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Abstract

Acetaminophen is one of the most common over-the-counter pain medications used world-

wide and is considered safe at therapeutic dose. However, intentional and unintentional

overdose accounts for up to 70% of acute liver failure cases in the western world. Extensive

research has demonstrated that the induction of oxidative stress and mitochondrial dysfunc-

tion are central to the development of acetaminophen-induced liver injury. Despite the

insight gained on the mechanism of acetaminophen toxicity, there still is only one clinically

approved pharmacological treatment option, N-acetylcysteine. N-acetylcysteine increases

the cell’s antioxidant defense and protects liver cells from further acetaminophen-induced

oxidative damage. Because it primarily protects healthy liver cells rather than rescuing the

already injured cells alternative treatment strategies that target the latter cell population are

warranted. In this study, we investigated mitochondria as therapeutic target for the develop-

ment of novel treatment strategies for acetaminophen-induced liver injury. Characterization

of the mitochondrial toxicity due to acute acetaminophen overdose in vitro in human cells

using detailed respirometric analysis revealed that complex I-linked (NADH-dependent) but

not complex II-linked (succinate-dependent) mitochondrial respiration is inhibited by acet-

aminophen. Treatment with a novel cell-permeable succinate prodrug rescues acetamino-

phen-induced impaired mitochondrial respiration. This suggests cell-permeable succinate

prodrugs as a potential alternative treatment strategy to counteract acetaminophen-induced

liver injury.

Introduction

Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is one of the most common

over-the-counter medications used worldwide [1, 2]. APAP is considered safe at therapeutic
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Sjövall F, Elmér E, et al. (2020) Cell-permeable

succinate prodrugs rescue mitochondrial

respiration in cellular models of acute

acetaminophen overdose. PLoS ONE 15(4):

e0231173. https://doi.org/10.1371/journal.

pone.0231173

Editor: Jianhua Zhang, University of Alabama at

Birmingham, UNITED STATES

Received: January 12, 2020

Accepted: March 17, 2020

Published: April 6, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0231173

Copyright: © 2020 Piel et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its supplementary

figure.

http://orcid.org/0000-0002-1779-3532
http://orcid.org/0000-0002-2417-5767
http://orcid.org/0000-0001-5612-0325
https://doi.org/10.1371/journal.pone.0231173
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231173&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231173&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231173&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231173&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231173&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231173&domain=pdf&date_stamp=2020-04-06
https://doi.org/10.1371/journal.pone.0231173
https://doi.org/10.1371/journal.pone.0231173
https://doi.org/10.1371/journal.pone.0231173
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


dose but has been associated with acute liver injury and liver failure in cases of intentional and

unintentional overdose. In the western world, APAP accounts for up to 70% of acute liver fail-

ure cases [1–5]. Central to the development of APAP-induced liver injury is the formation of

reactive oxygen species (ROS) and depletion of glutathione [6]. As a result, oxidative stress

damages cellular proteins, including mitochondrial proteins, which induces further oxidative

stress [1, 2, 6]. Within recent years, the critical role of mitochondrial function in the develop-

ment of APAP-induced liver injury has been well established, but details on the exact mecha-

nism of APAP’s mitochondrial toxicity still remain controversial [2, 3, 6–8]. In addition, the

majority of research was done in rodent models and the number of ex vivo or in vivo human

studies addressing the mechanism of APAP-induced hepatotoxicity and the role of mitochon-

drial dysfunction are limited [9, 10]. Despite the extensive research that has been performed to

date on APAP-induced liver failure, the only clinically approved pharmacological treatment

option for APAP intoxication is N-acetylcysteine (NAC). NAC replenishes glutathione levels,

increases the cell’s antioxidant defense and thus, protects from further oxidative damage

induced by APAP. It is more of preventive rather than rescuing nature, with lesser benefit for

the already damaged cells [5, 7, 11]. Therefore, alternative treatment strategies that target the

already damage liver cells are warranted.

In this this study, we investigated mitochondria as potential therapeutic target for treatment

of APAP-induced liver injury in vitro. We first characterized the acute effect of APAP on mito-

chondrial function in primary human hepatocytes, HepG2 cells, and human platelets using

respirometry. We then evaluated the efficacy of a cell-permeable succinate prodrug (NV241), a

mitochondrially targeted alternative energy substrate, to rescue the impaired mitochondrial

respiration following acute overdose of APAP.

Materials and methods

Materials

Unless otherwise stated, chemicals were purchased from Sigma-Aldrich Chemie GmbH

(Schnelldorf, Germany). The cell-permeable succinate prodrug NV241 was provided by Neu-

roVive Pharmaceutical AB (Lund, Sweden) [12].

Human liver cells

Human plateable primary hepatocytes (male, Caucasian, 69 years of age) were acquired from

ThermoFisher Scientific (Bleiswijk, Netherlands) and plated as previously described [13].

The human hepatocyte carcinoma cell line HepG2 (male, Caucasian, 15 years of age) was

purchased from Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany). The cells were cul-

tured at 37˚C and 5% CO2 in minimum essential medium (MEM) (ThermoFisher Scientific,

Bleiswijk, Netherlands) supplemented with 10% fetal bovine serum Sigma-Aldrich Chemie

GmbH (Schnelldorf, Germany), 1% non-essential amino acids, 2 mM L-glutamine, 50 μg�ml-1

streptomycin and 50 U�ml-1 penicillin (all ThermoFisher Scientific, Bleiswijk, Netherlands).

At 70–80% confluence, cells were collected using trypsin (0.05%, ThermoFisher Scientific,

Bleiswijk, Netherlands), re-suspended in culture medium and counted using an automated

cell counter (TC20™ Automated Cell Counter, Bio-Rad laboratories, Solna, Sweden) [13].

Human platelets

The study was carried out in accordance with the Declaration of Helsinki. All blood cell exper-

iments were performed with approval of the regional ethics committee of Lund University,

Sweden (permit no. 2013/181). After written informed consent was acquired venous blood
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from healthy volunteers was drawn in K2EDTA tubes (Vacutainer1, BD, Franklin Lakes,

USA) according to standard clinical practice. Human platelets were isolated and counted as

previously described [14].

Respirometry

Respiration of human primary hepatocytes was measured using the Seahorse XFe96 Analyzer

(Agilent technologies, Massachusetts, USA). The day before the experiment, the primary hepa-

tocytes were plated for four hours at 37˚C and 5% CO2 at a cell density of 20 000 cells per well

on collagen-coated 96-well plates (Agilent Seahorse XFe96 products, Agilent technologies,

Waghaeusel-Wiesental, Germany). The plating medium was subsequently removed and

replaced with culture medium of the same composition as for HepG2 cells. The cells were kept

overnight at 37˚C and 5% CO2 until use. Prior to the experiment the culture medium was

replaced with XF-Base medium (Agilent Seahorse XF, Agilent technologies, Waghaeusel-Wie-

sental, Germany) containing 10 mM glucose, 2 mM L-glutamine and 5 mM sodium pyruvate

(pH 7.4) and the cells were left to equilibrate for 1.5 hours at 37˚C and atmospheric O2 and

CO2 until start of the respirometric protocol [13].

Mitochondrial respiration of the human carcinoma liver cell line HepG2 and of human

platelets was measured with a high-resolution oxygraph (O2k, Oroboros Instruments, Inns-

bruck, Austria). Data were recorded using DatLab software versions 6 and 7 (Oroboros Instru-

ments, Innsbruck, Austria) and respirometry was performed at 37˚C, with 2 mL active

chamber volume and a stirrer speed of 750 rpm. Respirometry protocols with human platelets

and HepG2 cells were performed in MiR05 medium (0.5 mM EGTA, 3 mM MgCl2, 60 mM K-

lactobionate, 20 mM Taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose and 1g/L

bovine serum albumin) and all respiratory values were corrected for the oxygen solubility fac-

tor of the medium (0.92)[15]. Mitochondrial respiration was measured at cell concentrations

of 200 x 106 platelets per mL and 0.5 x 106 HepG2 cells per mL [13, 14, 16, 17].

Respirometric protocols for intact cells

The effect of APAP on mitochondrial respiration was first evaluated in intact human primary

hepatocytes. Due to the restriction of 4 additions per sample in the Seahorse Analyzer increas-

ing doses of APAP or vehicle were added to separate samples/wells. After routine respiration,

the respiration dependent on oxidative phosphorylation of endogenous substrates, was mea-

sured, cells were exposed to vehicle (DMSO, control) or APAP (2.5, 5, 7.5 or 10 mM) for 15

min, followed by the addition of the protonophore carbonyl-cyanide p-(trifluoromethoxy)

phenylhydrazone (FCCP, 1 μM) which was added to uncouple the electron transport system

(ETS) from the phosphorylation pathway and measure maximal respiration dependent on the

ETS alone. This was followed by a simultaneous addition of rotenone (2 μM) and the cell-per-

meable succinate prodrug NV241 (250 μM) to evaluate if mitochondrial complexes down-

stream of complex I (CI) are affected by APAP and if the cell-permeable succinate prodrug

NV241 can bypass APAP-induced inhibition of mitochondrial respiration. Non-mitochon-

drial respiration was measured by addition of the complex III (CIII) inhibitor antimycin A

(1 μg � ml-1) and was subtracted from all respiratory values.

Next, the translatability of the human liver carcinoma cell line HepG2 and human platelets

to study drug-induced mitochondrial and organ-specific toxicity was evaluated. HepG2 cells

and human platelets were re-suspended in MiR05 and routine respiration was measured. After

routine respiration stabilized, increasing, accumulative doses of APAP or vehicle (DMSO, con-

trol) were added to each sample. After the highest dose of APAP (10 mM) or vehicle was

given, CI-linked mitochondrial respiration was inhibited by rotenone (2 μM) and the cell-
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permeable succinate prodrug NV241 (250 μM) was added subsequently to investigate if mito-

chondrial complexes downstream of CI are affected by APAP and if the cell-permeable succi-

nate prodrug NV241 can bypass APAP-induced inhibition of mitochondrial respiration. Non-

mitochondrial respiration was measured by addition of antimycin A (1 μg � ml-1), which all

respiratory values were corrected for.

Respirometric protocols for permeabilized cells

To further characterize the inhibitory effect of APAP on mitochondrial respiration, a sub-

strate-uncoupler-inhibitor titration (SUIT) protocol was applied using HepG2 cells and

human platelets. After routine respiration was measured, intact HepG2 cells and human plate-

lets received either APAP (10 mM) or vehicle and were exposed for 10 min. Following the

exposure, the plasma membrane was permeabilized using digitonin to allow substrates, which

are otherwise impermeable, cellular access, followed by sequential additions of complex-spe-

cific substrates and inhibitors [17]. Platelets were permeabilized with 1 μg digitonin per 1�106

platelets [14] and HepG2 cells were permeabilized with 10 μg digitonin per 1�106 cells. The

optimal digitonin concentrations were determined in separate experiments and found to

induce maximal cell membrane permeabilization without disruption of mitochondrial

respiration.

Respirometric protocol to evaluate the coupling potential of the cell-

permeable succinate prodrug NV241

In human platelets, the effect of APAP (10 mM) or vehicle (DMSO, control) on routine respi-

ration was evaluated for 10 min, followed by the addition of the cell-permeable succinate pro-

drug NV241 (250 μM) or its vehicle (DMSO, control). Subsequently, coupled mitochondrial

respiration, the respiration coupled to phosphorylation by the ATP-synthase, was measured by

and calculated as the difference before and after addition of the ATP-synthase inhibitor oligo-

mycin (1 μg/ml) [18]. The respirometric protocol was completed by measuring non-mito-

chondrial respiration following the addition of the CI inhibitor rotenone (2 μM) and the CIII-

inhibitor antimycin A (1 μg/ml), which all respiratory values were corrected for.

Data analysis

As the magnitude of change in the evaluated parameter was not pre-defined, power calculation

for sample size was not applied. Experiments with HepG2 cells and human platelets were per-

formed with a group size of six replicates and experiments with primary human hepatocytes

were conducted with three separately prepared replicates of the same donor (each

including� 4 technical replicates per group). Statistical analyses were performed using Graph-

Pad Prism version 7 (GraphPad Software, Inc., La Jolla, California, USA). Data are presented

as mean ± range or scatter plot and mean ± range. Because the baseline routine respiration of

primary hepatocytes demonstrated more variation before start of exposure to APAP as com-

pared to HepG2 cells and human platelets, quantification and data analysis was performed

with data expressed as percentage (%) of routine respiration (first measurement of routine res-

piration). All other data are expressed as pmol O2 × sec-1 × cell number-1. Respiratory states

measured by high-resolution respirometry of human platelets were previously found to be nor-

mally distributed [14], justifying the use of parametric tests for the present study. Analyses of

differences between�3 groups were performed by one-way ANOVA with Dunnet‘s (Fig 1) or

Tukey’s (Fig 7) multiple comparison test. Paired, two tailed student’s t-test was used for com-

parison of two groups (Figs 2, 3, 5 and 6). The half maximal inhibitory concentrations (IC50)
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were calculated by standard nonlinear curve fitting of normalized values (% of routine respira-

tion, Fig 4). A p-value of 0.05 or less was considered to indicate significant differences.

Results

Effect of acetaminophen on mitochondrial respiration of intact primary

hepatocytes, HepG2 cells and human platelets

We first assessed the effect of APAP on mitochondrial respiration in intact human primary

hepatocytes. Following exposure to APAP for 15 min routine respiration was dose-
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https://doi.org/10.1371/journal.pone.0231173.g001
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dependently decreased compared to control (Figs 1 and 4). Subsequent uncoupling of the elec-

tron transport from the phosphorylation pathway with FCCP to measure mitochondrial respi-

ration related to the ETS alone also showed a dose-dependent decrease with APAP as

compared to vehicle control (Fig 1C). To evaluate whether mitochondrial complexes down-

stream of CI would be affected by APAP and if a cell-permeable succinate prodrug can bypass

APAP-induced inhibition of mitochondrial respiration, a simultaneous addition of rotenone

and the cell-permeable succinate prodrug NV241 followed. While the magnitude of decrease

in mitochondrial respiration in response to this addition differed between vehicle-treated and

APAP-intoxicated cells (Fig 1A), the respiration levels after the simultaneous addition of rote-

none and NV241 were mostly similar between groups (Fig 1D). The remaining complex II

(CII)-linked mitochondrial respiration supported by the cell-permeable succinate prodrug

NV241 (Fig 1D) showed a minor difference between control and APAP-treated primary hepa-

tocytes at the lowest dose tested (2.5 mM, p<0.05) but no effect at higher doses, indicating a

lack of dose-dependency.

Next, we assessed the suitability of the human hepatocyte carcinoma cell line HepG2 for in-

depth characterization of the mitochondrial inhibition in liver cells induced by APAP. Similar to

primary human hepatocytes, routine respiration supported by endogenous substrates decreased

dose-dependently following exposure to APAP (Figs 2A and 4). At a dose of 10 mM, routine res-

piration was significantly reduced by 60% compared to vehicle control (p<0.01) (Fig 2B). After

addition of APAP, CI was inhibited with rotenone to subsequently measure CII-linked mitochon-

drial respiration in the presence of the cell-permeable succinate prodrug NV241 and isolated

from any effects of APAP on CI and to additionally evaluate the ability of NV241 to bypass

APAP-induced mitochondrial dysfunction. Addition of NV241 resulted in similar levels of CII-

linked mitochondrial respiration in vehicle controls and APAP-intoxicated cells (Fig 2C).

We then evaluated the translatability of human platelets as surrogate tissue to study APAP’s

effect on mitochondrial function, using the same protocol as described for HepG2 cells. As pri-

mary, non-cultured human cells, human platelets from healthy donors present a source of via-

ble, fresh mitochondria. In intact human platelets, routine respiration supported by

endogenous substrates was likewise reduced dose-dependently in response to APAP (Figs 3A

and 4). At the highest dose, APAP (10 mM) reduced routine respiration by 52% compared to

vehicle control (p<0.001) (Fig 3B). We continued the protocol with the addition of rotenone

followed by the cell-permeable succinate prodrug NV241. Like in primary human hepatocytes

and HepG2 cells, treatment with the cell-permeable succinate prodrug NV241 resulted in simi-

lar levels of respiration in vehicle controls and APAP-intoxicated cells (Fig 3C).

Despite differences in routine respiration before exposure, the sensitivity to inhibition by

APAP was similar between the three cell types, with primary hepatocytes demonstrating a

slightly lower IC50 value than HepG2 cells and human platelets (primary hepatocytes: IC50 6.0

mM, HepG2 cells: IC50: 6.6 mM and human platelets: IC50: 7.4 mM, Fig 4). This demonstrates

that HepG2 cells and human platelets are suitable cellular models for further evaluation of the

inhibition of mitochondrial respiration by APAP.

Characterization of the inhibition of mitochondrial respiration in HepG2

cells and human platelets

Further in-depth characterization of the inhibitory effect of APAP on mitochondrial respira-

tion was performed using a Substrate-Uncoupler-Inhibitor-Titration (SUIT) protocol. After

exposure to APAP (10 mM) for 10 min, intact platelets or HepG2 cells were permeabilized

using digitonin, which was followed by sequential additions of complex-specific substrates and

inhibitors at saturating concentrations to allow measurements of maximal respiratory
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capacities. Representative traces of simultaneously measured respiration of vehicle-treated and

APAP-treated HepG2 cells are illustrated in Fig 5A.

In HepG2 cells, maximal CI-linked, ADP-stimulated mitochondrial respiration in the pres-

ence of the substrates malate, pyruvate, and glutamate (OXPHOSCI-linked) was significantly

decreased by 66% in APAP-treated cells (p<0.001) (Fig 5A and 5B). Despite decreased

OXPHOSCI-linked respiration, convergent complex I+II (CI+II)-linked, maximal ADP-stimu-

lated mitochondrial respiration in the presence of malate, pyruvate, glutamate, and succinate

(OXPHOSCI+II-linked) was unchanged in APAP-intoxicated HepG2 cells as compared to con-

trol (Fig 5A and 5C). Both maximal convergent CI+CII- and CII-linked mitochondrial respi-

ration dependent on the ETS alone were unaffected in HepG2 cells by APAP (S1 Fig).
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doses of acetaminophen or vehicle (DMSO, control) were given, followed by inhibition of complex I with rotenone and subsequent addition of

the cell-permeable succinate prodrug NV241 to assess complex II-linked, succinate-dependent respiration and evaluate the ability of NV241 to

bypass acetaminophen-induced mitochondrial dysfunction. Non-mitochondrial respiration was measured by subsequent addition of the

complex III inhibitor antimycin A, which all respiration values were corrected for. Boxes below the traces indicate the cellular state and substrate

condition for each respiratory state and shaded background indicates the respiratory states shown in (b) and (c). Effect of vehicle (control, open
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https://doi.org/10.1371/journal.pone.0231173.g002
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In human platelets, maximal CI-linked and convergent CI+II-linked, ADP-stimulated

mitochondrial respiration, as well as maximal convergent CI+II-linked respiration dependent

on the ETS alone was reduced following exposure to APAP: OXPHOSCI-linked (p<0.01,

Fig 6A), OXPHOSCI+II-linked (p<0.01, Fig 6B) and ETSCI+II-linked (p<0.01, Fig 6C), respec-

tively. Like in HepG2 cells, maximal CII-linked respiration dependent on the ETS alone

(ETSCII-linked) remained unaffected by APAP (Fig 6D).

Treatment effect of a cell-permeable succinate prodrug on acetaminophen-

induced inhibition of mitochondrial respiration

Lastly, we evaluated if the normalization of mitochondrial respiration by this novel pharmaco-

logical treatment strategy is linked to phosphorylation activity by the ATP-synthase. This was
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evaluated in intact human platelets following exposure to APAP (10 mM) for 10 min, with and

without subsequent treatment, and calculated as the difference in respiration before and after

the inhibition of the ATP-synthase. Mitochondrial respiration coupled to phosphorylation by

the ATP-synthase, here referred to as coupled respiration, was decreased by 40% (p<0.01) by

APAP (Fig 7). Treatment with the cell-permeable succinate prodrug NV241 rescued coupled

respiration and restored it to the level of controls (Fig 7).

Discussion

In this study, we demonstrated that APAP induces an immediate inhibition of mitochondrial

respiration in human-derived cells through interference with CI or upstream metabolism

while respiration associated with CII and downstream complexes remains unaffected. The tox-

icity profile of APAP on mitochondrial respiration was not exclusive to hepatic cells and was

confirmed in fresh human platelets, presenting them as suitable surrogate tissue to study the

role of mitochondrial dysfunction in acute APAP-induced toxicity. Treatment with a cell-

permeable succinate prodrug normalized the drug-induced impairment of mitochondrial res-

piration, demonstrating the ability of succinate to bypass APAP-induced mitochondrial dys-

function and presenting cell-permeable succinate as a potential novel pharmacological

treatment strategy for APAP-induced liver injury.

APAP is the main cause for acute liver failure in the western world and, with a mortality

rate of 0.4%, not uncommonly ends fatally [1–4]. The critical role of mitochondrial dysfunc-

tion in the development of APAP-induced liver injury and failure has been previously reported

by others [2, 3, 6, 7, 9, 10, 19]. Inhibition of the respiratory chain, induction of mitochondrial

permeability transition, increased mitochondrial oxidative stress, decreased mitochondrial

ATP production and increased mitophagy has been associated with APAP overdose [2, 3, 6,

7]. In this study, we demonstrated that APAP induces mitochondrial toxicity through or
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upstream of CI. The results of this study are corroborated by a study recently published by

Chrøis, Larsen, Pedersen, Rygg, Boilsen, Bendtsen et al. [20] demonstrating inhibition of CI-

linked mitochondrial respiration by APAP using ex vivo human liver. By inhibiting CI-linked

pathways, the most efficient way to oxidize NADH, translocate protons across the inner mito-

chondrial membrane, uphold the mitochondrial membrane potential and produce ATP is dis-

abled by APAP [21]. The experimental design of our study and the study by Chrøis, Larsen,

Pedersen, Rygg, Boilsen, Bendtsen et al. [20] included exposure of intact cells and tissues to

APAP. This allows for the mitochondrial toxic effect to be caused by either APAP directly or

N-acetyl-p-benzoquinone imine, that is the reported highly toxic metabolite of APAP which is
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generated intracellularly at excessive amounts when the APAP-induced oxidative stress has

depleted cellular glutathione. Independent of the origin of the toxic species, CII or down-

stream complexes were left mostly unaffected. The effect on CII-linked mitochondrial respira-

tion observed in primary hepatocytes did not follow a dose-response pattern as only the lowest

concentration of APAP tested showed a minor reduction of respiration. Therefore, the

observed reduced CII-linked mitochondrial respiration in primary hepatocytes is likely unspe-

cific and not related to APAP.

Currently, the only clinically approved pharmacological treatment option for APAP over-

dose is NAC. NAC replenishes glutathione levels which increases the cell’s ability to scavenge

ROS. Thus, it protects liver cells from further APAP-induced oxidative injury [1, 5, 22].

Already damaged liver cells, however, benefit little from NAC treatment. Therefore, alternative

treatment strategies are needed that can rescue the already damaged liver cells and prevent the

resulting acute liver failure. At the preclinical stage, a limited number of mitochondrial tar-

geted treatment strategies have shown success. The most promising pharmacological strategy,

a mitochondrial-targeted antioxidant, decreased the magnitude of liver injury in mouse mod-

els of late-stage presenting APAP intoxication by reducing mitochondrial-related ROS
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production [7, 22, 23]. In this study, we demonstrated that CII-linked mitochondrial metabo-

lism of a cell-permeable succinate prodrug can bypass and compensate for the decreased CI-

linked mitochondrial metabolism following acute APAP exposure. These findings point

towards a novel alternative treatment strategy for APAP-induced liver failure: mitochondrial-

targeted, cell-permeable succinate prodrugs. Supplementation of an alternative energy source

that liver cells can utilize despite the inhibitory effect of APAP on CI-linked metabolism could

potentially allow them to maintain the required level of energy production and thus, rescue

already injured liver cells. Succinate treatment has previously demonstrated by others to

improve bioenergetics and reduce cell death in vitro in models of traumatic brain injury, met-

formin-induced and oxidant-induced mitochondrial dysfunction [24–26], thus, further sup-

porting this hypothesis. The cell-permeable succinate prodrug presented in this study is the

lead candidate of the first generation of an extensive rational drug design program focused

around Krebs cycle intermediates for treatment of mitochondrial dysfunction and related dis-

orders. The succinate prodrug has improved cell-membrane permeability over succinate and

has shown to release succinate intracellularly, bypass mitochondrial complex I-related dys-

function and support oxidative phosphorylation [12, 18, 27]. Because NV241 lacks sufficient

stability in plasma and serum containing media, we were not able to investigate its treatment

effect on long-term cellular effects caused by APAP or in vivo. Currently, compounds which

are more stable and suitable for in vivo use are under development for future studies [28].

Succinate has primarily been known as a metabolite of the TCA cycle. Over time, it has

emerged to play a role in epigenetics, cell proliferation, paracrine signaling, ROS formation

through reversed electron transport (RET) and inflammation [29–31]. While the risk of

increased ROS through RET is low in the presence of CI inhibition [32], the role of succinate

in inflammation, especially during APAP-induced liver damage, needs to be further investi-

gated. In the liver, succinate has been shown to contribute to activation of hepatic stellate cells

and Kupffer cells, which phagocytose dead and apoptotic parenchymal cells but also send out

pro-inflammatory signals and thus, potentially further aggravate APAP-induced liver injury
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post hoc test was performed for analysis of differences. APAP: acetaminophen. ��p<0.01. ��� = p<0.001. n = 6.
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[30, 33]. Whether a succinate-induced pro-inflammatory response would aggravate APAP-

induced liver injury or stimulate tissue repair pathways remains to be elucidated [30, 34].

In this study, human platelets and the human carcinoma liver cell line HepG2 were used as

surrogate tissues to study the effect of APAP on mitochondrial respiration as well as the rescue

effect of NV241 in acute APAP intoxication. The translatability between human platelets and

tissue specific cell lines is continuously reevaluated. Human platelets, a fresh source of viable

mitochondria, have been described to rely on oxidative phosphorylation and reflect mitochon-

drial function of other, more metabolically active tissues [35–38]. Also cancer cells, long

believed to rely solely on glycolysis, have now been described to upregulate their mitochondrial

metabolism under certain conditions and rely on mitochondrial function for several cancero-

genic processes [39, 40]. Even though there are important differences between primary hepato-

cytes, HepG2 cells and human platelets, our data indicate that they show a relative comparable

sensitivity towards drug-induced mitochondrial dysfunction, as indicated by the similar IC50

values determined in this study. Our data therefore present these cell types as suitable surro-

gate tissues to study the role of mitochondrial dysfunction in drug-induced toxicity and fur-

ther indicate that the liver specific toxicity in patients with acute APAP intoxication is likely

due to the first-pass metabolism of APAP instead of liver specific metabolism of the drug.

In conclusion, in this study we demonstrated, using human-derived cells, that APAP

induces mitochondrial inhibition through CI (or upstream thereof) while CII and downstream

complexes are unaffected. We further showed that a cell-permeable succinate prodrug normal-

izes APAP-induced inhibition of mitochondrial respiration, presenting pharmacological

bypass of APAP-induced mitochondrial toxicity with cell-permeable succinate prodrugs as a

promising alternative treatment strategy for APAP-induced mitochondrial dysfunction and,

potentially, liver injury.

Supporting information

S1 Fig. Effect of acetaminophen on the electron transport system of HepG2 cells. Effect of

the exposure of intact HepG2 cells to acetaminophen (red square) or vehicle (control, open

square) in subsequently permeabilized cells to apply a Substrate-Uncoupler-Inhibitor-Titra-

tion protocol and assess the effect of acetaminophen on mitochondrial respiration which was

uncoupled from the phosphorylation pathway using FCCP and dependent on the electron

transport system alone. (a) Maximal convergent complex I and II-linked mitochondrial respi-

ration dependent on the electron transport system alone (ETSCI+II-linked) and (b) maximal

complex II-linked mitochondrial respiration dependent on the electron transport system

alone (ETSCII-linked). Data are expressed as individual scatter plots and mean plus range. CII:

complex II. CI+II: complex I+II. ETS: electron transport system. FCCP: carbonyl-cyanide p-

(trifluoromethoxy) phenylhydrazone. n = 6.
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