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Abstract: Modulating the expression or function of the enigmatic MYC protein has demonstrated
efficacy in an array of cancer types and a marked potential therapeutic index and safety profile.
Despite its high therapeutic value, specific and selective inhibitors or downregulating therapeutics
have proven difficult to develop. In the current study, we expanded our work on a MYC promoter
G-quadruplex (G4) stabilizing DNA clamp to develop an oligonucleotide interfering DNA (DNAi)
therapeutic. We explored six DNAi for G4-stabilization through EMSA, DMS footprinting, and
thermal stability studies, focusing on the DNAi 5T as the lead therapeutic. 5T, but not its scramble
control 5Tscr, was then shown to enter the nucleus, modulate cell viability, and decrease MYC
expression through G4-stabilization. DNAi 5T is thus described to be our lead DNAi, targeting MYC
regulation through stabilization of the higher-order DNA G4 structure in the proximal promoter, and
it is poised for further preclinical development as an anticancer therapeutic.

Keywords: MYC; G-quadruplex; transcriptional regulation; DNAi

1. Introduction

MYC, a basic helix-loop-helix/leucine zipper transcription factor, affects cellular
proliferation, apoptosis, metastasis, angiogenesis, and microenvironment regulation [1].
Dysregulated MYC has been noted in many disorders [2–12], but it is first and foremost
known for its oncogenic role [13–16] and in particular for its involvement in lymphoma-
genesis [17–19]. MYC is rearranged, amplified, or otherwise overexpressed in multiple
types of non-Hodgkin’s lymphoma, including ~100% of Burkitt’s (BL) [20], 30% of diffuse
large B-cell (DLBCL) [21–23], and >50% of mantle cell (MCL) lymphomas [24]. Translo-
cations involving the MYC gene define BL, change in MYC is a central molecular char-
acteristic underlying a genetic, versus phenotypic, characterization of DLBCL, wherein
increased MYC activity is a negative prognostic factor, and MYC overexpression is cor-
related with decreased survival in MCL. Increased MYC expression or activity in both
DLBCL and MCL correlates with a poor response to the standard chemotherapeutic regi-
men, CHOP [22,24–28]. Approaches that result in decreased MYC expression have been
shown to significantly impact tumor viability while offering a notable therapeutic window
and overall safe profile [29–31].

As we and other groups have shown, stabilization of the higher-order genomic
structure—the G-quadruplex (G4)—in the G/C-rich proximal region of the MYC promoter
is an established approach to decreasing transcription and facilitating tumor lysis [32,33].
Negative superhelicity induced by MYC transcription due to translocation or overexpres-
sion, as found in NHL, can promote local unwinding of the G/C-rich promoter region,
which allows for the formation of G4s. G4s are made up of two or more stacked tetrads,
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formed by the Hoogsteen hydrogen bonding of four guanines, and are stabilized by mono-
valent cations, such as K+. Putative G4-forming regions have at least four runs of two
or more (most often three or more) consecutive guanines (G-tracts) separated by varying
nucleotides that comprise the loop structures. The structures are classified by their loop
directionality, length, and constitution [32–34]. The MYC promoter contains six contiguous
runs of three or more continuous guanines. While several G4 isoforms have been described
within the MYC promoter G-rich region, the physiologically relevant isoform has been
identified to form from the first four contiguous runs, termed G41-4 [30,32,34–36].

While many molecules have been developed that target G4s [37], very few have
demonstrated selectivity for an individual promoter G4 [38]. Only a select few have
advanced to clinical trials [34,39], including one pan-G4-stabilizer in current trials for
BRCA-mutated breast cancers [40]. However, no preclinical or clinical agent has yet been
described with a high degree of selectivity. As a means to overcome specificity constraints,
our group pioneered a clamped DNA interference (DNAi) approach to take advantage
of the “druggability” of the DNA structure in the MYC promoter [35]. Our previously
described clamp complements the 5′ and 3′ regions of the promoter that flank the G4 and
holds them at a distance of 18 Å with an abasic linker. The oligonucleotide clamp was
shown to be specific for the physiologically relevant structure forming from the first four
of six contiguous runs of continuous guanines (G41-4), to induce its formation, and to
dose-dependently downregulate MYC promoter activity by up to 71%, in vitro. While the
originally described clamp utilized an abasic linker to span the 18 Å, in order to enable
more flexible modification of the oligonucleotide, as well as to increase its scalability in
a cost-effective manner from several commercial sources, we sought to replace the linker
with thymines. Thymines were chosen due to their lack of involvement in G::C basepairing.
Five thymines maintain the 18 Å of the original clamp. Plus or minus two thymines (3T-7T),
for a distance of ±7.2 Å, within the linking region were explored in the development of the
clamp into a DNAi (Figure 1A); 1T was included as a negative control, as a linker of 3.6 Å
does not fit the model of enabling G4-formation.
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Figure 1. Proposed DNAi mechanism of action for MYC G4 recognition. (A) dsDNA opens up on
a transient basis due to superhelical stress and is capable of forming a higher-order G4 structure.
Adding DNAi that complements the regions flanking the G4-forming promoter section can shift
the equilibrium to maintain more G4 formation, enhancing the silencing function within the MYC
promoter. (B) EMSA separation of the higher-order DNA species can differentiate between unbound
linear or G4 DNA, DNA wherein the DNAi complements the G4-forming region on one flank, and
DNA where the DNAi captures both flanking regions.
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2. Result
2.1. Biophysical Characterization of DNAi Binding to the MYC G4

The replacement of an abasic linker with thymines affords a cost-effective means to
increase flexibility in the linker distance between the two flanking complementary regions
of the DNAi, as commercial costs were cut more than 20-fold. Therefore, we examined
the binding and G4-stabilization of an array of DNAi with linkers ranging from 3.6 to
25.2 Å with 1 or 3–7 thymines (named 1T, 3T–7T). The DNAi array was incubated with
the MYC G-rich, G4-forming Pu46 sequence, which was then annealed to form a G4 and
subjected to EMSA (Figures 1B and 2A, top). All of the DNAi demonstrated both super- and
suprashifted bands, indicating both complementarities to the G4-flanking region to form
dsDNA, and either recognition of a higher-order G4 structure or capture of both the 5′- and
3′-flanking sequences, respectively (Figure 1B). G4 and dsDNA formation was confirmed
by electronic circular dichroism from the mixture of structures, wherein a positive Cotton
effect at 262 nM coincides with a parallel G4 and the presence of a shoulder Cotton effect
from 270 to 280 nM in the presence of all DNAi confirms dsDNA binding (Figure S1). Super-
and suprashifted banding was noted with the MYC MT5 sequence, which isolates the
physiologically relevant G41-4 structure (Figure 2A, middle), while only double-stranded
binding was noted with the G4 knockout MYC MT1,2,3,4 sequence (Figure 2A, bottom).
This band pattern and sequence specificity were also noted with the original clamp a [35].
Notably, 1T and 5T demonstrated the greatest induction of the suprashifted band when
incubated and annealed with both the WT and MT 5 sequences.
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Figure 2. DNAi optimization for MYC G4 recognition. (A) Electromobility shift assays (EMSAs)
were performed with the DNAi array with WT Pu46 DNA (top), G41-4-forming MT 5 DNA (middle),
and non-G4 forming MT 1,2,3,4 DNA (bottom). As determined in the development of clamp a [35],
the supershifted (middle band) DNA represents the DNAi complementing the 5′ G4-flanking region,
while the suprashifted (upper band) DNA represents a DNAi:MYC G4. (B) DMS footprinting clarifies
the G:::G bonding of Pu46 with each DNAi, as isolated from each EMSA band. The six contiguous
runs of continuous guanines within the Pu46 sequence are denoted to the left of the footprints. Linear
DNA is noted in Bands 1–6, 8, 9, 11, 12, 15, 16, 18, and 19. G41-4 formation is evident in Bands 7, 10,
and 14, indicated that DNAi 3T, 4T, and 5T can stabilize the physiologically relevant structure. A
protection pattern ascribed to a mixture of G4 isoforms is noted in Bands 13, 17, and 20.
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Through previous experience, it was noted that the supershifted bands noted on
EMSA represented dsDNA formed through complementing the 3′ flanking region of the
G4-forming Pu46 sequence and the suprashifted band represented a G4 captured by dsDNA
formation on both flanks. It is, however, plausible that the suprashifted band can occur
without G4 formation, such as by stabilizing a loop flanked by two dsDNA complementing
regions (Figure 1B). Thus, in order to assess the nature of the DNA structure separated
and represented by each band, Pu46 was incubated with each DNAi at a 1:1 ratio, the
species were separated by EMSA, isolated from the gel, and subjected to DMS footprinting
(Figure 2B). G41-4 formation is noted in the suprashifted bands when Pu46 was incubated
with 3T (Lane 7, full protection noted in the first three runs, and partial protection in Runs
4 and 5), 4T (Lane 10, protection notable in all six runs of contiguous guanines), and 5T
(Lane 14, protection noted in the latter three guanines of the first guanine run, the second
and the third; partial protection noted in Run 4 and hypercleavage evident in Run 5). A
less clear cleavage pattern, and thus G:::G bonding pattern to form a G4, was clarified
with Pu46 + 1T (Lane 7, no pattern of protection noted), 6T (Lane 17, minimal protection
in Runs 1 and 3), or 7T (Lane 20, minimal protection in Runs 1 and 3) incubation. In
particular, the suprashifted EMSA band formed in the presence of 5T is most in agreement
with G41-4 formation and in the presence of 1T is consistent with an ssDNA loop, as seen
by DMS tagging and subsequent cleavage at all guanines in the sequence, rather than a
higher-order G4.

2.2. DNAi Therapeutic Potential

Each of the DNAi was further incubated with dual-labeled Pu46, which was subjected
to the FRET Melt2 assay (Figure 3A) [41]. The TM of Pu46 incubated with vehicle control
was 53.8 ± 0.5 ◦C, and the ∆TM after incubation with the DNAi ranged from 0.9 to 13 ◦C.
3T, 4T, and 5T demonstrated the most marked (∆TM > 10 ◦C) increases in TM to 66.7 ± 1.3,
65.4 ± 0.9, and 64.2 ± 0.8 ◦C, respectively. 1T increased the TM to 60.8 ± 1.8 (∆TM = 7 ◦C),
whereas the changes in TM with 6T and 7T were negligible (∆TM < v4 ◦C to 54.6 ± 1.7 and
57.4 ± 1.8, respectively). Subsequently, HEK-293 cells were transiently transfected with either
promoterless luciferase vector (EV) or one containing the MYC promoter (Del4) in concert
with equimolar DNAi, as previously reported for clamp a [35] (Figure 3B). DNAi 1T, 3T, 4T,
and 5T all significantly decreased promoter activity in the Del4 plasmid, in agreement with
the FRET Melt2 findings and further corroborating the enhanced predictive nature of the
modified FRET assay. 1T and 5T most markedly decreased promoter activity by 81 and 76%,
respectively. Taken together, 1T appears to complement the 5′ and 3′ flanking regions of
the MYC promoter G4, facilitating a single-stranded intervening loop, while 3–5T appear to
complement the flanks and enable G4 formation. From a biological perspective, as measured
by the luciferase assay, alteration of a noncanonical dsDNA structure of this region to either a
G4 or ssDNA loop may modulate MYC expression. Follow-up studies were performed on
these four sequences in a more biologically intact system.

2.3. DNAi Cellular Activity

Burkitt’s lymphoma (BL) is driven by a translocation that puts MYC expression under
the regulation of an immunoglobin gene [20]. In the RAJI BL cell line, the translocation
between chromosomes 8 and 14 results in increased transcription of the MYC gene and
maintains regulation by the MYC promoter G4. In the CA46 BL cell line, the chromosome
8:14 translocation similarly results in increased MYC transcription, but there is a loss of
G4-mediated transcriptional control for most MYC expression. These paired cell lines are
often used to discriminate between MYC G4-related therapeutic effects. DNAi 1T, 3T, 4T,
and 5T, having demonstrated downregulation of MYC promoter activity, were examined
further for MYC G4-stabilization and intracellular activity in RAJI and CA46 lymphoma cell
lines. Their cytotoxic effects were examined for 72 h, and their effects on MYC transcription
were monitored (Figure 4 and Figure S2). The cellular viability of RAJI and CA46 cells were
dose-dependently modulated by 1T, 3T, and 4T in a manner that does not discriminate
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between the predominant MYC G4-maintaining RAJI cells, and the MYC G4-lost CA46
cells (Figure S2). While RAJI cells demonstrated decreased viability, as compared to CA46
cells at 30 and 100 ng of DNAi 1T, 3T, and 4T, at higher doses, both cell lines were similarly
affected. Examination of changes in MYC transcription 500 ng DNAi, the ~IC50 at 72 h,
did not reveal any remarkable changes in either cell line.
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Figure 3. Therapeutic potential of DNAi. Thermal stabilization of MYC G4 formation by the DNAi, as measured by the
FRET Melt2 assay (A). Melting curves (left) were analyzed by nonlinear regression methods to determine the TM (right).
Equimolar ratios of DNAi 3T, 4T, and 5T demonstrated >10 C increases in thermal stability of MYC G4-forming Pu46, 1T
increased thermal stability by 7 ◦C, while 6T and 7T’s effects were negligible (<4 ◦C). Experiments were performed in
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significantly decreased MYC promoter activity. * p < 0.05, ** p < 0.01, *** p < 0.001; experiments were performed in triplicate.
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Figure 4. Efficacy of DNAi 5T in Burkitt’s lymphoma cell lines. (A) DNAi 5T or 5Tscr (500 ng) was
incubated with RAJI cells for 24 h and the effects on cell viability (left) or MYC regulation (right)
were measured. 5T, but not 5Tscr, decreased both RAJI cell viability and MYC mRNA expression.
In the CA46 BL cell line, lacking G4-control on the majority of MYC expression, no effects were
noted on cell viability with up to 10 µg of DNAi. However, (B) the CA46 exon test demonstrated a
significant dose-dependent decrease in MYC expression in mRNA containing exon 1, which is still
under the control of the MYC promoter G4, but not from exon 2 lacking G4-control. Experiments
were performed in duplicate with technical triplicates. * p < 0.05 as compared to untreated control.
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In contrast, 5T mediated a dose-dependent decrease in RAJI cell viability with no signifi-
cant effects in the CA46 cell line. The 72 h IC50 of 5T in RAJI cells is 358 ± 2.6 ng, whereas
CA46 were unaffected at concentrations up to 10 µg. To fully explore the cellular effects of 5T,
described below, we designed a scramble control (5Tscr) of the same length and containing
the same nucleotides. 5Tscr was subjected to EMSA and FRET Melt2 analysis. No super- or
suprashifting was noted by EMSA (Figure S3); the ∆TM determined by FRET Melt2 with 5T
scr incubated with dual-labeled MYC G4 DNA was 0.9 ◦C. From these consistent data, 5T scr
was further used as a negative DNAi control. 5Tscr does not modulate the viability of RAJI
cells at doses up to 1 µg. The effects of 500 ng of 5T and 5Tscr in RAJI cells were compared for
both viability and effects on MYC transcription (Figure 4A). DNAi 5T significantly (* p < 0.05)
decreased both RAJI viability by 75% and MYC expression by 48%, whereas 5Tscr did not
mediate any significant change.

No changes were noted in CA46 viability with the 5T or 5Tscr DNAi up to 10 µg, in
agreement with the proposed mechanism of DNAi action. A benefit of studying the CA46
cell 5 is the ability to run an ‘isogenic’ qPCR assay termed the CA46 exon test, which can
differentiate changes in MYC expression within the CA46 cell line under the control of the
endogenous promoter G4 (exon 1 only) as compared to the translocated promoter lacking
a G4 (exon 2) [38,39,42]. Using this assay, we examined the effects of G4-mediated changes
in MYC expression as demonstrated by the dose-dependent decreased expression in CA46
cells of MYC mRNA containing exon 1, but not exon 2, by DNAi 5T (Figure 4B), no changes
in either exon were noted with 5Tscr.

2.4. DNAi 5T Selectivity and Specificity for the MYC G4

DNAi 5T encompasses approximately the same distance of 18 Å as the originally
published clamp a [35]. The binding of 5T to the WT MYC G4-forming DNA was compared
to that of clamp a (Figure 5A) by EMSA. Both the super- and suprashifted banding patterns
were comparable, although those associated with 5T showed a slower migration pattern
due to the weight and size of the five thymines, as compared to the abasic linker. Moreover,
it was previously demonstrated that the 3′, 5′, and linking regions were all required to
be both present and physically connected for clamp a recognition of the MYC G41-4 [35].
DNAi 5T was dissected to its three components (5T 5′, 5T 3′, and 5T 5xT) to examine if the
same requirement was maintained (Figure 5A). Minorly shifted bands are visible when
the 5′ 5T sequence, complementing the 3′ flank of the MYC G4 is present, but super- and
suprashifting EMSA patterns that matched clamp a were noted only when all three compo-
nents were present and physically connected. The selectivity of 5T for the MYC G4 isoform
was shown again by comparative EMSAs with the WT, MT5, and MT1,2,3,4 sequences of
the MYC promoter, and specificity for the MYC G4 was demonstrated by incubating DNAi
5T at equimolar concentrations with the G4-forming sequences for the VEGF, KRAS, BCl-2,
and NRAS promoters. Unsurprisingly, given the lack of complementarity between the
DNAi and the other promoter G4 sequences, no shifted bands were noted (Figure 5B).

2.5. DNAi 5T Recognition of the MYC G4

RAJI cells were incubated with FAM-labeled DNAi 5T or 5Tscr for a day before fixation,
permeabilization, and visualization for DNAi nuclear penetration, as measured by confocal
microscopy, as compared to a transfection vehicle control (Figure 6A). FAM-labeled 5T
had comparable binding affinity to the MYC G4 as unlabeled 5T (Figure S4). Both 5T and
5Tscr demonstrated nuclear uptake, as evidenced in the overlay wherein FAM localization
coincided with Hoescht 33342 stained nuclei. ImageJ analysis of FAM and Hoescht means
within each confocal image illustrate 1.8-fold higher mean intranuclear concentration of 5T,
as compared with 5Tscr, within the RAJI cells (Table 1).
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Figure 5. DNAi 5T selectivity and specificity for MYC G41-4. (A) 5T binding to WT Pu46 was
compared to clamp a and to its partitioned components. 5T shifting was similar to that of clamp
a, albeit heavier due to the five thymes, as compared to the abasic linker. Notable recognition of
Pu46 was not evident with any component of 5T. (B) FAM-labeled 5T was used to examine binding
to an array of G4-forming sequences, including those from the MYC (WT and MT5, as well as the
non-G4-forming MT1,2,3,4), VEGF, KRAS, Bcl-2, and nRAS promoters were examined.

Table 1. Intranuclear accumulation of DNAi in RAJI cells.

DNAi NSC338258 Mean Hoescht
Intensity

Mean FAM
Intensity Hoeschtmean/FAMmean

5T - 4.1 6.4 1.6

5Tscr - 3.9 5.6 0.9

5T + 2.3 7.0 3.1

5Tscr + 4.4 6.1 0.9

NSC 338258 is a compound that was previously demonstrated to decrease MYC
transcription by stabilization of the MYC promoter G4 in the RAJI cell line [42]. RAJI
cells were incubated for a day without (Figure 6A) or with (Figure 6B) the 2.5 µM NSC
338258 (the 24 h IC50) alone or with vehicle, 5T or 5Tscr before fixation, permeabilization,
and visualization. Enhanced nuclear localization was noted for DNAi 5T, but not 5Tscr.
Quantification of the enhanced mean FAM penetration, as compared to Hoescht intensity,
demonstrated an overall 2-fold increase for 5T, but no change for 5Tscr, in agreement
with the mechanism of action for NSC 338258-mediated regulation of the MYC G4 and
subsequent transcriptional control.
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Figure 6. DNAi 5T nuclear localization is enhanced with MYC G4 stabilization by NSC 338258 in
RAJI Burkitt’s lymphoma cells. RAJI cells were incubated with the indicated DNAs alone (A) or in the
presence of 2.5 µM NSC 338258 (B) for 24 h before fluorescence visualization. No FAM accumulation
is noted in the transfection vehicle controls without DNAi. 5T is noted to accumulate in the cells and
in the nuclei ~80% more than 5T scr in the absence of NSC 338258. Co-incubation with the MYC
G4-stabilizing compound increases the mean FAM penetration ~2-fold for 5T, with no measurable
change in 5Tscr accumulation. Images are representative of duplicate experiments with triplicate
images collected within each experiment.

3. Discussion

In the current study, we converted our previously described G4-stabilizing clamp [35],
an oligonucleotide complementing the 5′ and 3′ flanking regions of the MYC promoter G4
connected with an abasic polyethylene glycol phosphate linker, to one that utilized one to
seven thymines as a linker. Using biochemical analyses, we demonstrated that the pure
oligonucleotide interfering DNAs (DNAis) with three, four, or five thymines were able to
induce and stabilize the target G4 structure and regulate the MYC promoter in a luciferase
assay. Interestingly, DNAis with one, six, or seven thymines seemed to stabilize open loops
in the G4-forming region, but 1T stabilized the loop and lowered MYC promoter activity.
Only DNAi 5T, however, modulated lymphoma toxicity with correlating changes in MYC
transcription in the RAJI cell line and passed the CA46 exon test. Additionally, DNAi 5T
was further shown to accumulate in the nuclei of lymphoma cells, additively with the
MYC G4 stabilizing compound NSC 338258 [42], and it remains the most effective DNAi
to target the MYC G4-forming promoter region. The phenomenon wherein 1T stabilized
an open loop opens the field for a novel DNA target but is beyond the purview of the
current report. Further studies examining the dose-dependent combination of NSC 338258



Molecules 2021, 26, 5542 9 of 14

and DNAi 5T would likely provide interesting insight into the mechanism of action and
potential therapeutic benefit, but unfortunately, NSC 338258 is no longer available from the
NCI DTP program.

The MYC promoter G-rich region contains six contiguous runs of three or more
continuous guanines. Although a number of equilibrating higher-order G4s have been
described under extracellular conditions, G41-4 has been shown to form under nuclearly
relevant supercoiled positions and thus to be the best candidate structure to be formed in
cells [32,34,41–43]. The development of therapeutics targeting the MYC promoter G-rich
region have not consistently focused on G41-4, either through screens biased towards other
structures—most commonly G42-5 [44,45]—or through techniques that did not facilitate
predominantly G41-4 formation [46,47], leading to a high failure rate for therapeutic devel-
opment. Our previous development of clamp a confirmed the G4 formed from the first four
contiguous runs to be the silencing structure within the G-rich region [35] and thus to be the
primary target to best facilitate MYC downregulation. G41-4 remained the molecular target
for DNAi development in the current study, as confirmed using both mutated DNA (MT5)
and the FRET Melt2 method we used to examine thermal stability of the MYC promoter
G4s, which was recently optimized to be a better predictor of in cell G4 stabilization and
subsequent MYC downregulation as confirmed by the CA46 test [38,41,48]. The optimized
DNAi 5T, indeed, mediated inhibition of lymphoma cell viability in correlation with MYC
downregulation through apparent promoter G4 stabilization.

Research into G4s as molecular targets, and the development of small molecules,
has been undertaken for almost 20 years. While small molecules selective for particular
G4s have been identified [37,41,49], they still demonstrate a measure of promiscuity for
similar structures. DNAis have been developed for a non-G4-related region of the Bcl-2
promoter, where they have advanced to clinical trials [48,49]. The DNAi described herein,
which clamps the promoter region flanking the physiologically relevant MYC promoter
G4, overcomes the limitations of small molecules [35]. Further efforts to develop the
DNAi as a first-in-class therapeutic targeting the MYC promoter G4 are ongoing, with a
focus on enhancing cellular and nuclear accumulation, intracellular stability, and overall
combination regimens. Although our current DNAi efforts are aimed at the MYC promoter,
as a high-value molecular target for anticancer therapeutics, the approach and technology
can be applied to an array of noncanonical DNA structures with fully characterized,
physiologically relevant, structures.

MYC has both transcription and nontranscription related functions and is upregulated
in a wide array of oncogenic lesions [50,51]. It has been shown to be a high-value molecular
target with a wide potential therapeutic index that has proven difficult to selectively and di-
rectly target [30,31,52–54]. Our DNAi approach enables specific and direct downregulation
of MYC expression, with potential efficacy in MYC-reliant cancers, such as non-Hodgkins
lymphoma (NHL). MYC is aberrantly regulated or expressed in aggressive NHLs, such
as poor prognosis DLBCL and MCL, as well as in the majority of BL—the model system
used in the current study. Decreasing MYC expression has been shown to significantly
impact the viability of NHL tumors. Efforts to develop the MYC G4-targeting DNAi 5T
will continue in NHL but are more broadly applicable to other MYC-reliant cancers, such
as breast [55–57], lung [58], colon [59], and many more cancers [60].

4. Materials and Methods

Materials. Oligonucleotides were synthesized and purchased from Eurofins MWG
Operon, LLC (Louisville, KY, USA) (Table 2. Acrylamide/bisacrylamide solution (29:1)
and ammonium persulfate were purchased from Bio-Rad Laboratories (Hercules, CA,
USA); N,N,N′,N′-tetramethylethylenediamine was purchased through Fisher Scientific
(Pittsburgh, PA, USA). All other chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA).
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Table 2. DNA sequences used in the current study. Continuous runs of three or more guanines are underlined.

Oligonucleotide 5′-3′ Sequence

Pu46/WT GCGCTTATGGGGAGGGTGGGGAGGGTGGGGAAGGTGGGGAGGAGAC

MT5 GCGCTTATGGGGAGGGTGGGGAGGGTGTGGAAGGTGGGGAGGAGAC

MT1,2,3,4 GCGCTTATGGTGAGTGTGGTGAGTGTGGGGAAGGTGGGGAGGAGAC

VEGF CCGGGGCGGGCCGGGGGCGGGGTCCCGGCGGGGCG

KRAS GCGGGGAGAAGGAGGGGGCCGGGCCGGGCCGGCGGGGGAGGAGCGGGGGCCGGGCC

Bcl-2 AGGGGCGGGCGCGGGAGGAAGGGGGCGGGAGCGGGGC

NRAS GTGGGAGGGGCGGGTCTGGGTGCGGCC

Clamp a CTCCTCCCCACCTTCCCC[C-18]ATAAG

1T CTCCTCCCCACCTTCCCCTATAAG

3T CTCCTCCCCACCTTCCCCTTTATAAG

4T CTCCTCCCCACCTTCCCCTTTTATAAG

5T CTCCTCCCCACCTTCCCCTTTTTATAAG

5Tscr GACCTTCCATCTCCCACTCCTTCCTATTA

6T CTCCTCCCCACCTTCCCCTTTTTTATAAG

7T CTCCTCCCCACCTTCCCCTTTTTTTATAAG

5T 5′ CTCCTCCCCACCTTCCCC

5T 3′ ATAAG

5T 5xT TTTTT

Electromobility Shift Assay (EMSA). G4-forming DNA (naked or fluorescently la-
beled), sequence as indicated, was diluted to 1 µM in 25 mM KCl plus 50 mM Tris–HCl
(pH 7.4) in the absence or presence of equimolar DNAi (naked or fluorescently labeled)
and incubated at room temperature for 30 min. G4 annealing was performed by heating to
95 ◦C for 5 min and rapidly cooling for 5 min. Upon addition of nondenaturing loading
dye, the samples were loaded onto a 10% native polyacrylamide gel. After running at
100 V, the gels were visualized with blue light LED using a Typhoon 5 BioMolecular Imager
(GE Health Sciences, Pittsburgh, PA, USA). The image was aligned horizontally based on
the location of the wells.

FRET Melt2. 5′-FAM and 3′-TAMRA labeled Pu46 was diluted to 2 µM in 10 mM
sodium cacodylate (pH 7.4) plus 90 mM LiCl, 10 mM KCl, and 10% glycerol, and annealed
to form a G4 as described above. G4 DNA was added to a 96-well PCR plate with or without
DNAi (2 µM). Fluorescence was recorded from 20 to 95 ◦C, at every degree after a 10 s hold
on a Bio-Rad CFX96 real-time thermocycler (Hercules, CA, USA). The fluorescence values
were normalized to each well’s 20 ◦C fluorescence measured, and nonlinear transformation
was performed using GraphPad Prism (San Diego, CA, USA) to determine the G4 TM.

Dimethyl sulfate (DMS) footprinting. Cy5-labeled MYC G4-forming DNA (Pu46; 10 µM),
either with or without equimolar concentrations of clamp (10 µM), was added to a buffer of
25 mM KCl and 50 mM of Tris–HCl. Dimethylsulfate (DMS, 10%) in 40% ethanol was added
to each sample to a final concentration of 0.5% DMS and 2% ethanol, which was incubated
at room temperature for 15 min before adding calf-thymus DNA (1 µg) and gel loading
buffer (bromophenol blue, 0.005% final concentration). Samples were then electrophoresed
as described above with EMSA, and the isolated bands were excised and extracted with gel
elution buffer (0.4 M ammonium acetate, 1 mM MgCl2, 0.2% SDS) in a 37 ◦C water bath
overnight. The supernatant was collected, and DNA was precipitated in 75% ethanol with
3 M sodium acetate at −20 ◦C overnight. Samples were centrifuged at 15,000 rpm for 30 min,
and the supernatant was discarded. DNA pellets were air-dried for 30 min before they were
resuspended in 10% piperidine to cleave DMS tagged DNA, heated at 95 ◦C for 30 min,
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and snap-cooled on ice. DNA was precipitated in ethanol/sodium acetate as above, then
dried and washed twice with water. Finally, DNA was suspended in 15 µL of DMS dye (80%
formamide, 10 mM NaOH, 0.005% bromophenol blue), heated to 95 ◦C for 5 min, cooled on
ice immediately, and run on a 16% denaturing gel with 7 M urea at 2 W, overnight at 4 ◦C.
The gel was visualized as described above.

Cell lines and culturing methods. Nontransformed HEK-293 and RAJI and CA46
Burkitt’s lymphoma cell lines were purchased from ATCC (Manassas, VA, USA) and were
maintained in exponential growth in either Dulbecco’s minimal essential media (DMEM,
HEK-293) or RPMI-1640 (RAJI and CA46) media supplemented with 10% fetal bovine
serum (Sigma-Aldrich, St. Louis, MO, USA) and 1× penicillin/streptomycin in suspension
culture held at 37 ◦C and 5% CO2 until experimental use.

Luciferase Assay. HEK-293 cells in exponential growth were seeded in 24-well plates
at 8 × 104 cells per well and allowed to attach overnight in a 37 ◦C humid incubator
supplied with 5% CO2. The following day, the cells were cotransfected with 250 ng of
the promoterless empty pGL4.17 vector plasmid (Promega, Madison, WI, USA) or the
MYC promoter containing Del4 plasmid (gift from Burt Vogelstein, Plasmid No. 16604,
as supplied by AddGene, Cambridge, MA, USA) plus renilla plasmid (pRL-SV40, 100 ng,
Promega), either without or with DNAi (500 ng), using Fugene HD (Promega) in a 3:1
ratio. Forty-eight hours post-transfection, cells were lysed in passive lysis buffer (Promega),
placed in a−20 ◦C freezer, thawed, and put through one more freeze/thaw cycle to promote
cell lysis. Luciferase was measured with the Dual-Luciferase Assay Kit (Promega) on a
Lumat LB9507 luminometer. Experiments were completed in biological triplicate. Within
each biological replicate, the firefly luciferase was normalized to its control renilla RLU,
and the DNAi effects were normalized to no DNAi control. The effect of each DNAi was
compared to control using a two-tailed Student’s t-test to determine statistical significance.

Confocal microscopy. RAJI cells were seeded in non-tissue culture treated chamber
slides at a concentration of 250,000 cells/mL overnight before the addition of 500 ng DNAi
5T or 5T scramble formed into micelles with JetPrime transfection reagent (Polyplus, NY,
USA) alone or with 2.5 µM NSC 338258. After 24 h of incubation, cells were incubated for
10 min with Hoescht 33342 directly in the media before fixation with 3.7% paraformalde-
hyde and visualization with a Leica SP8 confocal microscope at 20×magnification. Image
J (NIH, Bethesda, MD, USA) was used to quantify the mean intensity for each fluorescent
signal in the DAPI and FITC (e.g., Hoescht and FAM) channels. The experiment was
repeated in duplicate with triplicate images obtained within each experiment.

Cell viability and qPCR. To measure cellular viability, RAJI or CA46 cells were seeded
in non-tissue culture treated 96-well plates at a cell density of 200,000 cells per well in
80 µL and incubated at 37 ◦C overnight. A 20 µL volume of micelles formed with the
described (DNAi) and JetPrime transfection reagent at a 2:1 ratio were added to the cells
and allowed to incubate for 24 or 72 h, as indicated, before 20 µL of MTS + 5% PMS were
added to the wells and allowed to incubate for 2–4 h, as described previously [38]. RAJI
and CA46 cells were seeded at a density of 250,000 cells per mL in a non-tissue culture
treated plate overnight before incubation with the DNAi, as described. At 24 or 72 h,
as indicated, cells were collected, washed with PBS and the RNA was isolated with the
GeneJET RNA purification kit (Thermo Fisher, Waltham, MA, USA). Up to 2 µg of RNA was
reversed transcribed using the qScript RT kit from Quantabio (Beverly, MA, USA) before
quantitative real-time PCR was performed on a Bio-Rad CFX96 thermocycler (Hercules,
CA, USA) using FAM-labeled TaqMan primers from Applied Biosystems (Carslbad, CA,
USA), as previously described for MYC and GAPDH [38]. The ∆∆Ct method was used to
calculate changes in expression mediated by the DNAi, as normalized to vehicle-treated
controls. Due to the markedly lower expression, 10-fold more input cDNA is used to
monitor exon 1-containing expression in CA46 cells, as compared to exon 2-containing
mRNA. Statistical analysis was performed with GraphPad Prism software using either
a Student’s t-test for the single-dose experiments or a one-way ANOVA with a post-hoc
Tukey’s test for the dose-dependent CA46 exon test.
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Supplementary Materials: The following are available online, Figure S1: ECD evaluation of DNA
topology, Figure S2: Activity of DNAi 1T, 3T and 4T in lymphoma cells, Figure S3: Evaluation of
5Tscr G4 recognition, Figure S4: Affinity of unlabeled and labeled 5T.
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