T.; Altunbasak, Y.; Mersereau, R.M. Super-resolution reconstruction of hyperspectral 

images. IEEE Trans. Image Proc. 2005, 14, 1860–1875. 

161. Špelič, D.; Dolenšek, J.; Stožer, A.; Slak Rupnik, M.; Žalik, B.; Mongus, D. Improved analysis of 

membrane potential oscillations in the network of cells from islet of langerhans. In Proceedings of 

the GraphiCon’2013—23rd International Conference on Computer Graphics and Vision, 

Vladivostok, Russia, 16–20 September 2013. 

162. Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of 

gaussians in the wavelet domain. IEEE Trans. Image Proc. 2003, 12, 1338–1351. 

163. Cheng, W.; Hirakawa, K. Minimum risk wavelet shrinkage operator for poisson image denoising. 

IEEE Trans. Image Proc. 2015, 24, 1660–1671. 



Sensors 2015, 15 27419 

 

 

164. Boutet de Monvel, J.; Le Calvez, S.; Ulfendahl, M. Image restoration for confocal microscopy: 

Improving the limits of deconvolution, with application to the visualization of the mammalian 

hearing organ. Biophys. J. 2001, 80, 2455–2470. 

165. Kohler, M.; Zaitsev, S.V.; Zaitseva, II; Leibiger, B.; Leibiger, I.B.; Turunen, M.;  

Kapelioukh, I.L.; Bakkman, L.; Appelskog, I.B.; de Monvel, J.B.; et al. On-line monitoring of 

apoptosis in insulin-secreting cells. Diabetes 2003, 52, 2943–2950. 

166. Boulanger, J.; Kervrann, C.; Bouthemy, P.; Elbau, P.; Sibarita, J.B.; Salamero, J. Patch-based 

nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans.  

Med. Imaging 2010, 29, 442–454. 

167. Maggioni, M.; Sanchez-Monge, E.; Foi, A. Joint removal of random and fixed-pattern noise 

through spatiotemporal video filtering. IEEE Trans. Image Proc. 2014, 23, 4282–4296. 

168. Janicek, R.; Hotka, M.; Zahradnikova, A., Jr.; Zahradnikova, A.; Zahradnik, I. Quantitative 

analysis of calcium spikes in noisy fluorescent background. PLoS ONE 2013, 8, e64394. 

169. Janiek, R.; Zahradnikova, A., Jr.; Polakova, E.; Pavelkova, J.; Zahradnik, I.; Zahradnikova, A. 

Calcium spike variability in cardiac myocytes results from activation of small cohorts of ryanodine 

receptor 2 channels. J. Physiol. 2012, 590, 5091–5106. 

170. Klee, P.; Allagnat, F.; Pontes, H.; Cederroth, M.; Charollais, A.; Caille, D.; Britan, A.;  

Haefliger, J.A.; Meda, P. Connexins protect mouse pancreatic beta cells against apoptosis. J. Clin. 

Investig. 2011, 121, 4870–4879. 

171. Carvalho, C.P.F.; Oliveira, R.B.; Britan, A.; Santos-Silva, J.C.; Boschero, A.C.; Meda, P.; 

Collares-Buzato, C.B. Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in 

prediabetic mice. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E144–E151. 

172. Cigliola, V.; Chellakudam, V.; Arabieter, W.; Meda, P. Connexins and β-cell functions. Diabetes 

Res. Clin. Pract. 2013, 99, 250–259. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


