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ABSTRACT: Herein, we report a computational algorithm that
follows a spectroscopist-driven elucidation process of the structure
of an organic molecule based on IR, 1H and 13C NMR, and MS
tabular data. The algorithm is independent from database
searching and is based on a bottom-up approach, building the
molecular structure from small structural fragments visible in
spectra. It employs an analytical combinatorial approach with a
graph search technique to determine the connectivity of structural
fragments that is based on the analysis of the NMR spectra, to
connect the identified structural fragments into a molecular
structure. After the process is completed, the interface lists the
compound candidates, which are visualized by the WolframAlpha
computational knowledge engine within the interface. The
candidates are ranked according to the predefined rules for
analyzing the spectral data. The developed elucidator has a user-friendly web interface and is publicly available (http://schmarnica.
si).

1. INTRODUCTION

The idea of using computers to solve chemical structures from
experimental spectroscopic data dates from the 1960s.1,2 Over
the past decades, by combining the techniques of chemistry and
computer science, a number of structure elucidation systems
have been developed,2−17 accompanied by reports of constant
improvements of known and developments of novel impressive
algorithms.18−33 The goal of such expert systems is to determine
unknown molecular structures from experimental data with
minimal human intervention. Although CASE (Computer
Aided Structure Elucidation) programs are beginning to provide
very good results in structure elucidation, they are still not
entirely automated and usually a number of 2D in addition to the
1D NMR spectra must be provided.29 A recently reported
system for fully automatic processing and assignment of 1H and
13C NMR spectra, that can further elucidate and determine the
relative stereochemistry of complex molecules34 indicates that
the development of structure-elucidation systems is still a lively
and evolving field.
Most of the reported CASE systems take a database-oriented

approach to structural elucidation and therefore heavily rely on
databases containing chemical structures and spectra.2,18,31−33

The absence of structural motifs in databases and mismatching
because of experimental differences of the recorded spectra are
potential drawbacks of these approaches. To move away from
the typical database-oriented computer-assisted elucidation
systems, our aim is to develop an algorithm that will be

independent of database-searching and would not rely on
predefined molecular formulas. We envisage developing an
algorithm that will, based on the provided IR and NMR data,
first identify a set of small structural fragments and then bind
them together based on NMR data, thus building a structure in a
bottom-up fashion. The proposed process of structure
elucidation mimics a spectroscopist-driven approach of
resolving the chemical structure from spectroscopic data.
In empiric elucidation of the structure of an unknown organic

molecule, a spectroscopist must combine at least two
spectroscopic methods: NMR and MS, NMR or IR, or even
all three of them (IR, NMR, and MS) to derive to the correct
result because IR, NMR, and MS each give only partial
information on the structure of the molecule. While IR reveals
some functional groups that are difficult to identify by other
methods, it is impossible to determine the connection of
structural fragments without NMR, whereasMS is indispensable
in verifying the correctness of the proposed molecular structure
and for elucidating the missing structural fragments that cannot
be determined by IR or NMR. Therefore, we designed an
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algorithm that relies on a combination of all three methods to
determine the correct structure. It produces the most fitting
compound given the input data from 1H and 13C NMR, IR, and
MS spectra and elucidates the chemical structure of a molecule
similarly to a trained spectroscopist, mimicking the human-
driven process of structure elucidation: (i) starting by
identifying functional groups by IR and proton- and carbon-
containing structural fragments by 1H and 13CNMR spectra, (ii)
connecting the identified structural fragments together by
relying on the 1H NMR spectrum and (iii) completing
(rechecking) the elucidated molecular structure by MS and
13CNMR spectrum. The flowchart of the developed algorithm is
presented in Figure 1.

2. METHODS
2.1. Description of the Algorithm. The input of the

algorithm consists of tabulated IR, 1H NMR, and MS data; in
addition, the 13C NMR data can also be added, although the
algorithm can perform the elucidation process without 13C
NMR (vide infra). The 1H NMR spectrum contains proton
resonances which are described by three values: the chemical
shift, the integral, and the splitting pattern. The chemical shift
(denoted as shift in Table 1) is the resonant frequency of a

proton relative to a TMS standard and is expressed in parts per
million (ppm). Roughly, it provides information about the
chemical surrounding to which the proton is bound. The integral
(count) gives the relative number of protons present at each
resonance, while the splitting pattern (splitting) provides
detailed insights into the connectivity pattern of neighboring
protons in a molecule. For the first-order 1H NMR spectra, the
splitting pattern to n chemically equivalent neighboring protons
splits the proton resonance into a n + 1 multiplet with intensity
ratios following the Pascal’s triangle. In the IR spectrum, some
functional groups give rise to characteristic absorption bands
described by their intensity, position (frequency, in cm−1), and
appearance. Although the bands can be intense or weak and
broad or narrow, the algorithm specifically considers only broad
absorption bands (broad in Table 1). The algorithm also makes

use of the molecular mass (mass) of the compound. 13C NMR
data can be included if available. 13C NMR allows the
identification of nonequivalent carbon atoms in an organic
molecule and shows a single peak for each chemically
nonequivalent carbon atom. The chemical shift (denoted as
shift in Table 1), analogous to 1H NMR, is the resonant
frequency of a carbon relative to a TMS standard or residual
solvent and is expressed in parts per million (ppm).
The algorithm operates with the predefined chemical shift

(1H NMR) and frequency (IR) ranges that are associated to the
specific structural fragmentsa structural fragment may
correspond to only a few atoms, a functional group or an even
larger structural part of the molecule. Based on these, the
algorithm searches for a set of candidate compounds by (i)
identifying potential matches of fragments in the input spectra,
(ii) connecting the identified fragments in both spectra into joint
entities, and (iii) identifying the number of fragments in the
analyzed molecule and filling in the elements, which are not
visible in the IR and 1H NMR spectra. Finally, the algorithm
joins the fragments into candidate compounds and ranks them
by evaluating a number of rules, yielding a list of candidate
compounds ranked by a relevance score, which gives higher rank
to more likely matches. Tables with IR, 1H NMR, and 13C NMR
frequency and chemical shift ranges for functional groups and
proton- and carbon-based structural fragments,35 along with IR,
1H NMR, 13C NMR, and MS data of 70 compounds from the
literature were employed for algorithm development and testing
of its performance.36

We describe more details on the individual steps of the
algorithm in the following paragraphs. We illustrate them on a
very simple example of methanol, for which the input IR
spectrum contains two peaks at IR1 = 3347 (broad) and IR2 =
2945 (narrow) [cm−1], 1H NMR two peaks at NMR1 = {3.66
ppm, H-count = 1, coupling = singlet} and NMR2 = {3.43 ppm,
H-count = 3, coupling = singlet}, one 13C NMR peak at 50.1
ppm and has the molecular mass of 32.03.
The functioning of the developed algorithm is presented in

Figure 2. The algorithm performs elucidation in five steps, which
are color-coded in Figure 2, that is, step 1 (green), step 2 (red),
step 3 (blue), step 4 (yellow), and step 5 (violet).

2.1.1. Step 1: Identification of IR and NMR Structural
Fragments.The algorithm first deduces the structural fragments
(functional groups) from their positions (frequency) in the IR
spectrum. Based on the predefined frequency ranges, the
algorithm assigns the input peaks to individual fragments.
Because the frequency ranges for some fragments can overlap, a
peak may be assigned to several structural fragments. In our
example, the list of possible IR fragments related to the two
peaks is CH3, CH2, CH, OH, and NH. In the 1H NMR
spectrum, the algorithm determines the proton-containing
structural fragments and their neighboring protons/groups

Figure 1. Flowchart of the proposed structure elucidator.

Table 1. Definition of the Input of the Algorithm from 1H
NMR, IR, andMS, along withOptional 13CNMR and Sources

data source data
1H NMR shift: value from the spectrum [ppm]

count: integral [#]
splitting: number of peaks1 (H neighbors)

IR frequency: position of a peak in the IR spectrum [cm−1]
broad: value is true if the absorption band peak is broad

MS mass of the molecule [g/mol]
13C NMR (optional) shift: value from the spectrum [ppm]
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based on the chemical shift and splitting patterns. The result of
this step is a set of separately identified IR and 1H NMR
structural fragments. For the 13C NMR spectrum, the algorithm
assigns possible identifications to the fragments, based on the
reported 13C NMR peaks. This process is done independently
from the 1H NMR and IR identification. The possible carbon
atom candidates are later used in step 4 for additional validation
of the candidate combinations.
2.1.2. Step 2: Grouping IR and NMR Structural Fragments.

The IR spectrum only provides information on existence of
structural fragments in the compound, but not their exact
counts. On the other hand, the 1H NMR spectrum provides
information on the hydrogen count of proton-containing
structural fragments. In step 2, the algorithm relates the IR
and 1H NMR structural fragments from step 1 into group(s) of
structural fragments based on compatibility of the numbers of
their hydrogen atoms. The fragments may be grouped in
different ways, for example, one fragment deduced from IR can
be attached to multiple NMR peaks and vice versa. Therefore, in
step 2, the algorithm generates a full set of possible IR and 1H
NMR fragment combinations, which are denoted as IR−NMR
fragments. In our example, NMR1 (1 H atom) can be matched
by CH, OH, and NH, while NMR2 (3 H atoms) by CH3, as well
as CH, OH, and NH (if they appear three times). The algorithm
thus maps all of these combinations into a set of matched IR−
NMR fragments.
2.1.3. Step 3: Identifying Compound Candidates. In step 3,

the IR−NMR fragments are augmented in different ways to
match the input molecular mass, thus producing groups of

structural fragments, each group representing constituent parts
of a candidate compound.

2.1.3.1. Expansion. Proton resonances in the 1H NMR
spectrum may reflect multiple structural fragments in the
molecule. For example, an NMR proton resonance with the
hydrogen count of 6 may represent two CH3 fragments, 3 CH2

fragments, or 6 CH fragments. The algorithm thus examines all
IR−NMR fragments and expands them with all possible
combinations of fragments that match the hydrogen count in
the input data. In our example, the algorithm expands the
combinations of NMR2 with CH, OH, andNH by creating three
copies of each fragment in the combination to match the
hydrogen count of three.

2.1.3.2. Multiplication. Because of isomorphism and the
relative nature of 1H NMR spectra, the count of individual IR−
NMR fragments in the candidate compound may be incorrect
(too low). Given the molecular mass, the algorithm checks if the
counts should be augmented to match the mass and, in these
cases, multiplies the number of fragments in all candidate
compounds. In our simple example, no multiplication is needed.

2.1.3.3. Insertion. Some functional groups (e.g., ether) and
commonly encountered halogen atoms (e.g., Cl, Br, and I) do
not have specific signals in the IR and 1H NMR spectra. The
algorithm therefore inserts these elements into the candidate
compounds to match the molecule mass.

2.1.4. Step 4: Checking for Validity. In the fourth step, each
candidate compound is checked for validity. First, the candidate
compound’s mass is compared to the input mass, and the
candidate is removed if the difference is too large. Then, the
Erdős−Gallai algorithm37 is used to test if a connected graph can

Figure 2. Schematic presentation of the elucidation algorithm. Each color denotes one of the five steps.
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be constructed from the compound’s fragments, given each
fragment’s number of connections. The compound is discarded,
if there are more than five unconnected edges left after
construction. The constructed compounds with less than five
unconnected edges are still considered but penalized (see Table
2). In the investigated example of methanol, only a single
candidate compound CH3−OH is valid according to all three
criteria.
In addition, the algorithm optionally evaluates the combina-

tions against the 13C NMR data, if given. Each carbon fragment
in a candidate compound is checked, comparing the reported
chemical shift in the 13C NMR spectrum with predefined 13C
NMR regions for the investigated structural fragment. If a
reported shift belongs to multiple potential fragments, all
options are considered as correct. A candidate composition is
therefore valid, if all identified fragments are also compliant with
their 13C NMR predefined range positions. In the investigated
example of methanol, the CH3 fragment value of 50.1 ppm falls
into the predefined region of aliphatic carbon atoms with
electronegative substituent, in this case, aliphatic alcohol. For
the one remaining compound candidate, the 13C NMR input
data confirm the presence of the CH3 fragment and confirms the
candidate.
2.1.5. Step 5: Creating and Ranking the Compounds. Step 4

results in several candidate compounds, each consisting of a

number of unconnected fragments. In step 5, the algorithm
observes the fragments of a candidate compound as vertices of a
graph, for which the edges (bonds between elements) must be
determined. The algorithm connects the edges in compliance
with each fragment’s neighbor count and neighbors’ sum of
hydrogen atoms. In the process, some of the candidates are
removed−these include compounds where all the fragments
cannot be connected because of limitations in connections
between the elements; others lack the elements, which were not
visible in any of the input spectra and were not added in step 3.
Each candidate compound can produce any number of valid
graphs (multiple possible edge combinations); therefore, the
algorithm evaluates each one using a set of rules, yielding a
relevance score for each candidate compound. The rules are
shown in Table 2. Initially, the algorithm assigns a relevance
score of 100% to each candidate compound. Based on the rules,
the algorithm lowers the score of the candidates accordingly.
The output of the algorithm is a list of compound candidates

with the corresponding relevance scores. If a compound can be
connected, does not contain unconnected edges, and the
fragment set produces a connected graph with a mass, similar to
the measured mass of the compound, it will receive a high
relevance score. If it fails on one or more rules, the relevance
score is lowered accordingly.

Table 2. Rules for Computation of the Relevance Score of a Candidate Compound

rule description
penalty on the
relevance score

graph contains unconnected edges (rule 1) one or more bonds are not connected between fragments (for compounds
with less than 5 unconnected edges)

−0.5% per
unconnected edge

sum of difference in ppm (rule 2) difference in NMR ppm values between connected fragments within the
compound.

−0.5% per 1 ppm
difference

the larger the ppm difference, the lower the relevance.
difference in mass between constructed compound and the

fragments’ mass sum (rule 3)
the larger the difference in masses, the lower the relevance. −0.5% per 1 g/mol

difference

Figure 3. Simplified elucidation process with the proposed algorithm for 3-(4-chlorophenyl)propan-1-ol (1).
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2.2. Computational Methods. The presented elucidation
approach was developed in Python 3,38 with the web service for
online elucidation using theDjango39 framework with JavaScript
support on the front-end. The web service for online elucidation
also includes the Pysmiles library,40 which translates the
elucidated compounds into SMILES representations. The
Pysmiles library also employs the NetworkX library,41 which
enables the manipulation and creation of graphs. Using the
online service WolframAlpha,42 the web service visualizes the
elucidated end result compounds, which the algorithm provides
as the output.
The algorithm employs a combinatorial approach to combine

the identified fragments into compounds. Several time-
optimizing approaches were also used to minimize the number
of possible combinations. Using the Erdős−Gallai theorem,37

we removed the possible compound combinations. This
theorem provides a necessary and sufficient condition for a
finite sequence of chemical bonds to establish whether the
combination is potentially possible. Using backtracking,43 we
recursively built graphs from the compound combinations.
Finally, we developed a simple decision model,44 which ranks
the built compounds given a set of rules.

3. RESULTS AND DISCUSSION
In the following, we describe a simplified elucidation process
with the proposed algorithm on 3-(4-chlorophenyl)propan-1-ol
(1, Figure 3). The input tabular data for IR, 1HNMR, 13CNMR,
and MS spectra were adopted from the literature: IR: 3325
(broad), 1495, 1454, 1060, 1029, 968, 754 cm−1;45 1H NMR:
1.76 (br s, 1 H), 1.78−1.92 (m, 2H), 2.67 (t, 2H), 3.61 (t, 2H),
7.12 (d, 2H), 7.24 (d, 2H);45 13C NMR: 140.0, 131.2, 129.5,
128.1, 61.3, 33.7, 31.1;45 and MS: 170 (the nominal mass that
corresponds to the molecular ion peakM+ of [C9H11

35ClO]+).46

The peak values of 3033 and 2978 cm−1 for C(sp2)-H and
C(sp3)-H bond stretching were added to the IR spectra because
the algorithm fails to provide elucidated structure if the present
structural fragments of the compound are not assigned (or
missing) in the IR spectrum (vide infra). Additionally, multiplet
proton resonance at δ 1.78−1.92 ppm was assigned as 1.85
(quint-like, 2H) (vide infra).

The algorithm started the elucidation process (step 1) by
analyzing the IR spectrum. A broad peak at 3325 cm−1 was
assigned to an OH group and peaks at 3033 and 2978 cm−1 to
the structural fragments with C(sp2)-H and C(sp3)-H bonds,
respectively. The 1495 and 1454 cm−1 peaks implied the
presence of an aromatic ring (CC stretching). Analysis of the
1H NMR spectrum revealed the presence of one proton bound
to a heteroatom because of the broad singlet resonance at 1.76
ppm with the integral value of 1, which may correspond to an
OH or NH moiety. A quintet-like resonance with integral of 2
indicated a CH2 fragment having two pairs of chemically
equivalent neighboring protons (see below). The two
resonances with the shifts in the aliphatic region of the NMR
spectrum, that is, at 2.67 and 3.61 ppm, with integral 2 and a
triplet splitting pattern (2 neighbors) suggested the −CH2−
CH2−CH2− hydrocarbon chain. The two doublets with
integrals 2 in the aromatic region of the NMR spectrum
indicated a para-substituted aromatic ring. Analysis of the 13C
NMR spectrum revealed the presence of four nonequivalent
aromatic carbon atoms resonating at 140.0, 131.2, 129.5, and
128.1 ppm, two nonequivalent aliphatic carbon atoms
connected in a hydrocarbon chain resonating at 33.7 and 31.1
ppm, and one heteroatom-substituted aliphatic carbon resonat-
ing at 61.3 ppm. In step 2, these elements were combined, into
IR−NMR fragments: an OH group, a −CH2−CH2−CH2−
hydrocarbon chain, and a para-substituted aromatic ring. In step
3, the difference of the sum of calculated mass of fragments on
the IR−NMR fragments list and the experimental input mass
value differed by 35 which corresponds to the mass number of
chlorine-35, which was added to the candidate compound. The
process was completed (steps 4 and 5) by constructing the
compound graph and attaching the chlorine atom at the
aromatic ring para relative to the propyl alcohol substituent. In
this way, the algorithm derived to the correct structure. The
phenol structure candidate, also possible with respect to the IR−
NMR fragments set list, received a lower relevance score because
of the 1H NMR chemical shift δ 1.76 ppm of the OH group. In
step 4, each carbon fragment in the candidate compounds was
checked with respect to the predefined ranges and reported
values of 13C NMR data (vide supra). All carbon atoms in both

Figure 4. Selected examples of resolved structures with IR, 1H NMR, 13C NMR, and MS data from the literature.
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structure candidates in Figure 3 were possible with respect to
reported 13C NMR input values.
Selected examples of structures resolved from their

corresponding literature IR, 1H NMR, 13C NMR, and MS
tabulated data by the proposed algorithm are presented in
Figure 4. The algorithm resolves the structures of various
primary, secondary, tertiary, and aromatic amines 2−6, 16, 31,
34, 37, alcohols 7, 9, 17, 19, 20, 30, 31, 34, 36, ethers 8, 15, 17,
18, halogenated compounds 5, 10, 11, aldehydes 12, 24, esters
13, 16, 18−20, 27, 28, 32, 39, acetyl chloride 14, ketones 15, 25,
33, 38, sulfide 21, nitriles 22−24, 40, carboxylic acids 26, 33, 37,
amides 29, 30, nitro compounds 35, 36, and biphenyl derivatives
38−40. The literature spectroscopic data of compounds in
Figure 4 is collected in the Supporting Information.36 The
algorithm recognizes various functional groups and differ-
entiates between structural isomers of organic molecules.
When elucidating structures of organic molecules, we solve a

problem that is related to the class of inverse problems, which
are most frequently ill-posed and usually do not have a unique
solution. Therefore, the correct structure of the investigated
molecule was not always the first on the list of the compound
candidates with the highest relevance score. For example, for
compound 33, the highest-ranking candidate was 2-oxo-5-
phenylpentanoic acid (score 99.41%), whereas the correct
structure of the investigated compound, 5-oxo-5-phenyl-
pentanoic acid (33), was ranked second (score 99.05%).
Close inspection of the 1H NMR spectrum [δ 11.10 (br s,
1H), 7.50 (m, 5H), 3.07 (t, 2H), 2.50 (t, 2H), 2.10 (quint-like,
2H)]47 revealed that terminal methylene groups of the −CH2−
CH2−CH2− chain with resonances at δ 3.07 (t, 2H) and 2.50 (t,
2H) ppm, have chemical shifts that could imply an attachment
on an aromatic ring, carbonyl, as well as a carboxylic group.
Therefore, both of the above described compound candidates
are probable. However, in investigated cases the correct
structure of the molecule was usually first or second, in few
cases third, result on the list of compound candidates and always
had a relevance score above 99%.
The elucidator has a user-friendly web interface and is publicly

available (http://schmarnica.si). Users can input numerical
values of IR, 1HNMR, andMS spectral data, along with optional
input of 13C NMR data (Figure 5), of the investigated
compound into designated fields and run the elucidation
process. The elucidation process can run with or without 13C
NMR data, although 13C NMR data improve the process and
result of elucidation. The process incorporates the described
combinatorial search for potential fragments based on the two
spectra, and a graph search algorithm, which evaluates the
connectivity of the potential fragments from each possible
combination. After the process is finished, the interface lists the
compound candidates, which are visualized by the Wolf-
ramAlpha computational knowledge engine within the interface.
The candidates are ranked according to the predefined rules for
analyzing the spectral data (vide supra), and the ranking score is
displayed next to each candidate. If the algorithm successfully
resolves the structure from the spectral data (vide infra), the
molecular candidate with the highest-percent matching (for the
tested examples) almost always corresponded with the correct
structure (vide supra). The processing time, in which elucidator
derives the list of structure candidates, depends of the number of
structural fragments present in the investigated molecule and
their connectivity. On the test data, the algorithm usually
derived a list of structure candidates in a few seconds to up to 5
min. In cases of compounds with several structural fragments

(e.g., compound 20) or elements that can be identified only by
MS (e.g., Cl, Br, I atoms, and ethers), the time of calculation can
significantly increase because of the exponentially increased
number of possible combinations.
An evaluation of different optimization and data techniques

was used to determine the efficiency of the proposed model.
First, we evaluated the time complexity of the proposed
approach from its baseline (no optimizations) to the final
version. In order to evaluate the impact of the individual
optimization technique on the process, we only evaluated the
complexity and not the classification performance of the
approach. The aggregated results are shown in Table 3.
The initial time needed to elucidate 40 compounds was

341.04 s. With weight checking and removal of potentially
incorrect combinations, this time was significantly reduced to
21.66 s. Further optimizations, which additionally excluded the
impossible compound combinations, reduced the calculation
time by another 50% to 11.45 s. Inclusion of the 13C NMR data
did not significantly affect the time complexity. However, the
number of elucidation candidates was reduced by about 20%.
This part of the process decreased the final number of candidates
by removing the incorrect candidates from the results, while not
negatively affecting the classification performance by potentially
removing the correct results from the candidate list.
Considering all optimizations, the average number of

candidates per compound significantly decreased by considering
the weight of the combinations, followed by the connectivity
methods and tree realization checks. Additionally, the 13C NMR
data, which we added as an optional input to the proposed
approach, reduced the number of candidates.
It is important to note that in its current form the algorithm

can resolve relatively simple organic molecules (Figure 4). It
currently processes only first-order 1H NMR spectra and fails to

Figure 5. Snapshots from the Schmarnica user interface (http://
schmarnica.si/, accessed Nov 13, 2020): IR, 1H NMR, and MS data
input, and optional input of 13C NMR data (above), along with
presentation of the elucidated structure by WolframAlpha (below) for
the case of isopropyl acetate. Computational complexity and developed
optimizations.
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resolve the unknown structure if the IR spectrum does not
provide the information on the functional groups that are
present in the molecule and should be seen in the IR spectrum.
For instance, if the −NH− group is present in the molecule, but
the IR spectrum for some reason (hidden/superimposed/not
assigned signal) does not provide the corresponding peak value
for this group, that is, ca. 3300 cm−1, the algorithm fails to
resolve the structure. In some cases, the spectral data of 1H
NMR were adjusted to fit the first-order NMR data. For
example, in the above presented elucidation of compound 1, the
splitting pattern of proton resonance at δ 1.78−1.92 ppm was
assigned as a quintet-like (quint-like) at δ 1.85 ppm (vide supra).
We decided to use this term as it corresponds well to what one
can actually observe in the spectrum without knowing the
structure of the compound. Depending on the resolution of the
spectrum, the quintet-like splitting pattern commonly appears
for the central methylene protons in X−CH2−CH2−CH2−Y
hydrocarbon chain that are coupled to the nonequivalent
neighboring pairs of X−CH2 and CH2−Y protons with similar
coupling constants. In the literature, the resonance for this type
of central methylene protons is correctly reported as a multiplet
or triplet of triplets; however, at the current stage, the algorithm
cannot process more complex splitting patterns (e.g., dd, dt, tt,
etc.) or multiplets. The exception is the phenyl group, C6H5−
(Ph−) that is defined as a multiplet resonance with integral 5 in
the region around 7 ppm. The algorithm can also process para-
substituted phenyl ring as it frequently resembles two doublet
resonances with an integral ratio of 2:2 in the aromatic region of
the spectra. Therefore, only compounds with mono- and para-
substituted phenyl rings can be currently processed by the
algorithm. One of the primary goals in further developments will
be upgrading the algorithm to resolve more complex NMR data
as well as to resolve structures from partly incomplete spectral
data (vide supra). The algorithm proposed herein serves as a
ground for further developments, which will increase its capacity
of resolving more complex molecular structures.

4. CONCLUSIONS

The proposed algorithm is the first step in the development of a
user-friendly and database-independent chemical structure
elucidator that would mimic a spectroscopist-driven process of
resolving the molecular structure from spectral data, that is,
building the molecular structure form small predefined frag-
ments. It recognizes various functional groups and differentiates
between structural isomers of organic molecules. In its current
form, the algorithm can resolve rather simple organic structures
and will thus serve as a basis for further developments. The
elucidator is publicly available through a web-interface, which
can be used to elucidate and visualize unknown compounds. For
interested researchers, source code of the elucidator is also
publicly available.
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