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A B S T R A C T

Understanding organic carbon accumulations in soils is crucially essential concerning carbon sequestration,
fighting climate change, increasing land productivity, improving soil properties, providing energy to the microbial
community, enhancing ecological restoration, and reversing global environmental damage. This study was aimed
at assessing the effects of land-use-cover change (LULC) on soil organic carbon (SOC), its' stock potential, and
bulk-density (BD) along slope position in the Coka watershed. Replicated soil samples had been collected and
composited from 30 cm depth topsoil of five major land use types and three slope positions. This result showed
that significantly (P < 0.001) lowest and highest mean of soil organic carbon stock (SOCS) was observed under
bare lands (37.835 Mg ha�1) and bushlands (144.582 Mg ha�1), respectively which was the same for SOC
concentration. Barelands lose 3.82 times (3.82x) higher SOCS than bushland and 2.68x more SOCS than forest-
land. Both SOC-stock and SOC showed significant (P < 0.001) differences among slope positions, which were the
highest in lower-slope followed by middle-slope, which had 1.8 and 2.6x higher than in middle-slope and upper-
slope positions, respectively. Thus, the multivariate-test result divulges that LULC along slope positions has a
strongly significant (P < 0.05) main and interaction effect on SOCS in the area. Therefore, the potential
contribution of bushland and forestland uses should be improved for SOC sequestration, soil productivity
improvement, and environmental protection.
1. Introduction

Soil organic carbon (SOC) stock is considered to be among the largest
carbon reservoirs of the earthly ecosystems and also plays an essential
role in the worldwide carbon cycle [1] and [2]. The effect of land-use
changes on organic matter has impacted soil fertility, agricultural pro-
ductivity, food security, terrestrial and global carbon cycle, and climate
change [3]. Soils store higher organic carbon than the aboveground
vegetation and the atmosphere together [4]. As reported by [5], soils
play a vigorous role in regulating global climate and store two-thirds of
carbon storage. As argued by [6] that soil organic carbon is threefold
more than in plants and twofold than in the atmosphere. Soils might be
among the largest carbon sinks to lead to atmospheric CO2 concentra-
tions. Thus, changes in SOCS might have significant influences on the
global carbon cycle. SOC improves soil properties by retaining a vital soil
nutrient for the growth of plants and providing energy to the microbial
community. It could be affected by various factors such as vegetation [7],
a).
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altitude and climate [8], land-use-cover changes (LULC) [9], topographic
factor [10], and loss of topsoil by erosion [11, 12, 13], and fire [14].

The land-use type is a vital element in controlling carbon stock in the
soil. Numerous studies have revealed significant variation in SOC con-
cerning LULC [11]. As reported by [15], LULC type influences the
quantity of residue input and decomposition rate in soil. Similarly, both
SOCS and Carbon content was decreased by cultivation [16]. LULC
changes may support soil property degradation and deterioration [17].
Organic carbon depletion could reduce soil and land productivity fertility
by influencing soil nutrient retention, physical structure, and water
storage [18]. Thus, SOC depletion might affect the livelihoods of
households. Commonly, forest-cover changes to cultivated-land
decreased soil fertility by increasing erosion rates [19].

LULC dynamics are affected by human actions, which decline avail-
able water, vegetation, animal feed, and soil fertility at the landscape
level. Land-use changes have remarkable effects on soil properties,
including soil-organic-carbon-stock. The soil carbon accumulation is
composed of decaying fungal, bacterial matter, plant and animal stored,
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and soil organic matter. Vegetation removal and soil erosion due to land-
use changes can accelerate SOCS loss [20]. Moreover, addressing the
LULC in diverse land utilization types may give a clue on carbon
sequestration in soil [21]. Conversion and modifying one land use for
another may result in the loss of natural resources and agro-biodiversity
[22]. Forest clearing and continuous cultivation caused a high risk of SOC
depletion for nearly half of the total landmass in Ethiopia [23]. LULC is
the leading anthropogenic carbon source in the atmosphere [24].

Topographic factors (e.g. slope and altitude) positively or negatively
influence soil properties by varying vegetation cover, rainfall, and tem-
perature. Typically precipitation rises, and temperature becomes colder
with increasing altitude, resulting in changes in vegetation distribution,
affecting SOC stock [25]. Slope position is a main topographic factor
affecting the pattern of SOC along the topo-sequences [26]. Similarly,
slope position contributes to the spatial unevenness of SOC [27]. It can
alter both the hydrological processes and the solar radiation intensity
[28], which is a significant factor governing the residue decomposition
rate and organic matter.

Moreover, a foot slope tends to receive less solar radiation and more
water, which can create more favorable conditions for vegetation growth
[29]. Climatic, hydrological, and ecological conditions can be reshaped
by this topographic factor which can modify the spatial arrangements of
SOC at both a regional and a hill-slope scale [30] and [31]. In regions,
slope position varies SOC fate through the rate of decomposition and soil
erosion [32]. As reported by [33] SOCS on the foot slope were 2.5 times
greater than other slope classes along an eroding hill slope located on
cultivated land in Belgium, and that of [34] found similar outcomes in a
quiet environment in Australia. The slope gradient is the key factor
affecting SOC dynamics and soil quality [11, 12, 13], while topsoil losses
and soil erosion are highly correlated with slope steepness [14]. SOC
concentrations at the 0–60 cm soil depth in terraces were the highest
when compared to forestland, grassland, and sloping cropland [35]. Soil
erosion and cropping contributed to variations in SOC and TN losses
along the sloping terrace [36]. The most serious problems for the farmer
in tropical highlands are land degradation due to misuse of land re-
sources and land cover changes which result in decreasing soil fertility
and crop yield losses [37].

Thus, the Coka watershed faced food insecurity problems, climate
change (uncommon rainfall, hotness, and coldness), the occurrence of
drought, lack of crop productivity, and population growth from the last
30 years to the present [38, 39], which is a 56.3% increment of popu-
lation growth with the requirement of construction, crops for food se-
curity, firewood and charcoal for fuel or income, and grazing. These all
anthropogenic activities have significant impacts on the environment
and ecology of natural resource management and assurance of food se-
curity. Food security depends on soil productivity whereas soil fertility
and productivity depend on soil organic matter, which is a reservoir of
essential nutrients and plays an important role in cycling essential nu-
trients. The investigation in and surrounding the study area is limited to
soil organic carbon content and stock, but the study area faced uncom-
mon weather conditions and extended food insecurity periods. The
findings from the study may provide scientific information for the sci-
entific community, government and non-government organizations, and
local area people to fill the gap and effective decision-making to mitigate
environmental and ecological problems in the area. This study was aimed
to assess the effects of LULC along with slope positions on SOC stock's
potential and provide information for effective land use planning, and to
mitigate the change in climate in the Coka watershed.

2. Material and method

2.1. Study area

Coka watershed is located in geographical boundaries 7�1201000N -
7�1802000N and 37�310000E - 37�3402500E in Tembaro woreda, Kembata
Tembaro Zone, Southern Ethiopia (Figure 1). The watershed area is 3731
2

ha, and the altitude ranges between 771m in plains to 2524 m.a.s.l. in the
plateaus (Figure 1). The district slope gradient ranges from gently (2–5%)
to very steep (above 30%) (Figure 1).

Coka watershed has bimodal rainfall distribution small (belg) and
major (Kiremt). The long-term mean average rainfall is 1267.13 mm, and
the mean max and min temperature are 30.0 �C and 9.9 �C, respectively
[40] and (Figure 2). The trend rainfall showed unsystematically
decreasing from 198 to 2021 years periods (Figure 2). The trend of
temperature in the area revealed an unsystematic increment for max.
temperature and decrement for min. temperature (Figure 2). Rains in
kiremt season are intensive, which is used for economic and food crop
production and causes soil erosion during this time at different parts of
this watershed. According to [41] the agro-climatic classification of the
study watershed can be kola or warm semiarid (500–1500/1800 m),
woinadega, or cool sub-humid (1500/1800–2300/2400 m), and dega or
cool-humid (2300/2400–3200 m).

The study watershed drains to the Coka stream, forming a tributary of
the Omo River that flows into L. Turkana, bordering with Kenya.
Geologically, the area is covered by trap series volcanics of the tertiary
period that are characterized by acidic rocks such as rhyolites, ignim-
brites and tracheitis covering the basemen complex of the Precambrian
rocks [42]. Moderate to deeper and shallower soils are found on plains
slopes and steeper slopes, respectively. The total population of the study
watershed was 12,493 in 1994, 14,303 in 1998, 17,486 in 2008, and 22,
194 in 2021 [39] showing a population increase of 56.3% in the last 30
years. The reason why Coka watershed was selected for this study is the
food insecurity problem that existed in the area and the dramatic
increment in population growth.

2.2. Analysis of land-use-cover

The people within the Coka watershed are involved in mixed agri-
culture and crop-livestock farming. The land-use-cover (LULC) within
area was classified into seven classes which includes forestland (23%),
bush-land (18.3%), cultivated-settlement-land (38.5%), grassland
(16.9%), bare-land (1.8%), built-up-area (0.6%) and water-body (0.9%)
[43]. LULC current data were assessed by using remote-sensing data from
satellite images (Landsat-8 OLI-TIRS) with 30 m*30 m spatial resolution
and path/row of 169/55. LULC change is the largest anthropogenic
carbon source in the atmosphere [44].

2.3. Soil-sample-collection and laboratory-test

Soil samples were composed using offseason, which was appropriate
for sampling in Coka watershed. Slope and climate variability and land-
use type and its adjacent area were considered to minimize differences in
soil sampling; because of this, the method used was purposive sampling.
Soil data for soil carbon content and bulk density were collected from five
LULC types (forestland, cultivated-land, grassland, bushland, and bare-
land) and three slope positions (lower-slope (0–10%), middle-slope
(10–30%), and upper-slope (>30%)) within 30 cm soil depth. The soil
sample was collected from 0-30 cm soil depth because this soil depth
might be the most biologically active portion of the soil profile and root
ability zone for most plants. The reason for the classification of LULC
change types and slope classes is their existence in the area. Soil samples
from each slope position and land-use types were collected from
randomly selected points with 5–8 replications based on a sampling plot
size and replicated soils mixed together to form a composite for organic
carbon-content analysis. Samples were gathered by using the core ring
method (100 cm3 core volume) for soil bulk density (BD) analysis. Totally
60 soil samples (5 LULC types x 3 slope positions x 4 plots) were collected
for analysis of SOC and BD in the Coka watershed. Soil bulk densities and
carbon contents had been analyzed in Hawassa University soil test
laboratory.

BD was taken from undisturbed samples with a known volume of core
ring samplers and measured. The BD samples were dried for 12 h at 105
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Figure 2. Mean Rainfall and Temperature in the Coka watershed.
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�C and weighed. The bulk density (BD) (g cm�3) was calculated as the dry
soil weight divided by the volume of the soil as shown in Eq. (1).

BD ¼ Dry weight of soil/volume of soil (1)

where BD-bulk density.
Sixty composite samples of soil were brought to the laboratory for

organic-carbon estimation. The soils were dried, ground, and sieved (<2
mm) for SOC analysis before occurring the laboratory process to remove
the debris and roots. The total carbon concentrations were analyzed at
1100 �C by dry combustion. Organic carbon (OC) in soil was estimated
using the [45] wet digestion method, which is a widely used procedure
[46] for soil organic carbon estimation. In Walkley and Black methods,
about 60–86% of SOC is oxidized; therefore, a common correction factor
(1.32) was used to get the corrected SOC values [47]. This analysis was
executed for original samples and those treated with 6 MHCl to remove
carbonate carbon. The results presented in this document represent
carbon contained in organic matter, remaining in the soil after the HCl
treatment. Carbon stocks (Mg ha�1) were primarily calculated by
multiplying the concentrations (%) of organic carbon in soil by the bulk
density (g cm�3) and depth of sampled soil (30 cm) (Eq. (2)). Soil organic
carbon stocks (SOCS) were calculated using [46], which is:-

SOCS ¼ BD*D*% C (2)

where, SOCS(Mg ha�1) is Soil organic carbon stock, BD (g cm�3), D (cm)
is soil depth, and %C is soil organic carbon concentration in percent.

2.4. Data analysis

Soil data on SOCS were subjected to Factorial design following the
general linear model (GLM) procedure using IBM-SPSS statistics 26
version statistical software. Multivariate-test was conducted to identify
the statistical significance of main effects and interaction effects between
LULC-types and slope positions. A one-way analysis of variance (ANOVA)
showed significant differences (p� 0.05) among the various land-use and
slope position for each parameter.
Figure 1. Map of the study wa
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3. Result and discussion

3.1. Main and interaction effects of LULC types along with slope positions

All multivariate tests (Wilks' Lambda) showed that the multivariate
main effects of LULC types were statistically significant (P < 0.001),
indicating SOC stocks were significantly affected by LULC types
(Table 2). The main effects of slope positions showed a significant (P <
0.01) difference between the subject's effects on BD (g/cm3), SOC (%),
and SOCS (Mg ha�1) (Table 1). The main effects of all multivariate tests
for slope classes have revealed statistically significant (P < 0.001) dif-
ferences even in the same selected soil properties in the LULC types in
different slope positions (Table 2). Interaction effects of LULC types along
tershed, Southern Ethiopia.



Table 1. Multivariate tests between-subjects effects on soil organic carbon stock
in Coka watershed.

Variables Soil properties Mean Square F Sig.

LULC-Type BD (g/cm3) 0.485 79.074 0.000

SOC (%) 20.549 54.073 0.000

SOCS(Mg ha�1) 22,054.801 44.663 0.000

Slope-position BD (g/cm3) 0.379 61.677 0.000

SOC (%) 39.261 103.314 0.000

SOCS(Mg ha�1) 31,970.478 64.744 0.000

LULC Type * slope position BD (g/cm3) 0.016 2.671 0.017

SOC (%) 2.867 7.545 0.000

SOCS(Mg ha�1) 2327.993 4.714 0.000

Table 3. Mean effects of LULC types on soil organic carbon stock.

LULC Type BD (g/cm3) SOC (%) SOCS(Mg ha�1)

Forestland 1.048 3.329 101.521

Cultivated-land 1.244 1.384 49.347

Grassland 1.251 2.224 75.883

Bare-land 1.606 0.808 37.835

Bush-land 1.278 3.952 144.582

Mean Square 0.485 20.549 22,054.801

F 22.923 9.533 11.576

Sig. 0.000 0.000 0.000
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slope positions for analysis of all multivariate tests were statistically
significant (P < 0.05), and tests' between-subjects effects on SOCS were
statistically substantial (P¼ 0.000) (Tables 1 and 2). A statistically sig-
nificant correlation (R ¼ 0.981) has occurred between (SOC (%)) and
(SOCS (Mg ha�1)) but negative correlation with BD. This divulges that
SOCS at 0–30 cm depth varied significantly (P< 0.001) in LULC changes
and slope position in this specified area which is in agreement with the
study conducted by [48].
3.2. Effects LULC types

Soil bulk density (BD) varied statistically significantly (P < 0.001)
from highest in bare land and lowest in forestland (Table 3). According to
Hillel (1980), more OM content in the topsoil makes soils loose, porous,
and well aggregated, thereby reducing BD, a good range for agricultural
soils from 1g cm�3 to 1.7 g cm�3. This implies that the soils of the study
area have no excessive compaction, no restriction to root development,
and are within the average range for good agricultural productivity,
which is in line with the study [49].

SOC stock at 0–30 cm depth showed a statistically significant differ-
ence (P < 0.001) in LULC changes in the Coka watershed. According to
ANOVA test analysis (Table 3, Figure 3) indicated that LULC types had
statistically significant (P< 0.001) effects on soil organic carbon content
(SOC (%)) and soil organic carbon stock and (SOCS (Mg ha�1)). The
overall mean of SOC and SOCS in the bushland (3.95%) and 144.58 (Mg
ha�1) followed by forest land (3.33% and 101.52 Mg ha�1) was signifi-
cantly (P ¼ 0.000) higher than in bare land (0.81% and 37.84 Mg ha�1),
respectively (Table 3, Figure 3). The increasing trend of SOCS was shown
at a depth of 30 cm in the following order: bushland > forestland >

grassland > cultivated-land > bare-land. A significant correlation (R ¼
0.98) was detected between SOC content and SOC stock. SOCS in bush-
land was 2.93 and 3.82 folds greater than in cultivated land and bare
land, respectively. The result showed that the presence of the highest
SOCS in bushland could be because the types of bushes presented in the
study area were large in amount and faster for decomposition. Forestland
contained 2.01 and 2.68 times more SOCS than cultivated land and bare
land in 30 cm soil depth. This indicates that the identified soil depth is
appropriate for SOCS evaluation, primarily for cropland productivity and
improvement of carbon sequestration. The finding is confirmed by [50];
SOCS observed in the topsoil (0–10 cm) was 60% of the total. As reported
by [9] soils converted to cropland lost 13–18% of their SOC for the top
layer of 20 cm. Similarly, the amount of SOC is approximately double
Table 2. Main effects and interaction effects of LULC types and Slope position in Cok

Variables Multivariate Tests Value

LULC-Type Wilks' Lambda 0.020

Slope-position Wilks' Lambda 0.108

LULC-Type * slope position Wilks' Lambda 0.180

4

(2x) the amount of C in atmospheric carbon dioxide (CO2) and threefold
that in aboveground vegetation globally in the 30 cm surface layer [51].
This result showed lower SOC stock than the same soil depth at a global
level. This finding agrees with those studied by [52], the SOC global
stock of soil has been calculated to be in the range of 684–724 Pg to the
soil depths of 30 cm. This critical severity indicates that ecological and
environmental restoration is required in the study watershed. Moreover,
this discovery is within the range of earlier findings by [53] who reported
that SOC stock ranging (42.9–234.6 Mg ha�1) for different soil types for
0–60cm depth, Southern Ethiopia.

LULC changes have considerable contributions toward the SOC-
storage and/or CO2 emission. Observably, LULC changes can influence
soil properties, including SOC stock and SOC content, because of
anthropogenic activities (agricultural intensifications, overgrazing, fer-
tilizer application, harvesting, planting, etc.). This result, approved by
[47] reported that organic carbon was lowest in cultivated than forest-
land, bushland, and grassland. This finding is maintained by [54] who
argued that a significant difference in SOCS is due to LULC changes in
Western and Central Ethiopia. Similarly, the study by [55] cropland
expansion typically reduces SOC stocks. The highest area was covered by
cultivation with low organic carbon stock which is directly connected
with low soil agricultural productivity. As reported by [56] that
SOC-stocks are sensitive to land-use-cover change. Soil-carbon can
improve the soil's physical and chemical properties. Cultivated land and
bare land have lower organic carbon stocks and contents than other
land-uses ecosystems since cultivated-land increases the soil's aeration,
microbial-mobility, enhances decomposition, removal with crop resi-
dues, and bare land might be exposed to removal of organic carbon with
topsoil by erosion and evaporation from soil surface due to lack of land
cover.

The lowest SOCS and SOC content in the study area were recorded in
bare land followed by cultivated land which may cause land degradation
and environmental pollution. Besides, LULC and widespread poor agri-
cultural practice might be among the reason for soil quality deterioration
and low crop productivity. This finding is in line with the study by [57],
the human factors of poverty, insecure land tenure, and high population
pressure as driving forces for land degradation. Similarly [58], investi-
gated the impact of LULC on concentrations of SOC sequestration. The
land conversion from natural forests to plantations, croplands, and un-
sustainable land uses negatively influenced the SOC pool in soils across
Ethiopia [59]. In contrast [60], found no significant differences in soil
chemical properties among land uses, including SOCS, but found a sig-
nificant difference in physical properties of Andosol in Ethiopia's
Southern part.
a watershed.

F Df Error df Sig.

31.892 12.000 114.059 0.000

29.283b 6.000 86.000 0.000

4.203 24.000 125.314 0.000
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Figure 3. Effect of land-use-cover change on soil organic carbon stock
and content.

Table 4. Mean effects of slope position on soil organic carbon stock in the Coka
watershed.

Slope position BD (g/cm3) SOC (%) SOCS(Mg ha�1)

Upper slope 1.420 1.202 48.714

Middle slope 1.292 1.911 70.540

Lower slope 1.145 3.904 126.247

Mean Square 0.379 39.261 31,970.478

F 9.187 18.308 14.119

Sig. 0.000 0.000 0.000
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This study revealed that the transformation of natural vegetation to
anthropogenic land uses (grassland, cultivated land, and bare land) could
cause a deterioration effect on SOC stock. This result is in line with a
study by [61] that reported that alteration of natural forests into
human-managed land uses (cropland, grazing land, and eucalyptus
plantation) had more harmful effects on SOC in Northwestern Ethiopia.
Another study by [62] also found a comparable higher SOC under
grassland than in cereal farms in Southern Ethiopia.

The SOCS increment showed from bare land to bushland by 3.82
times, indicating the need for improving and restoring SOCS by con-
verting bare land and farm-land to forestland and bushland. The findings
agree with studies conducted by [63] that reported that improvements in
SOCS have been documented with the change of cultivated-land and
grazing-land to the forest in different parts of Ethiopia. As reported by
[44], revegetation and afforestation have been suggested as effective
approaches to ensure SOCS in soils [2]. Converted that the trans-
formation of degraded grazing land into protected areas significantly
increased SOCS in the topsoil layer (0–10 cm) by 42%. The increment of
SOC and ecosystem improvement have been achieved by converting
degraded lands to protected areas across different agro-ecological zones
in Ethiopia [48]. Correspondingly [64], confirmed that SOCS increased
by community-based water and soil conservation practices. This in-
dicates that enhancing SOC-stock is possible in the area by converting
degraded land to forest or protected land. Thus, approaches that enhance
SOC increment in farming ecosystems systematically improve atmo-
spheric CO2 sequestration and organic-matter pools restoration, which is
critical to soil quality and health.

3.3. Effect of slope position on soil organic carbon stock

The result revealed that statistically significant (P < 0.001) differ-
ence in SOC (%) and SOCS (Mg ha�1) in all slope positions (Upper,
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Middle, and lower slopes) (Table 3, Figure 4). The significantly highest
mean difference between SOCS and SOC was observed in the lower slope
position (mean ¼ 126.247 Mg ha�1 and 3.904%) followed by the middle
slope position (70.540 Mg ha�1 and 1.911%), respectively (Table 4,
Figure 4). The lowest significant (P < 0.001) mean difference for SOCS
and SOC was recorded in the upper slope (48.714 Mg ha�1 and 1.202%),
respectively (Table 4, Figure 4). In the overall mean, the increasing trend
of SOCS in slope position was observed within the depth of 30 cm in the
order: lower slope > middle slope > upper slope. This is the same trend
for soil organic carbon content in the study area. SOCS in lower-slope
positions had 1.8 and 2.6 times higher than in middle-slope and upper-
slope positions, respectively. The result revealed that SOCS was higher
on the lower slope than in other slope classes in the study area due to
might be the removal of topsoil from upper and middle slope classes and
deposited in the lower slope position, the presence of more vegetation on
the lower slope, and less exposed for sunlight. This result is verified by
[33] that the foot slope was 2.5 times higher SOCS than other slope
positions in Belgium. Similarly, organic carbon content decreased from
the lower slope to the upper slope position in the Kabe watershed,
Southern Ethiopia [47]. This study demonstrated that the SOCS varied
significantly (P ¼ 0.000) in slope positions (lower, middle, and upper
classes) at 30 cm depth in the Coka watershed.

In most land uses, middle-slope and upper-slope classes have lower
SOCS and SOC content than lower slope positions in the Coka watershed.
This could be caused by a decrease in upper and middle slope position
due to the removal of topsoil by accelerated erosion. This finding is
confirmed by [65] that the SOCS of the grassland and forestland were
higher on the lower slope than on the upper hill slope. This might be the
occurrence of increased evaporation and removal of topsoil due to upper
and middle slope land uses exposed to temperature and water erosion.
This result is in agreement with conducted [66], that SOC content and
SOCS might be affected by topographic factors. Correspondingly, the
slope positions are supported to force distribution patterns of plant types
and aboveground biomass [67]. According to [68], afforestation on
sloping cultivated lands increases SOCS. As argued by [66] in Ethiopia's
northern highlands, an impact of different land uses along slope positions
showed the apparent changes in soil properties, including SOC content.
This reveals that the slope position has shown a statistically significant (P
¼ 0.000) difference in SOC stock.

4. Conclusion

Exploring the effects of land-use-cover changes (LULC) along slope-
position on carbon stock under global warming is fundamental to
global climate change and land-productivity investigation. The LULC-
change showed significant (P < 0.001) variation in SOC content and
SOCS (soil organic carbon stock) with the range of bushland (144.582Mg
ha�1) to bare land (37.835 Mg ha�1) and with slope position range of
upper-slope (48.714 Mg ha�1) to lower-slope (126.247 Mg ha�1) in the
Coka watershed, Southern Ethiopia. These findings revealed massive
losses of SOCS and SOC content due to the transformation of forestland
and bushland to grassland, cultivated land, bare land, and lower slope to
upper slope positions. This loss indicates that it might be caused by the
decrement in agricultural productivity in the study area. ANOVA and a
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multivariate test showed that all LULC-changes and slope positions
revealed a significant (P < 0.001) effect on SOC and SOCS, and the
interaction effect of LULC-types with topographic position also showed a
statistically significant (P < 0.001) difference. The SOC and SOCS are
varied in the shift of LULC types within 0–30 cm soil depth because this
soil depth might be the most biologically active portion of the soil profile
and root ability zone for most plants. The highest BD in bare-land and
upper-slope and lowest BD in forestland and lower-slope were observed.
Generally, this study implies the presence of a positive relationship be-
tween SOCS and LULC types along with the topographic position.
However, the overall SOCS status in all land-use types and slope positions
was found to be low. Thus, appropriate LULC and management practice
should be required to add inputs and reduce losses of the SOCS has to be
designed and implemented to increase the content and stock of soil
organic carbon in the Coka watershed. These could increase soil pro-
ductivity, recover the soil potential to sequester more SOC, protect the
environment and lessen the effect of climate change for long periods of
sustainability.
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