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Methylation is one of the most common and considerable modifications in biological systems mediated by multiple enzymes.
Recent studies have shown that methylation has been widely identified in different RNA molecules. RNA methylation
modifications have various kinds, such as 5-methylcytosine (m°C). However, for individual methylation sites, their functions
still remain to be elucidated. Testing of all methylation sites relies heavily on high-throughput sequencing technology, which is
expensive and labor consuming. Thus, computational prediction approaches could serve as a substitute. In this study, multiple
machine learning models were used to predict possible RNA m’C sites on the basis of mRNA sequences in human and mouse.
Each site was represented by several features derived from k-mers of an RNA subsequence containing such site as center. The
powerful max-relevance and min-redundancy (mRMR) feature selection method was employed to analyse these features. The
outcome feature list was fed into incremental feature selection method, incorporating four classification algorithms, to build

efficient models. Furthermore, the sites related to features used in the models were also investigated.

1. Introduction

Methylation is one of the most common and considerable
modifications in biological systems mediated by multiple
enzymes. The substrates of biological methylation are diverse,
with DNA as the most common one. Previous studies on
methylation mostly focused on DNA methylation, revealing
its specific role in transcriptional activity regulation during
development, aging, and pathogenesis [1]. However, recent
studies have widely identified methylation among different
RNA molecules, including mRNA, snoRNA, miRNA, and
rRNA (not restricted to functional mRNAs) [2]. RNA methyl-

ation enables the posttranscriptional control of gene expres-
sion by changing how RNA interacts with other components
of the cell as an important part of epitranscriptome [3].
RNA methylation is actively involved in posttranscriptional
regulatory bioprocesses, like RNA splicing, transport, stability,
and translatability, and it has strong relationships with mam-
malian development and diseases [4-6].

Among the various kinds of RNA methylation modifica-
tions, N°-methyladenosine (m°A), the methylation modifica-
tion on the nitrogen at the sixth position of the adenosine
base, is the most prevalent internal mRNA modification,
accounting for 50% of the total methylated ribonucleotides
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[2, 7]. M®A broadly affects mRNA metabolism, and it is widely
distributed in all kinds of RNA transcripts, including coding
and noncoding regions. The deposition of m°A modification
in the transcriptome has its unique pattern: the m®A modifica-
tion sites have a typical consensus sequence DRACH (D = G,
A,orU;R=Gor A; H= A, C, or U), which is widely dispersed
over coding sequence and untranslated region (UTR) and
highly enriched near the stop codon area [8]. Recent evidence
has proven that m°A RNA methylation plays a vital role in
pre-mRNA  splicing, mRNA stability regulation, mRNA
export, mRNA degradation, translation regulation, and
miRNA processing [9-11]. M®A modification is dynamic, it
could be reversible, and it may vary between different genes
and different tissues [12, 13]. With the increase in the number
of m°A mapping studies, the list of specific genes containing a
disproportionately high level of m°A was revealed. For exam-
ple, Han et al. found a series of m°A methylated genes related
to the presynaptic membrane, the postsynaptic membrane,
and the synaptic growth in Alzheimer’s disease (AD) mouse
models, suggesting that m°A may be involved in the occur-
rence of AD [14]. While the function of m®A modification is
context-dependent and dynamic, many m°A sites are evolu-
tionally conserved among species. One-third of mammalian
mRNAs share the same m°A modifications, and many of them
are conserved with single-nucleotide specificity [15].

Another kind of RNA methylation modification, namely,
5-methylcytosine (m°C), which is the methylation of carbon
5 in cytosine, also acts as an important regulator in gene
expression, including RNA localization, ribosome assembly,
translation regulation, and mRNA stabilization. Among all
the mRNA methylation sites, the proportion of m°C could be
up to 20% in human cells [16]. The distribution of m°C sites
in mRNA is not random; in HeLa and mouse cells, m°C meth-
ylation were found to be enriched in 5" and 3’ UTRs rather
than coding regions [16]. Like m®A, m’C acts its function in
dynamic ways. M°C methylation occurs dynamically during
testis development and helps maintain the stability of maternal
mRNA in embryonic development [17].

Though RNA methylation plays a pivotal role in biopro-
cess and is of great importance to posttranscriptional regula-
tion, their functions in individual methylation sites still
remain to be elucidated. Testing of all the methylation sites
relies heavily on high-throughput sequencing technology,
which is expensive and labor consuming; thus, computa-
tional prediction approaches could serve as a substitute
[18]. As mentioned above, the distribution of m”C in mRNA
has its own enrichment pattern and is not random. With
adequate datasets and statistic method, predicting accurate
m°C RNA methylation sites and gaining an enhanced
understanding of their functions are doable.

In this study, multiple machine learning models were
applied to predict the possible m°C RNA methylation sites in
mRNA sequences of human and mouse. For each m°C, a sub-
sequence containing such site as center was extracted from
the RNA sequence. The features of k-mers yielded by RNA2Vec
[19] were refined to represent the subsequence. The powerful
max-relevance and min-redundancy (mRMR) feature selection
method [20] was employed to analyse all features. Obtained
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feature list was fed into incremental feature selection (IFS)
[21] method, incorporating four classification algorithms, to
build efficient models. In addition to prediction models, we also
investigated the sites related to features used in the models, try-
ing to discover special patterns around mouse and human m°C
sites. Comparison of those prediction results may help obtain a
dynamic RNA methylation profile and build relationships
between the RNA methylation sites and human diseases.

2. Materials and Methods

2.1. Data. M°C is a common RNA modification in mam-
mals. Human and mouse m°C data were downloaded from
one previous study (IRNA-m’C, http://lin-group.cn/server/
iRNA-m5C/download.html) [22]. In fact, the human m>C
data was first used in [23], which was extracted from the
original data retrieved from RMBase database [24]. The
original data was processed by CD-HIT program [25] so that
the sequence similarity of any remaining sequences was less
than 0.7. As a result, 120 positive and 120 negative m’C sites
were obtained. As for mouse m’C data, it was constructed in
[22]. It was directly retrieved from RMBase database [24]
and was not processed by CD-HIT program [25] because
its size was so small. The mouse data consisted of 97 positive
and 97 negative m’C sites. As the sites around the m’C sites
have some special patterns, which can help to identify m>C
sites in RNA sequence, 20 upstream sites and 20 down-
stream sites were picked up. These sites together with the
m°C site at the center constructed a subsequence with
41bp. Some features would be extracted from this subse-
quence to represent the m’C site.

2.2. Problem Description and Study Design. For a given RNA
sequence, it is essential to identify m°C sites in it. The
machine learning models can give a deep investigation on
current known m’C sites and learn a special pattern to make
prediction. The prediction procedure can be deemed as a
function f, formulated by

f¥—{t} (1)

where ¥ denoted the site set for human or mouse RNA
sequences and +(—) represented whether the input site was
an m°C site or not.

Generally, we want to discover an optimal function such
that its loss was smallest. Because machine learning algo-
rithms were employed to design such function, we adopted
the following steps:

(1) For any site in the human or mouse m’C data, sites
around it were picked up to comprise a subsequence,
which can indicate the surrounding information of
the investigated site. This step was described in sec-
tion “Feature Engineering”

(2) Each subsequence was represented by a number of
features, which can reflect its essential information.
This step was described in section “Feature
Engineering”
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(3) A feature selection method was adopted to analyse
all features and produce a feature list. This step was
described in section “Max-Relevance and Min-
Redundancy (mRMR) Feature Selection”

(4) The IFS method was applied on such feature list to
find out which classification algorithm and which
features can yield the best performance (smallest
loss). This step was described in section “Incremen-
tal Feature Selection (IFS).” The descriptions of four
classification algorithms used in IFS method can be
found in section “Classification Algorithm.” The loss
was determined by one measurement listed in sec-
tion “Performance Measurement”

2.3. Feature Engineering. To build efficient models for iden-
tifying m°C site in RNA sequence, it is very important to
extract essential features from the subsequence consisting
of this site, 20 upstream sites and 20 downstream sites. This
study adopted a natural language processing approach to
extract features, which were further used to represent the
subsequence containing m’C site.

RNA2Vec [19] was adopted to extract sequence features
for each k-mers (subsequences of length k). In detail, this
method employed the whole human genome as corpus. A
sliding window technique was used to split the RNA
sequence into several fix-length words. If an RNA sequence
with length L was formulated by

S=RRy - R; - Ry _Ry, 2)

it was split into L —k+ 1 words, say R|R, --- R, R,R; -+
Riits >Ryt Ri_iin -+ Rp- All obtained words were fed
into GloVe algorithm [26], a type of Word2vec method, to
extract features of words, i.e., features of k-mers. Here, we
selected k=4. Features of 4-mers were directly retrieved
from  https://github.com/HsiaoYetGun/MiRLocator/blob/
master/RNA2Vec/RNAVectors.txt. Each 4-mers was repre-
sented by 30 features.

Given a 41 bp long RNA subsequence SS, formulated by

S§=RiR, -+ RyoRy Ryy -+ RygRyy» (3)

where R,, was the m>C site, we extracted all 4-mers from
this subsequence. Because the R,; was always same for all
investigated subsequences, the 4-mers containing this site
were discarded. 34 4-mers can be obtained from each RNA
subsequence. Their 30 features obtained by RNA2Vec were
collected together to represent the subsequence SS. Accord-
ingly, 1020 (34 x 30) features were adopted to encode each
subsequence with 41 bp.

2.4. Max-Relevance and Min-Redundancy (mRMR) Feature
Selection. The mRMR is a powerful feature selection method
[20, 27-30], which evaluates the importance of features from
two aspects: (1) relevance to class labels and (2) redundan-
cies to other features. The mutual information (MI) is used
to quantify the relevance and redundancy. For two variables
x and y, their MI is computed by

MI(x,y) = [[p(x.) log mcixdy, (4)

where p(x) and p(y) stand for the marginal probabilistic
densities of x and y, respectively, and p(x, y) stands for the
joint probabilistic density of x and y. Generally, a high MI
indicates the strong relevance or high redundancy of two
variables. The mRMR method tries to keep features with
high relevance to class labels and low redundancies to other
features. However, this is a NP-hard problem. The mRMR
method employed a heuristic way to evaluate features, which
sorts all investigated features in a list, namely, mRMR fea-
ture list. At the beginning, this list is empty. For each feature
f that is not in this list, compute its relevance to class labels,
measured by MI(f,c), where ¢ is a variable representing
class labels, and redundancies to features that are already
in the list, measured by the average MI between f and fea-
tures in the current list. The difference of these two values
is computed. The feature with highest difference is selected
and appended to the list. When all features have been in
the list, the procedures stop. Feature ranks in this list indi-
cate the importance of features. Generally, features with high
ranks are more important than those with low ranks.

The mRMR program used in this study was downloaded
from http://penglab.janelia.org/proj/mRMR/. For conve-
nience, it was executed using its default parameters.

2.5. Incremental Feature Selection (IFS). Although mRMR
method produced a feature list, it is still a problem that
which features should be selected to construct the model.
In view of this, this study employed the IFS method [21],
which can aid to choose proper features for any given classi-
fication algorithm. In detail, on the basis of the mRMR
feature list, IFS produces several feature subsets with a step
interval as one. For instance, the first feature subset has the
top feature in the mRMR list, and the second feature subset
has the first two features, and so on. Then, a model based on
a certain classification algorithm can be constructed on the
training data, where samples are represented by feature in
each feature subset. All constructed models are assessed by
one cross-validation method [31]. The model yielding the
best performance is picked up and called the optimum
model. The feature subset used in this model is termed as
the optimum feature subset.

2.6. Classification Algorithm. As mentioned above, IFS
method needs one classification algorithm. Here, four classi-
fication algorithms were used, including (1) random forest
(RF) [32], (2) support vector machine (SVM) [33], (3) K
-nearest neighbor (kNN) [34], and (4) decision tree (DT)
[35]. These algorithms have been widely used to tackle vari-
ous medical problems [36-48]. Their brief descriptions are
as follows.

2.6.1. Random Forest. RF is a powerful and classic classifica-
tion algorithm. In fact, it is an ensemble algorithm that con-
tains several DTs. Each DT is built using two random
selection procedures. The first procedure is to select samples,
whereas the second procedure is for the selection of features.
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F1GURE 1: Flow chart to construct models for the prediction of m°C sites. A subsequence with 41bp is used to represent each m’C site.
Features of k-mers obtained by RNA2Vec are adopted to constitute features of the subsequence. All features are analysed by max-
relevance and min-redundancy method. The outcome feature list is fed into incremental feature selection, incorporating four
classification algorithms and 10-fold cross-validation, to construct optimum models.
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FIGURE 2: IFS curves with different classifiers on different numbers of sequence features on mouse m°C data.
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TaBLE 1: Performance of models based on different classification algorithms for predicting mouse m>C sites.

Classification algorithm Number of features SN Sp ACC MCC Precision F1-measure

Decision tree 195 1.000 0.990 0.995 0.990 0.990 0.995

K-nearest neighbor 3 1.000 1.000 1.000 1.000 1.000 1.000

Random forest 10 1.000 1.000 1.000 1.000 1.000 1.000

Support vector machine 3 1.000 1.000 1.000 1.000 1.000 1.000

Given a query sample, each DT yields the prediction. RF
integrates these predictions with majority voting. Although
DT is a quite weak classification algorithm, RF is much more
robust. Thus, it is always an important candidate for con-
structing prediction models.

2.6.2. Support Vector Machine. SVM is another powerful and
classic classification algorithm. Its main idea is to find out a
hyperplane for separating samples in two classes. However,
such hyperplane does not exist in many cases. SVM maps
the original data with nonlinear pattern in low-dimensional
space to a new data with linear pattern in high-dimensional
space. Then, the hyperplane is constructed in such new space
by maximizing interval between samples in two classes.
Finally, it predicts the class label of a new sample according
to which side of hyperplane this new data point belongs to.

2.6.3. K-Nearest Neighbor. kNN is a simple but also efficient
classification algorithm. It is not a strict machine learning
algorithm because there is no training procedures. Several
computational steps are conducted to determine the class
of a test sample, such as computing the distance between
the test sample and all training samples, ranking all training
samples by those distances, selecting the k high-ranked
training samples (i.e., nearest k neighbors), estimating the
class label distribution of such k samples, and predicting
the class label of the test sample as the one with the highest
distribution frequency.

2.6.4. Decision Tree. It aims to learn the human understand-
ing classification and regression models. It generally uses IF-
TEHN format to describe individual features’ roles and
weights in classification or regression models, thereby pro-
viding interpretative rules in a white box model. To date,
several types of DT have been proposed. In this work, the
CART algorithm with the Gini index was adopted to build
DT model.

To quickly implement above-mentioned four classifica-
tion algorithms, we employed corresponding packages col-
lected in Scikit-learn (https://scikit-learn.org/stable/). They
were executed using their default parameters.

2.7. Performance Measurement. In this study, the MCC [49]
within 10-fold cross-validation [31] was used to evaluate
each model’s performance. A two-class classification model
was obviously built here; thus, the MCC for binary problem
was used as follows:

TP x TN-FP x EN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC = , (5)

where TP, TN, FP, and FN represent the sample numbers
with true-positive, true-negative, false-positive, and false-
negative predictions, respectively. The MCC value ranges
from -1 to +1. When one classification model has the best
performance, its MCC achieves +1.

Besides, we further computed other measurements to
fully assess the performance of models, including sensitivity
(SN) (same as recall), specificity (SP), accuracy (ACC), pre-
cision, and F1-measure. They can be calculated by

TP
SN =Recall= ——
TP + FN
N
SP=_— |
TN + FP
TP+ TN
ACC= , 6
TP + FN + TN + FP ()
.. TP
Precision= ———,
TP + FP
2 x Recall x Precision
F1-measure = —
Recall + Precision

2.8. Feature Frequency Visualization. Each feature was
related to four sites in the sequence to understand the bio-
logical meaning of the extracted sequence features. After
the optimum features for one classification algorithm were
obtained, the related sites of each feature were picked up,
and the frequency of each site was counted and plotted as
a bar illustration.

3. Results

In this study, we adopted the features of k-mers yielded by
RNA2Vec to represent m’C sites. Some machine learning
algorithms were employed to analyse these features and fur-
ther build efficient models for identifying m>C site in RNA
sequences. The whole procedures are shown in Figure 1.
The detailed results were described in this section.

3.1. Selection of m’C Methylation-Associated Features for
Mouse. For mouse m°C data, the mRMR method was first
employed to analyse all 1020 features. An mRMR feature list
was obtained. This list was fed into the IFS method that inte-
grated one of four classification algorithms. On each feature
subset, a model was built based on one classification algorithm
and was further evaluated by 10-fold cross-validation. The
performance of each model, including SN, SP, ACC, MCC,
precision, and F1-measurem is provided in Supplementary file
S1. MCC was selected as the key measurement. Accordingly, a
curve is plotted in Figure 2 for each classification algorithm,


https://scikit-learn.org/stable/

0.800

0.700 ~

0.600

0.500 14

MCC

0.400 4|
0.300 -

0.200

BioMed Research International

e K leg A
1?!9 Y “{; \1/;.‘;1,' \i e ‘b‘,.‘_.g. » .@-%h,,‘?\._‘«’,) Lt

0.100 T T T T
1 101 201 301 401

T T T T T T
501 601 701 801 901 1001

Number of features

Random forest
Support vector machine

Decision tree
—— K-nearest neighbor

FiGure 3: IFS curves with different classifiers on different numbers of sequence features on human m5C data.

TaBLE 2: Performance of models based on different classification algorithms for predicting human m°C sites.

Classification algorithm Number of features SN Sp ACC MCC Precision F1-measure
Decision tree 15 0.767 0.808 0.788 0.576 0.800 0.783
K-nearest neighbor 84 0.683 0.925 0.804 0.627 0.901 0.777
Random forest 543 0.875 0.867 0.871 0.742 0.868 0.871
Support vector machine 114 0.825 0.958 0.892 0.790 0.952 0.884

which defined MCC as y-axis and number of features as the x
-axis. For KNN, RF, and SVM, they can provide perfect perfor-
mance with MCC =1 when top 3, 10, and 3 features were
adopted. The corresponding optimum kNN/RF/SVM model
can be built with these features. The detailed performance of
these models is listed in Table 1. All measurements reached
the maximum of 1.000. For DT, the highest MCC was 0.990,
which can be obtained by using top 195 features. Accordingly,
the optimum DT model was set up with these features. Its
detailed performance is listed in Table 1. It can be observed
that all measurements were very high. All these indicated that
the models with features yielded by RNA2Vec were quite
efficient for identification of mouse m’C sites, also confirming
the utility of these features to predict mouse m°C sites.

3.2. Selection of m°C Methylation-Associated Features for
Human. For human m°C data, the same procedures were
conducted. The performance of four classification algo-
rithms on all possible feature subsets is provided in Supple-
mentary file S2. Similarly, one curve was plotted for each
classification algorithm (as shown in Figure 3). It can be
observed that four classification algorithms yielded the high-
est MCC values of 0.576, 0.627, 0.742, and 0.790, respec-
tively. Such performance was obtained by using top 15, 84,
543, and 114 features. Accordingly, optimum DT/kNN/RF/
SVM model can be set up with these features. The detailed

performance of these models is listed in Table 2. Evidently,
the performance of these models was much lower than that
of models for mouse.

3.3. Feature Frequency Analysis. The purpose of this study
was not only to set up efficient models for prediction of
m’C sites but also to discover novel patterns around the
m°C sites, thereby providing more biological insights. Thus,
we conducted feature frequency analysis in this section.

For mouse m°C data, four optimum models were built,
which adopted some top features in the list. For each model,
the number of selected features related to each site was
counted. A bar chart was plotted to display such number
of each site (as shown in Figure 4). Detailed discussion
would be given in section “m5C Methylation-Associated
Features in Mouse.”

For human m’C data, we conducted the same opera-
tions. For each optimum model, the number of selected fea-
tures related to each site is shown in Figure 5. Evidently,
Figures 4 and 5 displayed quite different patterns, indicating
the difference between mouse and human m’C sites. In sec-
tion “m5C Methylation-Associated Features in Human,” a
discussion would be given.

3.4. Comparison with Previous Models. This study used the
mouse and human m’C data reported in [22]. In that study,
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several models with different classification algorithms were
built and evaluated by 10-fold cross-validation, including
DT, RF, SVM, Naive Bayes, Bayes net, and logistic regres-
sion. The performance of models with DT, RF, and SVM is
listed in Tables 3 and 4. For easy comparison, the perfor-
mance of our models with same classification algorithms is
also provided in these two tables. For mouse m°C data, our
model with DT was slightly superior to the model in [22]
with the same classification algorithm. As for other two clas-
sification algorithms, all models with one of them gave per-
fect performance. For human m°C data, DT provided better
performance in our model than the model in [22], whereas
other two classification algorithms generated lower perfor-

mance in our model than the model in [22]. However, the
gap was not very big. As a whole, our models and those in
[22] were almost at the same level.

As mentioned in the above section, the purpose of this
study further included the discovery of special patterns
around m°C sites. This was the exclusive contributions of
this study compared with the previous study.

4. Discussion

Multiple machine learning models were used to distinguish
samples/sites with or without a different kind of RNA meth-
ylation (human or mouse), focusing on the significant
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TaBLE 3: Comparison with previous models on mouse m’C data.

Classification algorithm Model SN Sp ACC MCC
. Our model 1.000 0.990 0.995 0.990
Decision tree .
Model in [22] 1.000 0.835 0.918 0.847
Our model 1.000 1.000 1.000 1.000
Random forest .
Model in [22] 1.000 1.000 1.000 1.000
. Our model 1.000 1.000 1.000 1.000
Support vector machine .
Model in [22] 1.000 1.000 1.000 1.000
TaBLE 4: Comparison with previous models on human m°C data.
Classification algorithm Model SN SP ACC MCC
B Our model 0.767 0.808 0.788 0.576
Decision tree .
Model in [22] 0.783 0.783 0.783 0.567
Our model 0.875 0.867 0.871 0.742
Random forest .
Model in [22] 0.900 0.917 0.908 0.817
. Our model 0.825 0.958 0.892 0.790
Support vector machine .
Model in [22] 0.842 0.967 0.904 0.815

pattern of RNA methylation as m>C [50-52]. With the help
of IFS, the optimal number of essential features was selected
for RNA methylation prediction. The distribution of pre-
dicted features in the 41nt sequence was summarized to
evaluate the discriminative contributions of different RNA
loci for RNA methylation [53]. The detailed analyses on
the results of m>C methylation in mouse or human tissues
could be seen below, along with their respective distribution
patterns.

4.1. m°C Methylation-Associated Features in Mouse. Multi-
ple physiochemical features were used to encode the 41 nt
sequence [53] of RNA. For the evaluation of the differential
contribution of RNA sites for m°C methylation, four
machine learning models were applied (DT, KNN, RF, and
SVM) to identify the optimal combination of features for
m’C methylation prediction. The distribution of features’
respective RNA loci is shown in Figure 4. As identified from
the feature distribution, all the selected features belong to the
back end of the selected sequence, from 23 nt to 41 nt, just
behind the candidate m>C methylation site (21 nt). In partic-
ular, two regions (27-31 nt and 34-37 nt) were predicted by
at least three machine learning models to be associated with
m°C methylation. According to recent publications based on
the biological functions of m°C, the two kinds of m°C sites
in multiple subgroups of RNAs are (1) type I m°C, which
is followed by a G-rich triplet motif, and (2) type II m°C,
which is adjacent to a downstream UCCA motif; both have
specific sequence characteristics in the following region of
m°C methylation loci [54], which corresponded with the
prediction results in the present study. Further studies have
also confirmed that specific regions in the downstream of
m’C loci may have different sequence contexts, indicating

that the feature-enriched regions in the prediction list in
the present study could definitely be associated with m>C
methylation efficiency. In 2019, a systematic analyses on
mRNA 5-methylcytosine in mammals identified that the
sequence context at the downstream of the captured m’C
loci was alternate with different m>C locus methylation sta-
tus, regulated by a specific 5-methylcytosine methyltransfer-
ase called NSUN2 [55, 56]. For comparison, the sequence
before the m’C loci in mouse did not considerably change
with NSUN2 wild-type, knock-out, or rescue status, imply-
ing that the m°C loci and their downstream sequence, espe-
cially for the following 10nt sequence [55, 56], which
corresponded with the prediction distribution in the present
study. In addition, another similar 5-methylcytosine methyl-
transferase NSUNG6 in mouse functioned as an mRNA m>C
methyltransferase [54]. As a methyltransferase of type II
m°C, the m°C targets of such gene have a symbolic down-
stream UCCA tail located at the first ambiguous peak (only
predicted via RF method) in the prediction result of the
present study (1-4nt following the methylation region)
[54]. Furthermore, different from the biological regulatory
effects of NSUN2, the flanking regions around 15nt were
found to have another low base-pairing regions, which
include more variants, by using the same procedure that
detects the sequences with methyltransferase knock-out, res-
cue, and wild-type statuses [54]. This finding indicated the
importance of sequence around such region. All in all, the
predicted distribution of m°C methylation-associated loci
has been validated by recent publications.

4.2. m°C Methylation-Associated Features in Human. The
m°C-associated feature distribution among 40 flanking
sequences (20 downstream and 20 upstream) from human
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tissues was also identified. According to the same publica-
tions [54, 55], the following 1-4 nt (22-26 nt) and 13-15nt
(34-37nt) were also associated with the efficacy of m°C
methylation, which corresponded with the prediction of
the present study. As seen in Figures 4 and 5, the feature
peaks in the downstream region (21-41 nt) were quite simi-
lar between the human and mouse data, reflecting the
similarity of m°C methylation-associated patterns among
different species. However, obvious differences were also
observed, implying the presence of biological differences in
m’C methylation among different species. In human beings,
recent publications revealed that the distribution of RBP
(RNA-binding protein) target density, which reflects the
binding efficacy of the related region, was significant at the
m’C candidate site, and gradually, not suddenly going down
in both directions [56, 57]. Therefore, the sequences around
m’C in each direction may also be not randomized but with
specific sequence characteristics. Further, in 2015, an analy-
sis on the regulatory homologous proteins of yeast and
human from the same protein family (Nop2/NSUN/NOL
family) showed that specific binding domains (e.g., SAM-
binding domain) may be located behind the m>C loci, and
they may affect regulatory effects. Therefore, although they
were not directly validated, some nucleotides located before
the m°C loci may be essential for the prediction of methyla-
tion status [58].

4.3. Biological Significance of Identified m°C Methylation-
Associated Features. As summarized above, we identified
m°C-associated features in mouse and human. The biologi-
cal significance of identified m>C methylation features can
be clustered into two parts:

(i) The specific and diverse distribution of m°C associ-
ated features in human or mouse. In this part, we
identified that mouse m°C methylations are gener-
ally only associated with 28-31nt and 34-37nt
regions in the 41 nt subsequence, while in human tis-
sues, apart from 19-21 nt regions, most positions of
the 41 nt sequence are associated with m°C methyla-
tion. These results identified key regulatory regions
associated with m°C methylation and the differences
between regulatory effects on m°C methylation in
different species, reflecting the evolution conserva-
tion of m>C methylation regulatory mechanisms

(ii) The downstream regulatory network associated with
m°C methylation is essential for gene transcription
and translation. Generally, m>C methylation can
help bind hydrogen with guanine to stabilize the
complete RNA structures and fold into unique spa-
tial conformation [59]. According to recent publica-
tions, m°C regulator NSUN2 has been shown to alter
m°C capacity in certain RNA regions. Genes like p27
(KIPI), CDK1, p21, and ErbB2 have all been shown
to be regulated by m°C methylation and further
related to tumorigenesis [59, 60]. The sequence loci
of m°C methylation have been shown to be specifi-
cally affects the downstream cell proliferation and

inflammation associated pathway [61, 62], indicating
the specific biological significance of m°C methyla-
tion. Therefore, the identification of different contri-
bution of nucleotide from different sequence location
can help demonstrate the specific regulatory effects
for abnormal m’°C methylation during different path-
ogenic conditions

Therefore, the identification of loci-related characters reg-
ulating m°C methylation between different species can not
only help us reveal the consistence and evolution conservation
of m°C methylation associated sequences but also connect
specific sequence loci with significant m’C methylation-
associated phenotypes or diseases.

5. Conclusions

All in all, as discussed above, the top optimal methylation
sites in the prediction list have been supported by recent
publications. The RNA methylation patterns were validated
to be different in multiple species by comparing the results
of m>C methylation-associated loci in human and mouse tis-
sues. The discriminative feature distribution patterns for dif-
ferent methylation patterns were also detected by comparing
the results of m°C distribution patterns. Therefore, the
results not only evaluated the discriminative contribution
of different loci for important RNA methylation patterns
but also revealed the site distribution differences of m>C
methylation types between species (human and mice).
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