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The perceptron learning algorithm and its multiple-layer extension, the backpropagation

algorithm, are the foundations of the present-day machine learning revolution. However,

these algorithms utilize a highly simplified mathematical abstraction of a neuron; it is not

clear to what extent real biophysical neurons with morphologically-extended non-linear

dendritic trees and conductance-based synapses can realize perceptron-like learning.

Here we implemented the perceptron learning algorithm in a realistic biophysical model

of a layer 5 cortical pyramidal cell with a full complement of non-linear dendritic channels.

We tested this biophysical perceptron (BP) on a classification task, where it needed to

correctly binarily classify 100, 1,000, or 2,000 patterns, and a generalization task, where

it was required to discriminate between two “noisy” patterns. We show that the BP

performs these tasks with an accuracy comparable to that of the original perceptron,

though the classification capacity of the apical tuft is somewhat limited. We concluded

that cortical pyramidal neurons can act as powerful classification devices.

Keywords: compartmental modeling, non-linear dendrites, cortical excitatory synapses, single neuron

computation, machine learning, synaptic weights, dendritic voltage attenuation, perceptron

INTRODUCTION

There has been a long-standing debate within the neuroscience community about the existence
of “grandmother neurons”—individual cells that code for high-level concepts such as a person’s
grandmother. Recent experimental evidence, however, has indicated that there are units that are
selective to specific high-level inputs. In particular (Quiroga et al., 2005) found cells in the human
medial temporal lobe (MTL) that fire in response to images of a particular celebrity, such as Jennifer
Aniston or Halle Berry. One remarkable aspect of this finding is that different images of the same
celebrity would elicit a response in these neurons even if the subject of the image was facing a
different direction, wearing different clothes, or under different lighting conditions. In other words,
the specificity of these MTL cells is invariant to certain transformations of the sensory stimulus.
Regardless of whether this finding is evidence for grandmother cells or merely for sparse coding
(Quiroga et al., 2008), it is apparent that individual neurons can be highly selective for a particular
pattern of sensory input and also possess a certain level of generalization ability, or “tolerance,” to
differences in the input that do not change the essence of the sensory scene.

From a physiological standpoint, achieving a high degree of accuracy on a recognition task
is a daunting challenge for a single neuron. To put this in concrete terms, a pyramidal neuron
may receive around 30,000 excitatory synapses (Megías et al., 2001). As a first approximation,
at any given moment, each of this neuron’s presynaptic inputs can either be active or inactive,
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yielding 230,000 possible binary patterns. If the presynaptic inputs
contain information about low-level sensory stimuli (such as
pixels or orientation filters) and the postsynaptic neuron needs
to respond only to images of Jennifer Aniston, for example, there
must be some physiological decision procedure by which the
neuron “chooses” which of those 230,000 patterns are sufficiently
close to the binary representation of Jennifer Aniston to warrant
firing a spike as output.

There are several ways that a neuron can selectively respond
to different input patterns. The most well-known method is to
adjust synaptic “weights” such that only input patterns which
activate a sufficient number of highly-weighted synapses will
cause the cell to fire. It is this principle which serves as the basis of
the perceptron learning rule (Rosenblatt, 1958) which is, in turn,
the foundation for the artificial neural networks (ANNs) that are
commonly used today in machine learning and deep networks
(Rumelhart et al., 1986; Krizhevsky et al., 2012).

The perceptron is a learning algorithm that utilizes a
mathematical abstraction of a neuron which applies a threshold
activation function to the weighted sum of its input (Figure 1A).
This abstraction is known as the McCulloch and Pitts (M&P)
neuron (McCulloch and Pitts, 1943). The non-linear output of
the neuron plays the role of a classifier by producing a positive
output (a spike, +1) in response to some input patterns and a
negative output (no spike, −1) in response to other patterns.
The perceptron is trained in a supervised manner wherein it
receives training patterns which are labeled as belonging to either
the positive or the negative category. The perceptron output is
calculated for each pattern, and if the perceptron output for
a particular pattern does not match the label, the perceptron’s
weights are updated such that its output will be closer to the
correct output for that example in the future.

While the remarkable efficacy of networks of M&P neurons
has demonstrated for various learning tasks, few attempts have
been made to replicate the perceptron learning algorithm in
a detailed biophysical neuron model with a full morphology
and active dendrites with conductance-based synapses. It thus
remains to be determined whether real cells in the brain, with all
their biological complexity, can integrate and classify their inputs
in a perceptron-like manner.

In this study, we used the perceptron learning algorithm
to teach a detailed realistic biophysical model of a layer 5
pyramidal cell with a wide variety of active dendritic channels
(Hay et al., 2011) to solve two kinds of classification problems:
a classification task, where the neuron must correctly classify (by
either spiking or not) a predefined set of “positive” and “negative”
input patterns, and a generalization task, in which the neuron
has to discriminate between two patterns that are corrupted
by noise in the form of bit flips (i.e., where active synaptic
inputs are switched to inactive and vice versa). We explored
the ability of real neurons with extended non-linear dendritic
trees and conductance-based excitatory synapses to perform
classification tasks of the sort commonly solved by artificial
neurons (see section Discussion for a treatment of why only
excitatory synapses were used). We found that the performance
of the biophysical perceptron (BP) is close to that of its artificial
M&P counterpart.

RESULTS

Classification Task
To implement the perceptron learning algorithm in a modeled

layer 5 thick tufted pyramidal cell (L5PC) we distributed

excitatory conductance-based AMPA and NMDA synapses on

the detailed model developed by Hay et al. (2011). We created

input patterns consisting of 1,000 excitatory synapses, 200 of

which were active in any given pattern. We varied the total

number of patterns (P) presented to the modeled neuron in order

to determine its classification capacity (Figure 1B). We tested

conditions of P = 100, P = 1,000, and P = 2,000. These binary

patterns were evenly divided into a “positive” (+1) group (for

which themodeled neuron should produce at least one spike) and

a “negative” (−1) group (for which the modeled neuron should

not produce a spike). To achieve perfect accuracy, the neuron

would have to correctly fire in response to all the patterns in
the positive group and not fire in response to all the patterns
in the negative group. Note that, initially, there is no reason for
the neuron to perform at better than chance level, because all the
patterns contain the same number of active synapses.

We then used the perceptron learning algorithm (see section
Materials and Methods) to modify the synaptic weights such
that the cell could correctly classify all the patterns (Figure 1C).
This procedure was repeated in conditions in which synapses
were placed over the whole dendritic tree, only on the apical
tuft, only on the basal tree, or only on the soma in order to
determine how the location of the synapses affects the cell’s ability
to classify patterns using the perceptron learning rule (see section
Discussion for the biological significance of input patterns on
different parts of the dendritic tree). We also tested the algorithm
with current-based synapses rather than of conductance-based
synapses, to examine whether conductance-based synapses have
any advantages or disadvantages with respect to the cell’s
performance as a classifier.

Figure 2 shows the learning curves (Figure 2A) and
classification accuracy (Figure 2B) for each of the above
conditions. In all cases the cell is able to improve its performance
relative to chance, indicating that the complexity of biophysical
cells does not preclude perceptron learning despite the fact
that the learning algorithm was devised for a much simpler
abstraction of a cell.

We compared the classification accuracy for each condition
in the biophysical model to an equivalent M&P perceptron with
excitatory weights (see section Materials and Methods). When
all synapses are placed on the soma or the proximal basal tree
of the biophysical perceptron, the classification accuracy of the
biophysical perceptron is near to that of the M&P perceptron.

As expected from the theoretical literature (Chapeton et al.,
2012), the accuracy in each condition decreases with the number
of patterns that the neuron must learn. This can be seen in
Figure 2B, where the classification accuracy degrades in each
condition as we move from P = 100 to P = 1,000 and from P
= 1,000 to P = 2000.

In all synaptic placement conditions, the M&P perceptron
and the BP performed with perfect accuracy on the “easy” task
with P = 100. In conditions where the synapses were placed
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FIGURE 1 | The M&P and biophysical perceptron. (A) The M and P perceptron. In any given input pattern, the presynaptic neurons are represented by their firing

rates, x1, x2, x3, . . . xi , each of which is multiplied by the respective synaptic weight w1,w2,w3, . . .wi and then summed together with the other inputs. The perceptron

produces an output of +1 if the weighted sum of all inputs is greater than a threshold and −1 otherwise. The task of the perceptron is to learn the appropriate

synaptic weights, such that it will produce an output of +1 for a predefined subset of patterns, and −1 for the remaining subset of input patterns. (B) Schematic of the

biophysical perceptron. A layer 5 pyramidal cell model with excitatory synapses (red dots) receiving an exemplar presynaptic input pattern. The synaptic weights are

the excitatory conductance, gE i , for the respective synapse, i. In this model, a presynaptic input pattern consists of a particular set of synaptic inputs that are either

active “1” or inactive “0”. (C) An example of the learning process in the biophysical perceptron. Two input patterns, each with 1,000 synapses, were presented to the

model neuron. For pattern 1 the model cell should not generate any spike, whereas for pattern 2 it should. In the initial epoch neither pattern elicits a spike (left

column). The output for the pattern 1 is thus correct (green trace, top) but incorrect (red trace, bottom) for pattern 2. In an intermediate epoch of the learning algorithm

(middle column), some of the synaptic conductances were sufficiently increased so that pattern 2 does elicit spikes, however pattern 1 also (incorrectly) produces

spikes. By the final epoch (right column), the weights are adjusted such that the neuron correctly classifies the two patterns.

only on the soma or only on the basal tree, the performance of
the BP is comparable to that of the M&P neuron for P = 1,000
(M&P: 100%, basal: 100%, soma: 100%) and for P= 2,000 (M&P:
77%, basal: 75%, soma: 76%). In the condition where synapses
were placed uniformly over the full tree, the discrepancies were
somewhat larger for P = 2,000 (M&P: 77%, full: 70.5%).

However, when the synapses are all placed on the apical tuft of
the biophysical cell, the classification accuracy of the biophysical
perceptron decreases dramatically, even in the presence of
supra-linear boosting mechanisms such as NMDA receptors
and active Ca2+ membrane ion channels. For P = 1,000, the
M&P neuron achieves 100% classification accuracy, whereas if

Frontiers in Computational Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 33

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Moldwin and Segev The Biophysical Perceptron

FIGURE 2 | Learning the classification task with the biophysical perceptron. (A) Learning curves for the classification task, in which a neuron with 1,000 excitatory

synapses had to classify patterns (half of which should produce a spike, half should not). The results for tasks involving 100, 1,000, and 2,000 patterns are shown (P,

colored traces). The learning curves of a M and P perceptron is depicted at the top and the four different conditions of synaptic placement in the L5PC model shown

in Figure 1 are shown subsequently. Soma: all synapses are placed only at the modeled soma; Full: all synapses are distributed on the whole dendritic tree; Basal: all

synapses are distributed on the basal tree (see Figure 1B); Apical tuft: all synapses are distributed on the apical tuft (see Figure 1B). (B) Accuracy in the classification

task for different synaptic placement conditions. Mean accuracy after 100 epochs is shown (error bars: standard deviation) for different numbers of patterns (P). The

blue bar within each grouping shows the performance of a M&P neuron. Note the poor performance in the apical tuft placement condition. (C) Effect of conductance

synapses vs. current synapses on classification capacity in the apical tuft. As in (B), blue bar is the performance of an M&P neuron for comparison. Note that

classification capacity of the apical tuft is restored to near that of the M&P perceptron when switching from conductance synapses to current synapses. Error bars as

in (B). (D) Value of synaptic conductances obtained after the completion of the learning algorithm as a function of distance of the synapses from the soma for learning

tasks with different numbers of patterns. The cases of synapses placed only on the apical tuft (red), basal tree (green) and full (blue) placement conditions are shown

for a single exemplar run. Note the large synaptic conductances obtained during the learning task for the case where the synapses are placed at the apical tuft for P =

1,000 and 2,000.

the synapses are all placed on the apical tuft, the neuron only
achieves 62% accuracy. In the condition with P = 2,000, the
M&P neuron achieves 77% classification accuracy whereas the
BP achieves only 55.8% classification accuracy, barely better
than chance level. However, by switching from conductance-
based synapses to current-based synapses in the apical tuft
condition, it was possible to regain almost all of the “loss” in the
classification accuracy (In the P = 1,000 condition, from 62%
with conductance synapses to 98.5%with current synapses, in the
P = 2,000 condition, from 55.8% with conductance synapses to
74.5% with current synapses) (Figure 2C).

We argue that the reason for the discrepancy in classification
accuracy for the biophysical perceptron between the conditions
wherein synapses are placed on the apical tuft, as opposed to the
soma or basal dendrites, is due to the passive filtering properties
of the neuronal cable and the saturation effect of conductance

synapses. Specifically, the attenuation of voltage along the length
of cable from apical tuft dendrites to the spike initiation zone
means that the effective weight of that synapse—namely the
magnitude of the resultant somatic EPSP—is greatly reduced.
This phenomenon has been observed previously (Rall, 1967;
Stuart and Spruston, 1998), but it has been argued (Häusser,
2001; Rumsey and Abbott, 2006) that the cell might be able
to overcome this drop in voltage by simply increasing the
strength (i.e., conductance) of distal synapses. We demonstrated,
however, that this is not the case. We show (Figure 2D) that
the perceptron learning algorithm will, on its own, increase
the weights of apical tuft synapses far beyond the biologically
plausible range of 0.2–1.3 nS (Sarid et al., 2007; Eyal et al.,
2018) in attempting to correctly classify all the patterns. Still, the
classification accuracy of the apical tuft biophysical perceptron
remains quite poor [see, however Gidon and Segev (2009)
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who show that the opposite phenomena will occur with a
standard STDP rule, resulting in smaller synaptic conductances
for distal synapses].

We claim that “democratization” via disproportionally
increasing distal synaptic conductances does not solve the
classification accuracy problem for synapses located on the
apical tuft because effective synaptic weights are bounded by
the synaptic reversal potential in the distal dendrites, even if
one were to increase synaptic conductances to arbitrarily high
values. As such, themaximal effective synaptic weight (MESW)—
defined as the peak somatic EPSP voltage when a given dendritic
location approaches the synaptic reversal potential (Figure 3A)—
is equivalent to the synaptic driving force multiplied by the
attenuation factor from that dendritic location to the soma.
(Note: This is true in the passive case, dendritic non-linearities
can affect the MESW values. Our calculations of MESWs
in this study are based on simulations of the model with
all non-linearities present, as shown Figure 3A). The MESWs
for distal synapses are thus smaller than those for proximal
synapses (Figure 3B).

Importantly, the marginal effect of each synapse in the
presence of background dendritic activity (as in our case, where
we activated 200 synapses simultaneously) differs from the
MESW (measured when the synapse acts in isolation). For
example, a single synapse brought to its reversal potential can
interact supralinearly with other synapses via activating NMDA-
conductance, strengthening the effect of the other synapses
(Polsky et al., 2004). Alternatively, if there is a substantial
amount of background activity in the dendrite, the voltage in
the dendrite near the location of a given synapse may already be
close to the synaptic reversal potential. In this case, the marginal
effect of activating that synapse, even with an arbitrarily large
conductance, can be substantially below its MESW (Figure 3C).
Indeed, when the apical tuft is sufficiently active to bring the
soma near the spike threshold, this sublinear interaction between
synapses dominates, and the background-adjusted maximum
effective weight of each synapse (bgMESW) tends to be below
the MESW of that synapse activated in isolation (Figure 3D, see
section Materials and Methods).

From the standpoint of learning theory, the “cap” on the
effective weights of distal apical synapses restricts the parameter
space of the biophysical perceptron, reducing its capacity. When
a perceptron learns to classify between two sets of patterns,
it creates a linear separation boundary—i.e., a hyperplane—
which separates the patterns in an N-dimensional space, where
N is the number of synaptic inputs in each pattern. The
separation boundary learned by the perceptron is defined
by the hyperplane orthogonal to the vector comprising the
perceptron’s weights. When the weights of the perceptron are
unconstrained, the perceptron can implement any possible
hyperplane in the N-dimensional space. However, when the
weights are constrained—for example by the MESWs of the
apical tuft of L5PCs—the perceptron can no longer learn every
conceivable linear separation boundary, reducing the ability of
the perceptron to discriminate between large numbers of patterns
[Note: because we use only excitatory synapses, the weight space
in all synaptic placement conditions is already substantially
constrained to positive values even before imposing MESWs, see

Chapeton et al. (2012) for a full treatment]. To demonstrate this
effect, we calculated the MESW for each synapse in the apical
tuft and then imposed this distribution of MESWs onto an M&P
perceptron (see section Materials and Methods). Interestingly,
the MESW caps on the synaptic weights of the M&P neuron did
not hamper its classification performance on our task. However,
when we used caps based on the marginal effect of each synapse
in the presence of the other synaptic activity in the patterns—
the bgMESWs—the weight-capped M&P perceptron produced
a reduced classification capacity in a manner similar to the
biophysical perceptron when synapses were restricted to the
apical tuft (Figure 3E).

The fact that switching the apical synapses from conductance-
based to current-based substantially improves classification
accuracy supports the notion that voltage saturation due
to synaptic reversal potential is responsible for the reduced
performance of the apical tuft synapses (Figure 2C). It should
be emphasized that the limited capacity of the apical tuft is not
because apical synapses cannot induce the neuron to fire, as the
neuron with only apical synapses performs with perfect accuracy
when it only needs to classify 100 patterns, indicating that 200
active synapses on the apical tuft are fully capable of generating
a somatic spike. It is thus evident that the reduced classification
capacity of the apical patterns is due to the restriction of the
weight space needed to properly discriminate between positive
and negative patterns, not because the apical tuft input is
insufficiently strong to create a somatic spike.

Generalization Task
To explore whether the apical tuft is always at a disadvantage
when it comes to pattern classification, we also tested the
biophysical perceptron on a generalization task. Instead of
classifying a large set of fixed patterns, in the generalization task
the neuron was presented with “noisy” patterns drawn from
one of two underlying fixed patterns. In this task, noise was
added to the underlying pattern by performing “bit flips,” i.e.,
flipping an active synapse to an inactive synapse or vice versa
(Figure 4A). We tested both the biophysical perceptron (with
different synaptic placement conditions, as in the classification
task) and the positive-weighted M&P neuron on their ability to
classify these noisy patterns in conditions with varying levels of
difficulty, as determined by the number of bit flips. The goal of
the task was that the neuron should fire in response to noisy
patterns generated by the first underlying pattern, but not fire in
response to noisy patterns generated by the second underlying
pattern (Figure 4B).

In this task, we observe that in all conditions the BP performs
similarly to the M&P perceptron. We do not observe any
substantial diminution in classification performance between
the apical tuft and the soma, as we do in the classification
task (Figures 5A,B). In the condition with 100 bit flips, the
difference in accuracy between the apical tree and the soma
were small (M&P: 85% soma: 85%, apical tuft: 81.8%). The
same is true for the more difficult task with 200 bit flips
(M&P: 72%, soma: 71.8%, apical tuft: 67.4%). Changing the
conductance synapses to current synapses did not substantially
affect these results (Figure 5C). Moreover, capping the weights
of the M&P neuron with the bgMESWs from the apical tuft, as
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FIGURE 3 | Effect of location of dendritic synapses on the maximum effective synaptic weight (MESW). (A) The simulated L5 pyramidal neuron with red (proximal

basal) and blue (distal apical) electrodes. To calculate the MESW for each location, we activated a strong synapse with a conductance of 500 nS, bringing the local

dendritic voltage near 0mV, the reversal potential for AMPA/NMDA synapses, for 20ms (middle column) and record the resultant somatic voltage (right column). The

MESW for two dendritic loci (dashed lines) is defined as the voltage difference between the somatic resting potential and the peak voltage observed at the soma

during the recording period. Note that the decline of the somatic depolarization after the peak is due to non-linear dendritic ion channels. (B) A simulated L5PC with

the MESW values superimposed for each dendritic segment. Note the steep voltage attenuation from distal dendritic branches to the soma (blue regions). While there

are regions of the basal tree that also have steep attenuation to the soma, the average attenuation from the apical tuft is greater, as shown in (D). (C) Effect of

background synaptic activity (bg) on the marginal contribution of the apical synapse at the location shown in (A). Top: local dendritic voltage at the apical location

when only the background activity is activated (orange trace) or when the background activity is activated in addition to a strong synapse at that location (black trace).

Note that the background activity is sufficient to bring the dendrite near the local excitatory reversal potential. Middle: voltage contribution of the background activity

alone (orange trace) and together with the strong synapse (black) to the somatic EPSP. Bottom: Difference in somatic EPSP in the presence of background activity

when the strong apical synapse is present vs. absent—i.e., subtraction of the orange trace from the black trace in the middle plot (green trace). The bgMESW is

defined as the value of this difference at the time when the somatic EPSP (black trace in middle plot) is maximal. The contribution of the strong synapse in the absence

of background activity is shown for reference (blue dashed trace, as in A, right panel). (D) Box-and-whiskers plot of MESW and bgMESW distributions for the full

dendritic tree, basal tree, apical tuft, and soma (see section Materials and Methods). Notches represent the median values for all synaptic locations within that region,

box edges and error bars, respectively, represent the first and second quartiles of the data. Note that the effect of the background on the marginal synaptic effect on

the soma can be either superlinear or sublinear. (E) Effect of constraining the synaptic weights in the M&P model according to the distribution of MESWs and

bgMESWs observed for the apical tuft. Note that the classification capacity of the bgMESW-constrained M&P perceptron is substantially reduced and becomes closer

to the capacity of the biophysical perceptron.

we did in the classification task, did not considerably worsen
the M&P perceptron’s performance (Figure 5D). We also note
that, while the some of the synaptic weights of the apical tuft
did increase beyond the biological range during learning in the

biophysical perceptron (Figure 5E), the effect is much smaller in
the classification task (Figure 2D).

The discrepancy between the apical tuft and soma may be
smaller in the generalization task than in the classification task
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FIGURE 4 | Generalization task with the biophysical perceptron. (A) Left column: Two binary patterns, represented by two faces, each consisting of 200 black pixels

and 800 white pixels. The black pixels represent active synapses and the white pixels represent inactive synapses. These patterns can be corrupted by flipping active

synapses to inactive synapses or vice versa, creating a new “noisy” pattern (middle and right columns). As we increase the number of flipped synapses, the noisy

patterns become more difficult to identify with the original pattern. The faces are for illustration of the sparsity and noise level only, actual input patterns were not

created with a facial structure. (B) Task schematic. A noisy pattern (lower face), drawn from one of two original patterns (top faces) is presented to the modeled neuron.

The neuron must decide from which of the two original patterns the noisy pattern came, by either firing (for the first pattern) or not firing (for the second pattern).

because the difficulty in the classification task is fundamentally
about finding the correct hyperplane that will separate between
the two classes of patterns. As we increase the number of patterns
in each of the classes, we require more flexibility in the weight
space of the neuron to ensure that all the positive and negative
patterns end up on opposite sides of the separating hyperplane.
This flexibility is impeded by the bgMESWs of the apical tuft. By
contrast, the generalization problem only contains two canonical
“patterns.” The difficulty in learning the generalization task with
a large amount of noise (in terms of bit flips) does not stem from
the challenge of precisely defining a separation boundary. Rather,
solving the generalization task is hard because, even if we had an
optimal separation boundary, the noise in the input entails that
some of the noisy patterns would still necessarily be misclassified.

MATERIALS AND METHODS

Cell Model
We utilized a detailed biophysical model of a cortical layer
5b thick-tufted rat pyramidal cell written in NEURON with
a Python wrapper (Carnevale and Hines, 1997; Hines et al.,
2009). The parameters of the model, which includes numerous
active mechanisms, are described in Hay et al. (2011). The
mechanisms used in this model were: Im, Ca_LVAst, Ca_HVA,
CaDynamics_E2, SKv3_1, SK_E2, K_Tst, K_Pst, Nap_Et2,
NaTa_t, NaTs2_t. The model had 108 apical compartments and
83 basal compartments.

Excitatory synapses were AMPA/NMDA-based synapses as in
Muller and Reimann (2011) with a dual-exponential conductance
profile with a voltage-dependent magnesium gate (Jahr and
Stevens, 1990; Rhodes, 2006) with a gate constant of 0.08. The
AMPA conductance had a rise time (τ ) of 0.2ms and a decay
time of 1.7ms while the NMDA conductance had a rise time of
0.29ms and a decay time of 43ms. The synaptic depression and
facilitation parameters set to 0. The NMDA: AMPA conductance
ratio was set to 1.6:1. In both the classification and generalization
experiments, we placed all 1,000 synapses in each pattern either

on the soma, basal tree, or apical tuft according to a uniform
spatial distribution.

Classification Task
For the classification task, each of the P patterns was generated
by randomly choosing 200 out of the 1,000 synapses to be
activated. The patterns were then randomly assigned to either the
positive or negative class. Patterns were presented to the cell by
simultaneously stimulating the 200 active synapses with a single
presynaptic spike at the beginning of the simulation. Simulations
of the neuron were run with a 1t of 0.1ms for a total of 100ms.
Patterns were considered to have been classified as “positive” if
they produced at least one spike within the 100ms time window
and as “negative” if no spikes occurred.

The choice of 200 active synapses was to simulate a regime
of high cortical activity. The maximal firing rate for excitatory
cortical neurons is estimated to be around 20Hz (Heimel
et al., 2005; Hengen et al., 2013). Assuming the maximum
firing rate per excitatory synapse, a pyramidal cell with 10,000
excitatory synapses would receive 200,000 synaptic inputs/sec or
200 inputs/ms.

We utilized an “online” version of the perceptron learning
algorithm, applying the plasticity rule every time a pattern was
presented to the neuron. Also, because we limited our analysis to
excitatory synapses, we use the modified algorithm proposed in
Amit et al. (1999) for sign-constrained synapses, which ensures
that synaptic weights never become negative.

The algorithm works as follows: A presynaptic input pattern x

is presented to the neuron, where x is a vector consisting of 1,000
binary inputs, each of which is labeled xi and associated with a
particular synapse on the dendritic tree with synaptic weight wi

(for conductance synapses, this is the excitatory conductance of
the synapse, gEi ). Each pattern has a target value, y0 ∈ {1,−1}
associated with it, where 1 means “should spike” and −1 means
“shouldn’t spike.” When the pattern is presented to the neuron
via simultaneous activation of all the synapses in the pattern,
the soma of the neuron will produce a voltage response. If that
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FIGURE 5 | Learning the generalization task with the biophysical perceptron. (A) Learning curves for the generalization task, in which a neuron with 1,000 synapses

had to classify noisy patterns (see Figure 4) drawn from one of two underlying original patterns (see Figure 4). The neuron was presented with 100 different noisy

patterns each epoch, 50 from each original pattern. The results for tasks involving different amounts of noise are shown (bit flips, colored traces). The learning traces

of an M&P perceptron is depicted at the top and the four different conditions of synaptic placement in the L5PC model are shown subsequently. Synaptic placement

as in Figure 2A. (B) Accuracy in the generalization task for different synaptic placement conditions. Mean accuracy after 100 epochs is shown (error bars: standard

deviation) for different amounts of noise (bit flips). The blue bar within each grouping shows the performance of a M&P neuron. (C) Effect of conductance synapses vs.

current synapses on classification capacity in the apical tuft. As in (B), blue bar is the performance of an M and P neuron for comparison. Error bars as in (B). (D)

Effect of constraining the synaptic weights in the M&P model according to the distribution of MESWs and bgMESWs observed for the apical tuft. (E) Value of synaptic

conductances obtained after the completion of the learning algorithm as a function of distance of the synapses from the soma for learning tasks with different levels of

noise. The cases of synapses placed only on the apical tuft (red), basal tree (green), and full (blue) placement conditions are shown for a single exemplar run.

voltage response contains at least one spike within 100ms, we
set the output variable y = 1. If the voltage response does not
contain any spikes, we set y = −1. For each presynaptic input
pattern, the plasticity rule for synapse i to update its weight wi at
time is defined as:

wi ← max
(

0,wi + ηdwi

)

(1)

where dwi is defined as:

dwi =







0, y = y0

y0xi, y 6= y0

(2)

and η is the learning rate.

In other words, if the target output is the same as the actual
output of the neuron, we do nothing. If the target is “should
spike” and the neuron does not spike, we increase the weight of
all synaptic inputs that were active in the pattern. If the target
is “shouldn’t spike” and the neuron does spike, we decrease the
synaptic weights of all synaptic inputs that were active in the
pattern, unless that would decrease the synaptic weight below 0,
in which case we reduced the weight of that synapse to 0.

The accuracy of the neuron’s output was calculated after
each epoch, which consisted of a full pass of presenting each
pattern (in random order) to the neuron. To ensure that accuracy
improved on every epoch and reached a reasonable asymptote for
all conditions, we set the learning rate η to 0.002 for the condition
with AMPA/NMDA conductance synapses and an active tree,
and a rate of 0.19 for the condition with current synapses. We
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also used the “momentum” technique (Rumelhart et al., 1986)
to improve learning speed. The average simulation time for a
complete run of the learning algorithm for the classification task
(i.e., 100 epochs) was several hours to 2–3 days depending on
the task (more patterns required more simulation time). Results
shown in Figures 2A–D, 3D are averaged over 10 runs of the
classification task.

M&P Model (Not Constrained by Synaptic
Battery)
To compare the BP to an equivalent M&P perceptron
(Figures 2A,B, 5A,B) we used a M&P perceptron with only
excitatory weights as described in Amit et al. (1999) (See
Equations (1) and (2) above). A M&P neuron with no inputs
would have a “bias” input value of −77.13 to mimic the resting
potential of the BP and a “spiking threshold” of −53.1 to
mimic the voltage spiking threshold of the biophysical neuron.
The learning algorithm used a learning rate η of 0.0008 which
was dynamically modified in the learning algorithm via the
momentum technique (Rumelhart et al., 1986). Initial learning
rates were hand-tuned according to the criteria that the learning
curves should monotonically increase and reach an asymptote
(verified by visual inspection). We also tested smaller learning
rates than the ones listed in the M&P model to see if accuracy
could be improved via smaller learning steps; however the
improvement in classification obtained by doing so was negligible
and thus was deemed not worth the additional computational
time in the biophysical model.

MESW Calculation and MESW-Constrained
M&P Model
To calculate the MESWs for the L5PC model, we added a very
strong synapse (500 nS) to each dendritic segment in the neuron
model bringing the segment within 2.5mV of the synaptic
reversal potential of 0mV. The MESW for a dendritic segment
is defined as the difference between the somatic resting potential
and the peak depolarization obtained at the soma within 100ms
after synaptic activation (Figure 3A).

To create an MESW-constrained M&P model for the apical
tuft, we calculated the distribution of MESWs per unit length
of the dendritic membrane in the apical tuft. The median
and quartile values of the MESWs for all synaptic placement
conditions are shown in the box-and-whisker plot in Figure 3D.
We then created an M&P neuron where each weight was
individually given a “cap” drawn randomly from the apical tuft
MESW probability distribution which would prevent the weight
of that input from increasing above a certain value. In other
words, if the plasticity algorithm (Equation 1) would bring wi

to be greater than cap, ci, we would “freeze” the weight at ci.
Formally, this means that the plasticity rule in the case of an error
for the MESW-capped neuron is

wi ← max
(

0,min
(

ci,wi + ηdwi

))

(3)

where η and dwi are as defined above in Equation (2).

bgMESW Calculation and
bgMESW-Constrained M&P Model
To calculate the bgMESWs for the L5PC model, we distributed
199 “background” synapses on the neuron according to a
uniform distribution per unit length of the dendritic membrane.
All background synapses had the same conductance. To find
the synaptic conductance required to bring the neuron near
its spiking threshold, we gradually increased the synaptic
conductances of all synapses by 0.05 ns steps until the neuron
produced at least one spike. The largest conductance that didn’t
cause the neuron to spike was used as the conductance for the
near-threshold background activity. The conductances for each
distribution condition were: Soma: 0.3 nS, Basal: 0.3 nS, Apical
tuft: 0.52 nS, Full: 0.48 nS (values are averaged over 10 trials of
this procedure to account for the randomness in the placement
of the background synapses). In the presence of this background
activity, we added a strong synapse to each dendritic location,
as detailed in the section for the MESW calculation. To find the
marginal contribution of a single strong input at each location, we
subtracted the somatic EPSP obtained via the background activity
from the somatic EPSP obtained when both the background
activity and the strong synapse at that location are active, creating
a difference curve (Figure 3C). The bgMESW is defined as the
value of this difference curve at the time when the somatic EPSP
is maximal in the condition when both the strong synapse and
background activity are active.

Generalization Task
In the second task (generalization), we created two underlying
patterns of 1,000 synapses each, where 200 synapses were active,
as in the classification task. These patterns were then corrupted
by flipping a given number synapses (0, 100, or 200, depending
on the condition) and presented to the neuron. To maintain the
sparsity of the patterns, half of the flipped synapses were switched
from active to inactive and the other half switched from inactive
to active. For example, in the condition with 100 flipped bits, 50
out of the 200 previously active synaptic inputs were flipped to
inactive, and 50 out of the 800 previously inactive synaptic inputs
were switched to active.

In every epoch of the learning task, we presented the neuron
with 50 noisy patterns generated by the first underlying pattern
and 50 noisy patterns generated by the second underlying
pattern for a total of 100 patterns per epoch (the order of
the presentation of patterns from the two underlying patterns
was also randomized). We set the learning rate η to 0.25 for
the condition with AMPA/NMDA conductance synapses and
an active tree, and a rate of 10 for the condition with current
synapses. Learning rates were hand-tuned as described above.
Similar to the classification task, we used the online perceptron
learning rule with the momentum modifier. In this task we only
ran the algorithm for 5 epochs, as this was enough for the learning
to achieve a plateau. Results shown in Figures 5A–D are averaged
over 20 repetitions of the generalization task.

Simulations
Simulations were all performed using Neuron v.7.6 (Carnevale
and Hines, 1997; Hines et al., 2009) running on a multi-core
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cluster computer with 3,140 logical cores; the number of available
cores varied depending on other jobs being run on the cluster.
Each trial of the learning algorithm was run on a separate
core; neither the learning or the cell simulation was mutli-
threaded. The average simulation time for a complete run of the
learning algorithm for the generalization task (i.e., 5 epochs) was
several minutes.

DISCUSSION

In the simulations described above, we have demonstrated that
the perceptron learning algorithm can indeed be implemented
in a detailed biophysical model of L5 pyramidal cell with
conductance-based synapses and active dendrites. This is despite
the fact that the perceptron learning algorithm traditionally
assumes a cell which integrates its inputs linearly, which is
not the case for detailed biophysical neurons with a variety of
non-linear active and passive properties and conductance-based
synapses. That being said, the ability of a biophysical perceptron
to distinguish between different patterns of excitatory synaptic
input does depend on the location of the relevant synapses.
Specifically, if all the synapses are located proximally to the soma,
such as on the proximal basal tree, the cell has a classification
capacity similar to that of the M&P perceptron. However, for
activation patterns consisting of more distal synaptic inputs, such
as those on the apical tuft, the classification capacity of the BP is
reduced. We showed that this is due to the reduced effectiveness
of distal synapses due to cable filtering and synaptic saturation in
the presence of other synaptic inputs, which limits the parameter
space of the learning algorithm and thus hampers classification
capacity.We also demonstrated that the diminished classification
capacity in the apical tuft is negligible in a generalization task.
This indicates that, while themaximum effective synaptic weights
of the apical tuft may be somewhat limiting for its classification
capacity, they do not hamper the apical tuft’s robustness to noise.

The above discussion considers that the pyramidal cell
separately classifies inputs that synapse onto different regions
of its dendrites (such as the apical tuft and the basal tree)
and that it does not simultaneously integrate all the synaptic
input impinging on the cell. This decision was motivated by a
growing body of evidence that different parts of the dendritic
tree may play separate roles in shaping the neuron’s output.
From anatomical studies, it is known that axons from different
brain regions preferentially synapse onto particular regions of
layer 5 pyramidal cells. For example, basal dendrites tend to
receive local inputs whereas the apical tuft receives long-range
cortical inputs (Crick and Asanuma, 1986; Budd, 1998; Spratling,
2002; Spruston, 2008). This has led to theories of neuronal
integration for layer 5 pyramidal cells that involve a “bottom-
up” stream of information entering the basal dendrites and “top-
down” signals coming to the apical tuft (Siegel et al., 2000;
Larkum, 2013; Manita et al., 2015). Moreover, it has recently been
shown experimentally that when experiencing somatosensory
stimulation, layer 5 pyramidal cells in S1 first exhibit an increase
in firing rate corresponding to the bottom-up sensory input
(ostensibly to the basal tree), and then, 30ms later, receive

top-down input to the apical tuft from M2 (Manita et al.,
2015). This indicates the presence of temporally segregated time
windows in which the cell separately integrates input from
the apical and basal tree. There is also work suggesting that
plasticity rules may function differently in different regions of
the cell (Gordon et al., 2006), again indicating that different
regions of the cell might serve as input regions to distinct
information pathways, and, as such, may have different priorities
underlying the decision of when the cell will or will not fire. Taken
together, the above studies strongly suggest that the apical tuft
and basal dendrites can and should be studied as independent
integration units.

Inhibition
Our study made several simplifications to the learning and
plasticity processes found in biology. Critically, our plasticity
algorithm utilized only excitatory synapses and did not consider
the effect of inhibition on learning. This is not because we believe
that inhibition does not play a role in learning; on the contrary,
inhibitory synapses are essential both for the learning process and
in defining the input-output function of the cell (Wulff et al.,
2009; Kullmann et al., 2012; Müllner et al., 2015). However,
by restricting ourselves to excitatory synapses, we were able to
isolate important biophysical properties of excitatory synapses—
namely the impact of synaptic saturation (the bgMESWs) that
might have been masked in the presence of inhibition. Future
work on the “biophysical perceptron” will include the role of
inhibitory synapses; in this case special care must be taken to
understand how inhibitory inputs interact with excitatory inputs
on different locations of the cell (Gidon and Segev, 2012; Doron
et al., 2017). The addition of synaptic inhibition has the potential
to increase the classification capacity of the cell (Chapeton et al.,
2012), and localized inhibition may allow for additional forms of
compartmentalized computation at the dendritic level.

Relationship to Models of Learning in
Purkinje Cells
The focus on excitatory synapses also enables our work to
be directly compared to studies of excitatory perceptron-like
learning done on Purkinje cells—which have been classically
conceived of as perceptrons (Marr, 1969; Albus, 1971)—, such as
the work of Brunel et al. (2004), Steuber et al. (2007), and Safaryan
et al. (2017). These studies demonstrated that detailed models
of Purkinje cells can learn to discriminate between different
patterns of input from the parallel fibers (PF) via a perceptron-
like usage of long-term depression (LTD), which is known to
occur in PF-Purkinje synapses. Crucially, the difference between
the Purkinje cell’s responses to learned vs. unlearned patterns was
the duration of the pause between spikes in the Purkinje cell’s
output subsequent to the presentation of PF input. Steuber et al.
(2007) argue that this pause duration-based learning depends on
the modulation of calcium concentrations inside the cell. This is
different from the more direct M&P-like mechanism, used in the
present study, of synapses being weighted such that only certain
input patterns will reach the cell’s spiking threshold.
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Non-linearities and Alternative Plasticity
Rules
Our focus on perceptron-like learning constitutes an additional
simplification, as perceptron learning ignores how dendritic non-
linearities such as local NMDA spikes (Schiller et al., 2000;
Polsky et al., 2004), dendritic Na+ spikes (Golding and Spruston,
1998; Sun et al., 2014), and dendritic Ca2+ spikes (Magee and
Johnston, 1995; Kampa et al., 2006; Cichon and Gan, 2015)
may impact learning in classification tasks. Although a variety
of dendritic non-linearities are present in our L5 pyramidal cell
model, we did not make explicit use of them in our plasticity
rule. Indeed, some models of dendritic integration such as the
Clusteron (Mel, 1991, 1992) and the two-layer model (Poirazi
and Mel, 2001) treat the NMDA spike as critical for dendritic
computation. In particular, these models treat clustering of
nearby synapses, and “structural plasticity,” or the relocation
of synaptic inputs within and between branches as crucial for
learning (Trachtenberg et al., 2002; Larkum and Nevian, 2008;
Losonczy et al., 2008; Kastellakis et al., 2015; Weber et al., 2016;
Mel et al., 2017). The present study did not address the role
of synaptic clustering in learning; a promising future direction
would be to combine the weight-based learning rules used in
our study with the structural plasticity algorithm as discussed
in Mel (1992).

There are several other models of learning and plasticity
that make use of neuronal biophysics and constitute promising
opportunities for improving the learning ability of pyramidal
cell models in a biologically plausible way. The calcium-based
plasticity rule of Graupner and Brunel (2012) presents an exciting
possibility for implementing perceptron-like learning in a more
biological manner by making direct use of the experimentally
observed mechanisms of plasticity in neurons. Because neurons
exhibit some properties of multi-layered networks (Poirazi et al.,
2003; Beniaguev et al., 2019), it would also be valuable to
explore more powerful learning algorithms that make use of
the dendrites as a second (or higher) layer of computation as
in Schiess et al. (2016). Alternatively, it may make sense to
consider a different paradigm of dendritic learning, where the
dendrites attempt to “predict” the somatic output, allowing for
forms of both supervised and unsupervised learning (Urbanczik
and Senn, 2014). Variants of the perceptron rule, such as the
three-threshold learning rule (Alemi et al., 2015) may also
be valuable to explore the ability of biophysical cells to solve
pattern-completion tasks.

Timing
Another crucial element that remains to be studied in detailed
biophysical models is the role of the timing of both the input
and output of pyramidal cells in learning and computation.
Regarding input timing, some theoretical work has been done
on the M&P perceptron, which has been extended in a variety
of ways to take into account several components of real
neurons. One such extension is the tempotron, which uses a
leaky integrate and fire mechanism (Gütig and Sompolinsky,
2006) and can make use of conductance-based synapses
(Gütig and Sompolinsky, 2009) to classify spatiotemporal input

patterns. Regarding output timing and firing rate, learning
rules like the one from Gutig (2016) can learn to solve
the temporal credit-assignment by producing different spike
rates for different inputs. Similarly, the Chronotron (Florian,
2012) considers learning rules that generate precisely timed
output spikes. It is not clear to what extent these particular
plasticity algorithms are truly “biological,” but there is no
question that temporal sequence learning is an essential
feature of the brain (Aslin et al., 1998; Xu et al., 2012;
Moldwin et al., 2017). The addition of a temporal dimension
increases the classification capacity of the cell, as discussed
in Gütig and Sompolinsky (2009).

Broader Relevance
The present study shows that, by implementing the perceptron
learning rule, layer 5 cortical pyramidal cells are powerful
learning and generalization units, comparable—at the very
least—to the abstract M&P perceptron. Other plasticity rules,
which take into account synaptic clustering, input and output
timing, and interaction between the apical and basal regions of
pyramidal cells will be explored in further studies in detailed
biophysical models in order to determine their biological
plausibility and classification capacity. Until then, our study
should be viewed as a baseline for comparison of any future work
implementing learning algorithms in detailed biophysical models
of neurons.
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