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Abstract

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is an

analytical method that detects macromolecules that can be used for proteomic fingerprinting

and taxonomic identification in arthropods. The conventional MALDI approach uses fresh

laboratory-reared arthropod specimens to build a reference mass spectra library with high-

quality standards required to achieve reliable identification. However, this may not be possi-

ble to accomplish in some arthropod groups that are difficult to rear under laboratory condi-

tions, or for which only alcohol preserved samples are available. Here, we generated MALDI

mass spectra of highly abundant proteins from the legs of 18 Neotropical species of adult

field-collected hard ticks, several of which had not been analyzed by mass spectrometry

before. We then used their mass spectra as fingerprints to identify each tick species by

applying machine learning and pattern recognition algorithms that combined unsupervised

and supervised clustering approaches. Both Principal Component Analysis (PCA) and Lin-

ear Discriminant Analysis (LDA) classification algorithms were able to identify spectra from

different tick species, with LDA achieving the best performance when applied to field-col-

lected specimens that did have an existing entry in a reference library of arthropod protein

spectra. These findings contribute to the growing literature that ascertains mass spectrome-

try as a rapid and effective method to complement other well-established techniques for
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taxonomic identification of disease vectors, which is the first step to predict and manage

arthropod-borne pathogens.

Author summary

Hard ticks (Ixodidae) are external parasites that feed on the blood of almost every species

of terrestrial vertebrate on earth, including humans. Due to a complete dependency on

blood, both sexes and even immature stages, are capable of transmitting disease agents to

their hosts, causing distress and sometimes death. Despite the public health significance

of ixodid ticks, accurate species identification remains problematic. Vector species identi-

fication is core to developing effective vector control schemes. Herein, we provide the

first report of MALDI identification of several species of field-collected Neotropical tick

specimens preserved in ethanol for up to five years. Our methodology shows that identifi-

cation does not depend on a commercial reference library of lab-reared samples, but with

the help of machine learning it can rely on a self-curated reference library. In addition,

our approach offers a complimentary tool with good accuracy and lower cost per sample

than conventional and modern identification approaches such as morphology and molec-

ular barcoding, provided that financial resources are available to invest in the acquisition

of the MALDI equipment.

Introduction

Hard ticks (Ixodidae) are hematophagous ectoparasites that feed on almost every species of

terrestrial vertebrate on earth, including Homo sapiens sapiens [1, 2]. Due to a complete depen-

dency on blood as a food source, both sexes of adults and immature ticks are capable of trans-

mitting disease pathogens to their hosts, causing significant morbidity and sometimes even

death [3, 4]. Research on hard ticks has increased recently in the Neotropics, where a growing

number of outbreaks of tick-borne related illnesses have been documented [5–8]. Despite

these efforts, comprehensive studies about the ecology, behavior and control of hard ticks rele-

vant to public health remain elusive in Central America due to the shortcomings of traditional

taxonomic methods for species identification [9]. Taxonomic identification of Neotropical

Ixodidae has traditionally relied on adult morphological characters [10]; however, morpholog-

ical keys for immature stages (i.e., larvae and nymphs) are lacking and experts are often unable

to reliably identify immature ticks to species [10, 11]. Moreover, morphological identification

of ticks is unrealistic in epidemiological settings because assessing the role of ticks as disease

vectors usually involves identifying hundreds of individuals for pathogen screening, an

extremely time-consuming effort, which may be further impeded by the lack of qualified taxo-

nomic specialists [12].

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is

an analytical technique that allows for sensitive and accurate detection of complex molecules

such as proteins, peptides, lipids and nucleic acids [13–15]. The conventional MALDI

approach has been used successfully for proteomic fingerprinting through pattern recognition

for the identification of microorganisms such as pathogenic bacteria and fungi, which can be

cultured in the laboratory and form discrete colonies with very consistent mass spectra that

facilitates the development of reference libraries for identification of unknown samples [16,

17]. In fact, a commercial program offered by the manufacturers of the MALDI technology is
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capable of determining statistical similarities between the spectra of unknown samples and a

well-curated, proprietary reference library of bacteria and fungi to identify the species of the

unknown specimen. This is analogous to the process of matching fingerprints, and offers a

simplified comparison score that ranges from 0.0 to 3.0. Scores above or equal to 2.3 represent

a confident match at the genus rank, and high probability at the species level, while values

below 1.7 are considered as non-reliable identifications [16–18].

Although more challenging than identifying bacteria and fungi due to the size and hetero-

geneity of the specimen, MALDI has also been used to discriminate among species of inverte-

brates, including mosquitoes (Culicidae—Anopheles), fleas (Pulicidae—Ctenocephalide),

biting midges (Ceratopogonidae–Culicoides), sandflies (Psychodidae–Phlebotomus, Lutzo-
myia) and ticks (Ixodidae–Rhipicephalus) [19–27]. A key finding from these studies is that pro-

tein spectra obtained from body sections or whole specimens were similar among individuals

of the same morphological species but differed noticeably across different species. Therefore,

MALDI protein spectra can be used as a tool to delimit species boundaries in arthropods that

are vectors of pathogens. Nevertheless, fresh laboratory-reared specimens are routinely needed

to build a reference library that meets the high-quality standards required for classification.

This represents an important limitation for some arthropod groups, or assemblages, that are

difficult to rear under laboratory conditions. In addition, epidemiological studies often rely on

field-collected specimens preserved in ethanol for long-term storage in reference collections.

To overcome these limitations, previous studies have opted for adjusting the comparison

scores minimum-threshold limit for identification, lowering the manufacturer´s recom-

mended scores from 2.3 to 1.8 [22, 28] or even 1.3 [23, 29]. Hence, mass fingerprinting for the

identification of field-collected specimens that do not exist in a reference spectra library (or for

those from which reference spectra cannot be generated under ideal conditions) requires an

alternative, objective approach [12]. Moreover, most existing applications of MALDI to iden-

tify arthropod disease vectors have focused on relatively species-poor vector assemblages from

Europe. This technique has been tested less frequently in the new world tropics [20, 21, 23, 25,

28–37], where vector species richness is the greatest on Earth.

Here, we used MALDI as a scheme to identify Neotropical specimens of adult hard ticks

derived from ethanol-preserved field collections. Specifically, we used machine learning and

pattern recognition algorithms to classify protein spectra from the legs of field-collected speci-

mens in order to identify a group of unknown samples with a self-curated reference library.

MALDI is a promising tool for cataloging and quickly identifying large arthropod groups such

as ticks [12]. Our results should contribute to the growing body of literature trying to address

questions about feasibility, reliability and universality of the methodology for different envi-

ronments and species that have not been evaluated before. Properly identifying disease vectors

such as Ixodidae in highly diverse Neotropical countries, such as Panama, is a critical first step

to predict and manage tick-borne zoonotic pathogens such as Rickettsia and arboviruses (i.e.,

arthropod-borne viruses).

Methods

Sample preparation

Ticks stored in ethanol for up to 5 years, and previously identified based on morphological

characters, were taken from long-term storage in a -20˚C freezer (S1 Table). A total of 103

specimens from the following species were included in this study: Amblyomma mixtum (cajen-
nense), Amblyomma calcaratum, Amblyomma dissimile, Amblyomma geayi, Amblyomma
nodosum, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma pecarium,

Amblyomma sabanerae, Amblyomma varium, Amblyomma naponense, Amblyomma
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tapirellum, Ixodes affinis, Ixodes boliviensis, Dermacentor nitens, Haemaphysalis juxtackochi,
Rhipicephalus microplus and Rhipicephalus sanguineus.

Samples were prepared following previously published protocols with minor modifications

[22, 23]. Briefly, we removed either the left or the right anterior leg from each tick specimen

using a scalpel. The leg was then put in a tube with 300 μL ultrapure water followed by the

addition of 900 μL 100% ethanol. The tube was vortexed for 15 seconds and centrifuged using

a Heraeus Biofuge Pico microcentrifuge (Thermo Fisher Scientific, Waltham, MA, USA) at

17,000 g for 2 minutes. After centrifugation, the supernatant was poured off from the sample

tube, which was left to dry for 15 minutes. Subsequently, the leg was resuspended in 60 μL 70%

formic acid and 60 μL 100% acetonitrile and homogenized in the microtube using a manual

pestle. The sample was placed in a Branson 1510 ultra-sonicator (Bransonic, Danbury, CT,

USA) for 60 minutes in ice water, and then vortexed for 15 seconds and centrifuged again at

17,000 g for 2 minutes.

For peptide detection with mass spectrometry, a saturated solution (10 mg/mL) of α-

cyano-4-hydroxycinnamic acid (HCCA) matrix was prepared in 30:70 [v/v] acetonitrile: 0.1%

trifluoroacetic acid (TFA) in water. An aliquot of 1 μL from the sample supernatant was pre-

mixed with an equal volume of HCCA matrix, and 1 μL of the mix was quickly pipetted onto a

polished steel MALDI plate in its respective target spot. All samples were placed and measured

on three individual target spots with spectra from three technical replicates collected per spot.

After letting the plate dry, it was inserted into the MALDI mass spectrometer to record the

protein spectra from the tick´s leg.

MALDI mass spectrometry parameters

We used an UltrafleXtreme spectrometer (Bruker Daltonics, Bremen, Germany) to generate

the protein mass spectra of each specimen. The equipment has a MALDI source, a time-of-

flight (TOF) mass analyzer, and a 2 kHz Smartbeam-II neodymium-doped yttrium aluminum

garnet (Nd:YAG) solid-state laser (λ = 355 nm) that we used in positive polarization mode. All

spectra were automatically acquired in the range of 2,000 to 20,000 m/z in linear mode for the

detection of the most abundant protein ions. Each spectrum represented the accumulation of

5,100 shots with 300 shots taken at a time, and the acquisition was done in random-walk mode

with a laser power in the range of 50% to 100% (global laser attenuation at 30%).

The software FlexAnalysis (Bruker) was used to pre-process and evaluate the mass spectra

quality, based on the number of ion peaks and their intensity. Initially, all sample spectra were

normalized by applying a general algorithm for baseline subtraction and smoothing provided

by the software. Visual comparisons of the mass spectra from different tick species gave initial

indications of dominant ion peaks that would suggest possible classification into discrete

groups. Mass spectra that did not include at least one ion peak with an intensity of 1000 a.u. or

more, were considered low quality and filtered out. All samples were placed and measured on

three individual target spots, with three technical replicates of the mass spectra collected per

spot.

Data analysis, clustering algorithms and statistics

The methodology has been described in detail previously by our group for the identification of

adult mosquito legs [27], based on similar data analysis for face recognition [38, 39] and spec-

tral classification using mass spectrometry [40, 41]. In brief, 239 mass spectra generated across

103 samples for all 18 species of morphologically identified Neotropical hard ticks were classi-

fied with a custom-made algorithm developed by our group using MATLAB (MathWorks,

Natick, MA, USA). The algorithm is based on Principal Component Analysis (PCA) and
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Linear Discriminant Analysis (LDA), which are linear transformation techniques from the

field of Machine Learning that are commonly used for dimensionality reduction and classifica-

tion. Dimensionality reduction can help decrease computational costs for classification, as well

as avoid overfitting by minimizing the error in parameter estimation. Overfitting was also

addressed by maximizing the number of specimens analyzed per species, while minimizing the

number of technical replicas (i.e., only three spectra per specimen with good signal intensity

were used for data analysis).

PCA is an “unsupervised” algorithm that generates vectors that correspond to the direction

of maximal variance in the sample space. On the other hand, LDA is a “supervised” algorithm

that considers class information to provide a basis that best discriminates the classes (i.e., tick

species) [38]. For both PCA and LDA analyses, we calculated the Euclidean distance between

the vector describing the test sample and the average vector describing each class to identify a

test sample. The class with the minimum distance with respect to the test sample was assigned

as the identified species for that test sample. The LDA was applied over the data set expressed

in terms of the coefficients (i.e., principal components) obtained by the PCA. Thus, PCA

reduced the dimensionality of the data, and the LDA provided the supervised classification.

The performance of the clustering algorithms was tested using Monte Carlo simulations

over 1000 iterations per species to optimize training and cross-validation prediction success

rates. For each iteration, the data elements in each class were split randomly in approximately,

but not less than, 20% of the elements for testing and the rest of the elements for training, for

each species. We used all the peaks in the spectra for the PCA analysis, and the first 150 princi-

pal components from the PCA stage that explained 99.9% of the total variance were then pro-

jected for the LDA algorithm, which also generated a 150-components data set. The number of

components was chosen after a performance analysis, again using a Monte Carlo approach,

that provided the best identification rates. Global and class positive identification rates were

calculated to establish the classification capacity of the algorithm. The positive identification

rate corresponds to the percent ratio between positive identifications performed by the algo-

rithm and the real positive cases in the data.

For visualization purposes in the plots generated with our algorithm in MATLAB, species

that were morphologically identified within the Rhipicephalus and Ixodes genera were sepa-

rately compared against Dermacentor and Haemaphysalis for which there was only one species

in each. All species that were morphologically identified within the Amblyomma genus were

separately compared between themselves or against the Ixodes genera.

Results

Optical micrographs from 18 species of Neotropical hard ticks showed evident differences

among species in terms of adult morphological features (Fig 1), which was well aligned with

the expected unique mass spectra generated from each sample and taxon (Fig 2, S1 Fig, S2 Fig

and S3 Fig). The global automatic acquisition rate was 77% for all species (Table 1), confirming

that, overall, the mass spectra of field-collected and ethanol-preserved specimens allowed auto-

matic acquisition of spectra. In fact, automatic acquisition of spectra results in faster and more

objective data acquisition than performing spectra collection manually. However, the auto-

matic spectra collection, coupled to the fact that species had different starting number of speci-

mens, meant that the number of spectra per species for data analysis was not the same and, in

some cases, did not meet the expected number of spectra per specimen (Table 1). Still, this was

not an obstacle for our data analysis clustering algorithm. The percentage of automatic spectra

acquisition with the MALDI ranged from 50% for A. mixtum (cajennense), I. boliviensis and R.

sanguineus to 100% for several of the species, including A. calcaratum, A. geayi, A. sabanerae,
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I. affinis, and R. microplus, covering a range from 6 to 56 spectra per species (Table 1). The

time stored in ethanol or the location of sample origin did not seem to explain the variable per-

centages of automatic spectra collection (S1 Table). Spectra from freshly collected specimens

stored dry at -20˚C, used to establish the methodology, exhibited the best signals, with better-

defined spectral peaks and higher signal-to-noise ratio.

In addition, the specimens within each species showed consistently similar protein profiles,

regardless of their taxonomic genera, sex, collection date and/or sampling location (S1 Fig, S2

Fig, S3 Fig). Mean protein spectra for tick species differed visually among taxa and the

Fig 1. Optical micrographs of Neotropical hard ticks. The image shows the dorsal and ventral sides for all 18 species of hard ticks in the genera

Amblyomma, Dermacentor, Haemaphysalis, Ixodes, and Rhipicephalus used to generate protein spectra with our MALDI mass spectrometry approach.

https://doi.org/10.1371/journal.pntd.0008849.g001

PLOS NEGLECTED TROPICAL DISEASES Fingerprinting of Neotropical hard ticks using a self-curated mass spectra library

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008849 October 27, 2020 6 / 18

https://doi.org/10.1371/journal.pntd.0008849.g001
https://doi.org/10.1371/journal.pntd.0008849


PLOS NEGLECTED TROPICAL DISEASES Fingerprinting of Neotropical hard ticks using a self-curated mass spectra library

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008849 October 27, 2020 7 / 18

https://doi.org/10.1371/journal.pntd.0008849


differences appeared to be related to their degree of phylogenetic relatedness (Fig 2). For exam-

ple, species within the genera Ixodes, Rhipicephalus, and Amblyomma were more similar

among themselves in terms of the ions peak number and mass over charge (m/z) position in

their mass spectra than species from different genera. Nonetheless, some closely related species

within the Amblyomma genus such as A. mixtum (cajennense), A. varium, and A. tapirellum
also showed fairly distinct protein spectra (Fig 2), which motivated the application of cluster-

ing algorithms for their classification.

Distinct mass spectra profiles between morphologically identified ixodid species could be

classified by an unsupervised PCA algorithm to identify specimens. The quantitative perfor-

mance of the PCA algorithm was assessed per species (Table 2), and visually confirmed with

the graphic clustering presented in 3D plots (Fig 3). The PCA global positive identification

rate was 91.2%, with 14 out of 18 species having higher than 90% positive identification rate.

The PCA graphs showed that most species separated in well-defined clusters, and the distance

among clusters seemed to be related to the degree of phylogenetic relatedness as evidenced by

the clear separation from the specimens of Dermacentor and Rhipicephalus with those from

Haemaphysalis and Ixodes (Fig 3A and 3B), or just between the specimens of Amblyomma (Fig

3C). When comparing species within the genus Amblyomma against those from Ixodes, again

the spectra from specimens of each species clustered together with limited overlap between

groups and those from different genera were clearly separated (Fig 3D).

Fig 2. Baseline-corrected and smoothed spectra for 18 species of ticks in the genus Amblyomma, Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus.
Major ion peaks and their molecular weights are annotated in the range of 2,000 to 20,000 m/z for all species.

https://doi.org/10.1371/journal.pntd.0008849.g002

Table 1. Description of specimens subjected to analysis with the MALDI mass spectrometry procedure.

Species Name # of specimens Locality code # of expected spectra # of obtained spectra MALDI automatic spectra acquisition rate (%)

Amblyomma mixtum (cajennense) 4 a 12 6 50%

Amblyomma calcaratum 5 a, b 15 15 100%

Amblyomma dissimile 4 c 12 9 75%

Amblyomma geayi 4 d 12 12 100%

Amblyomma nodosum 4 a 12 10 83%

Amblyomma oblongoguttatum 4 a, e 12 8 67%

Amblyomma ovale 4 e 12 11 92%

Amblyomma pecarium 4 e 12 11 92%

Amblyomma sabanerae 3 f 9 9 100%

Amblyomma varium 4 g 12 9 75%

Amblyomma naponense 5 f 15 9 60%

Amblyomma tapirellum � 26 e, g 78 56 72%

Ixodes affinis 4 e 12 12 100%

Ixodes boliviensis 4 e 12 6 50%

Dermacentor nitens 4 c 12 9 75%

Haemaphysalis juxtackochi 6 a, e 18 11 61%

Rhipicephalus microplus 10 c, d 30 30 100%

Rhipicephalus sanguineus 4 a 12 6 50%

Total 103 a-g 309 239 77%

(a) = Panama: West Panama, Las Pavas; (b) = Panama: Colon, Madden Road; (c) = Panama: Colon, Achiote; (d) = Panama: West Panama, Capira; (e) Panama: Colon,

Barro Colorado Island; (f) Panama: Colon, Sierra Llorona Lodge; (g) Panama: Colon, Gamboa. (�) Indicates some specific specimens that upon collection were stored

fresh in Silica Gel (For more metadata information about these samples see also S1 Table).

https://doi.org/10.1371/journal.pntd.0008849.t001
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In addition, the LDA clustering analysis showed a global positive identification rate of

94.2% (Fig 4; Table 2), with 14 out of 18 species having higher than 97.8% positive identifica-

tion rate. The range of positive identification rates went from 100% (best score possible) for A.

mixtum (cajennense), A. nodosum, A. oblongoguttatum, A. ovale, A. varium, A. naponense and

R. sanguineus to 45.6% for D. nitens. The 3D representation plots of the LDA clustering dis-

played that the separation between species was more pronounced than with PCA when com-

paring species from different genera, confirming the improved quantitative results of the

performance of the LDA algorithm (Table 2).

Discussion

Our results show that MALDI mass spectra of highly abundant proteins in arthropod legs

served as fingerprints to identify samples of 18 species of Neotropical hard ticks using machine

learning and pattern recognition algorithms to create a self-curated reference library. We com-

pared smoothed and baseline-corrected spectra generated from unknown field-collected tick

samples against the mean spectra from a subset of the same field samples that had already been

identified through traditional means. To systematize this process, we used PCA and LDA algo-

rithms to classify mass spectra without prior establishment of a high-quality reference library,

which typically requires laboratory-reared specimens that may not be possible to obtain for all

species. Global positive identification rates of up to 94.2% were achieved with this methodol-

ogy, offering a rapid, reliable and objective approach to identify hard tick species, which will

likely improve as more specimens are evaluated and included in our database.

These outcomes agree with our previous work [27] in which we used a similar approach to

classify field-collected samples of 11 morphologically-identified species of Anopheles mosqui-

toes. In that study, Neotropical Anopheles samples were stored dry in silica gel at—20˚C,

Table 2. Performance of PCA and LDA clustering algorithms.

Species Name PCA Positive Identification Rate

(%)

LDA Positive Identification Rate

(%)

Spectra per

Class

# Training

Elements

# Test

Elements

Amblyomma mixtum
(cajennense)

100.0% 100.0% 6 4000 2000

Amblyomma calcaratum 100.0% 99.6% 15 12000 3000

Amblyomma dissimile 67.6% 67.6% 9 7000 2000

Amblyomma geayi 99.1% 99.6% 12 9000 3000

Amblyomma nodosum 100.0% 100.0% 10 8000 2000

Amblyomma oblongoguttatum 100.0% 100.0% 8 6000 2000

Amblyomma ovale 100.0% 100.0% 11 8000 3000

Amblyomma pecarium 99.8% 99.0% 11 8000 3000

Amblyomma sabanerae 69.3% 85.9% 9 7000 2000

Amblyomma varium 99.8% 100.0% 9 7000 2000

Amblyomma naponense 100.0% 100.0% 9 7000 2000

Amblyomma tapirellum 97.8% 97.8% 56 44000 12000

Dermacentor nitens 21.7% 45.6% 12 9000 3000

Haemaphysalis juxtackochi 90.9% 97.8% 6 4000 2000

Ixodes affinis 84.0% 89.5% 9 7000 2000

Ixodes boliviensis 96.8% 98.8% 11 8000 3000

Rhipicephalus microplus 93.1% 98.7% 30 24000 6000

Rhipicephalus sanguineus 100.0% 100.0% 6 4000 2000

Global 91.2% 94.2% 239 183000 56000

https://doi.org/10.1371/journal.pntd.0008849.t002

PLOS NEGLECTED TROPICAL DISEASES Fingerprinting of Neotropical hard ticks using a self-curated mass spectra library

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008849 October 27, 2020 9 / 18

https://doi.org/10.1371/journal.pntd.0008849.t002
https://doi.org/10.1371/journal.pntd.0008849


which seemed to avoid sample degradation and maintain spectral quality. This contrasts with

the present study, where most of our specimens were stored in ethanol at -20˚C for several

years. Thus, our findings confirm that our novel analytical approach using MALDI and PCA/

LDA clustering algorithms is robust for species classification regardless of the arthropod

assemblage, sample storing conditions, and the lack of a high-quality reference library. In fact,

the percentage of automatic spectra acquisition from the processed tick species was much

higher (Table 1) than that obtained in our previous publication using mosquitoes, which ran-

ged from 41.8% in Anopheles albimanus to 70.3% in Anopheles triannulatus [27].

Our results herein also show that both classification algorithms, PCA and LDA, were capa-

ble of clustering and recognizing spectra from up to 18 different tick species, including roughly

50% of ixodid taxa (e.g., both ecologically dominant and rare species) reported for Panama

[27, 42]. LDA outcomes were more discriminant and robust than PCA overall, but PCA also

classified species from different genera with over 91% accuracy and consistency. LDA was able

to cluster each of the 18 species of ticks with validation and cross-validation scores above 94%,

both between and within genera. As expected, the clustering algorithm was most accurate for

distinctly related phylogenetic species (i.e., Ixodes, Rhipicephalus and Haemaphysalis genera),

Fig 3. Principal component analysis (PCA) of individual species plotted against first, second and third principal components (PC). All species were classified using

a Monte Carlo simulation with 1000 iterations, in which 80% of the samples were used as training set (□) and the remaining 20% as test set (• for positive identifications

and + for negative ones). The cluster centroid of each species is also presented in the graph (�). The plots show (A) the training and test sets for the species belonging to

the Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus genera, and (B) only the test sets for better visualization; as well as the training set and test set of (C)

Amblyomma species alone or (D) Amblyomma in combination with Ixodes genera. The unsupervised PCA algorithm had a global positive identification rate of 91.2%.

These 3D plots represent only one of the 1000 Monte Carlo iterations performed with the algorithm.

https://doi.org/10.1371/journal.pntd.0008849.g003
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with higher than 97% success rate in most of these cases, than for closely related species (i.e.,

Amblyomma genus). However, A. dissimile and D. nitens depicted only moderate to low posi-

tive identification rates. Although this could be due to assemblage specific signals (i.e., high

protein variability of conspecifics within these taxa), sample degradation and contamination,

or technical errors such as spotting errors cannot be ruled out entirely. Future studies will have

to corroborate the findings regarding these two species.

Although the number of samples analyzed for some ixodid species was relatively low, sev-

eral of these taxa are considered cryptic species complexes [43] and have been implicated as

vectors of human pathogens in Panama as well as more broadly, including A. mixtum (cajen-
nense) and D. nitens, the likely vectors of Rickettsia rickettsii, known to cause Rocky Mountain

spotted fever [44]. We also included samples of A. tapirellum, A. oblongoguttatum and H. jux-
takochi, three species from which human pathogens have been previously isolated [45], such

as: Coxiella-related bacteria, whose member C. burnetii can cause Q fever; Ehrlichia, which

causes ehrlichiosis infection; and Rickettsia, which causes a variety of bacterial infections in

humans and other animals. These results are important because our species identification plat-

form can serve along with recently implemented metagenomic approaches as additional tools

Fig 4. Linear Discriminant Analysis (LDA) applied to spectra from tick species of the genera Amblyomma, Dermacentor, Haemaphysalis, Ixodes and

Rhipicephalus. The plots show (A) the training and test sets for species in the Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus genera projected over the first

three components of the LDA, as well as (B) only the test set for better visualization; and also the training and test sets for (C) the Amblyomma genus alone, as well as

(D) the Amblyomma genus compared to the Ixodes genus. These 3D plots represent only one of the 1000 Monte Carlo iterations performed with the algorithm. The

supervised LDA algorithm had a 94.2% global positive identification rate.

https://doi.org/10.1371/journal.pntd.0008849.g004
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for health ministries in Panama and other countries, to monitor, predict and manage tick-

borne zoonotic pathogens [46].

Morphological taxonomic identification of ixodid ticks can be enhanced by molecular tech-

niques such as DNA barcoding [8, 47], but this procedure is laborious, expensive and needs a

highly trained lab technician. Studies show that typical DNA barcoding costs can range from

$2 to $5 per sample, with difficult-to-extract samples increasing the cost two-fold or more [48,

49]; while costs associated to MALDI species identification have been calculated to be less than

$0.50 per sample, without considering the high equipment cost [50–52]. Furthermore, a com-

prehensive repository of DNA sequences (e.g., DNA barcodes) is needed in order to test spe-

cies limits, yet only a handful of Neotropical tick species are represented in Genbank [53] or

BOLD [54] repositories, which could limit identification to the most common taxa only. In

addition, DNA barcoding occasionally fails to delimit species boundaries due to ambiguous

evolutionary relationships among closely related tick species [47].

Modern methodologies of whole genome analysis of arthropod vectors using Illumina or

Nanopore next generation sequencing platforms can be applied not only to delimit taxonomic

boundaries among tick species, but also to examine vector evolution (i.e., positive selection

and ecological diversification), demographic phenomena (i.e., expansion and bottlenecks) and

molecular epidemiology (i.e., pathogen infection and genetic diversity). The cost of these mod-

ern technologies is decreasing rapidly, and they could quickly become a valid alternative for

taxonomic studies in developing and middle-income countries of Central America, including

Panama. Indeed, portable Nanopore MinION methodology can be performed at the site of

interest, with a laptop computer by someone with very basic entomological knowledge, and at

a very affordable price on a per-sample basis [55]. Nevertheless, the bioinformatic skills and

cluster capacity to process whole genome sequences of tick samples might represent an

impractical burden for some institutions in developing nations, which may not have the

machinery or competency to analyze this kind of data. Moreover, using the Nanopore Min-

ION next generation sequencing approach for the exclusive goal of achieving reliable taxo-

nomic identification of tick species may represent an underutilized expenditure that might

ultimately end up overkilling the budget of resource-limited institutions.

While MALDI mass spectrometry suffers from many of the shortcomings listed for other

technologies, our approach can be used to identify both field-collected vectors and the patho-

gens they harbor in a short period of time, with a minimal amount of tissue and without the

need of expert taxonomists. Our strategy to analyze protein spectra also overcomes the draw-

backs of working without a reference library to classify unknown samples. We posit that

MALDI mass spectra of highly abundant proteins from arthropod tissues is a powerful tool for

species identification that can be easily adapted to other biological systems. However, we also

believe that this technology will be best used as a complement to the traditional barcoding

technique or modern next generation sequencing methodologies, to accurately confirm species

boundaries across entire arthropod communities, while considering problematic vector taxon-

omy and the availability of local financial resources. Developing an additional tool for rapid

and accurate arthropod species identification offers further flexibility to the fluctuating bud-

gets of the research community in Central/South America.

The long-term goal of our analytical approach with MALDI is to develop a tool that can

enhance currently available open-source, web-based platforms, such as MALDI UP [56],

MicrobeMS [57], or Mass-Up [58]; or become a new all-in-one platform where users can

upload mass spectra datasets of known specimens to increase the number of species covered

(e.g., bacteria, fungi, insects) and directly test spectra from unknown specimens for identifica-

tion with our clustering algorithms. This crowd-sourced approach could be more cost effec-

tive, given that it is not necessary to generate a reference library of well-curated samples.
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Instead, field samples can be taxonomically assigned as they arrive to the laboratory using a

correctly matched protein fingerprint, while unidentified samples can be identified with tradi-

tional methods and added as new entries into the growing self-curated reference database.

Conclusions

The present study used MALDI mass spectrometry as a tool to rapidly identify Neotropical

specimens of adult hard ticks that had been preserved in ethanol for several years. Our algo-

rithms were capable of identifying specimens from the 18 tick species evaluated, based on their

protein spectra “fingerprint” with up to 94% cross-validation capability. This is the first report

of the protein mass spectra from the leg for most of these Neotropical tick species. Large

arthropod groups such as ticks are difficult to identify with currently available strategies from

commercial vendors, forcing the user to lower the “quality” bar of a positive match to enhance

the percentage of correct identification. Our MALDI/self-curated library approach, although

still under development and serving as an auxiliary technique to traditional identification

methods (and not necessarily replacing them), would reduce considerably the number of sam-

ples that would require morphological identification or DNA barcoding. This will reduce the

time and cost needed to integrate these techniques in routine surveillance programs in Neo-

tropical regions where tick diversity remains relatively uncharacterized.
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S1 Fig. Baseline-corrected and smoothed spectra for tick specimens from the species A. cal-
caratum. Major ion peaks and their molecular weights are annotated in the range of 2,000 to
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of their sex, collection date and/or sampling location.

(TIF)

S2 Fig. Baseline-corrected and smoothed spectra for tick specimens from the species R.
microplus. Major ion peaks and their molecular weights are annotated in the range of 2,000 to

20,000 m/z for all specimens. The dataset shows consistently similar protein profiles, regardless

of their sex, collection date and/or sampling location.

(TIF)

S3 Fig. Baseline-corrected and smoothed spectra for tick specimens from the species A.
tapirellum. Major ion peaks and their molecular weights are annotated in the range of 2,000 to

20,000 m/z for all specimens. The dataset shows consistently similar protein profiles, regardless

of their sex, collection date and/or sampling location.

(TIF)

S1 Table. Metadata of specimens and species of hard tick (e.g., Ixodidae) collected in Pan-

ama.
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