
Frontiers in Oncology | www.frontiersin.org

Edited by:
Dörthe Schaue,

UCLA David Geffen School of
Medicine, United States

Reviewed by:
Tomer Charas,

Rambam Health Care Campus, Israel
Bilgin Kadri Aribas,

Bülent Ecevit University, Turkey

*Correspondence:
Weihua Liao

owenliao@csu.edu.cn
You-Ming Zhang

zhangym0820@csu.edu.cn

Specialty section:
This article was submitted to

Radiation Oncology,
a section of the journal
Frontiers in Oncology

Received: 29 March 2021
Accepted: 14 June 2021
Published: 12 July 2021

Citation:
Zhao L-M, Kang Y-F, Gao J-M,

Li L, Chen R-T, Zeng J-J,
Zhang Y-M and Liao W-H (2021)

Functional Connectivity Density for
Radiation Encephalopathy Prediction

in Nasopharyngeal Carcinoma.
Front. Oncol. 11:687127.

doi: 10.3389/fonc.2021.687127

ORIGINAL RESEARCH
published: 12 July 2021

doi: 10.3389/fonc.2021.687127
Functional Connectivity Density for
Radiation Encephalopathy Prediction
in Nasopharyngeal Carcinoma
Lin-Mei Zhao1, Ya-Fei Kang2, Jian-Ming Gao3, Li Li4, Rui-Ting Chen1, Jun-Jie Zeng5,
You-Ming Zhang1* and Weihua Liao1*

1 Department of Radiology, Xiangya Hospital, Central South University, Changsha, China, 2 School of Psychology, Shaanxi
Normal University, Shanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China, 3 Department
of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer
Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, 4 State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,
5 Department of Radiology, Hunan Children’s Hospital, Changsha, China

The diagnostic efficiency of radiation encephalopathy (RE) remains heterogeneous, and
prediction of RE is difficult at the pre-symptomatic stage. We aimed to analyze the whole-
brain resting-state functional connectivity density (FCD) of individuals with pre-
symptomatic RE using multivariate pattern analysis (MVPA) and explore its prediction
efficiency. Resting data from NPC patients with nasopharyngeal carcinoma (NPC;
consisting of 20 pre-symptomatic RE subjects and 26 non-RE controls) were collected
in this study. We used MVPA to classify pre-symptomatic RE subjects from non-RE
controls based on FCD maps. Classifier performances were evaluated by accuracy,
sensitivity, specificity, and area under the characteristic operator curve. Permutation tests
and leave-one-out cross-validation were applied for assessing classifier performance.
MVPA was able to differentiate pre-symptomatic RE subjects from non-RE controls using
global FCD as a feature, with a total accuracy of 89.13%. The temporal lobe as well as
regions involved in the visual processing system, the somatosensory system, and the
default mode network (DMN) revealed robust discrimination during classification. Our
findings suggest a good classification efficiency of global FCD for the individual prediction
of RE at a pre-symptomatic stage. Moreover, the discriminating regions may contribute to
the underlying mechanisms of sensory and cognitive disturbances in RE.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is amalignancy stemming from
the nasopharyngeal epithelium, andmore than 70%of all new cases
are confirmed in the east and southeast Asia (1). Recently, the
optimization of radiotherapy and chemotherapy strategies has
considerably improved disease control and survival (2).
Nevertheless, some long-term treatment-related complications
still seriously affected the patients’ quality of life. This is especially
true of radiation encephalopathy (RE), which has captured the
attentions of clinicians and researchers alike for its deteriorating
neuropsychiatric symptoms, sometimes even causing death (3).
Early intervention has been reported to improve patient prognosis;
however, existing conventionalmagnetic resonance imaging (MRI)
techniques can only discern RE at the irreversible stage (4). The
early identification or individualized prediction of RE is therefore
crucial for improving quality of life and prognosis in patients
with RE.

The advent of other neuroimaging techniques has enabled the
earlier detection of radiation-induced alterations in patients with
NPC (5–7). The neuroimaging index reflects a disease-specific
pathological or neurophysiological property and may even be an
early biomarker of such alterations. For morphology, one gray
matter morphology-based study has suggested that cortical
surface area might be a morphological marker of patients with
early-stage RE (8). In addition, a white matter connectivity-based
structural network study revealed a network-level reorganization
in the late-delayed stages of RE (9). However, most studies have
mainly focused on the differences at group levels; far less
attention has been paid to the potential value of individual levels.

With the emergence of multivariate pattern analysis (MPVA),
the individual recognition of neurological diseases is possible.
Several recent reports about the individualized prediction of RE
have been promising. For example, a machine-learning study used
texture features to develop radiomics models for the dynamic
prediction of RE (10). However, these texture features were from
themedial temporal lobe, and information fromoutside themedial
temporal lobe was insufficiently investigated. Another recent
support vector machine (SVM) study based on white matter
integrity reported good abilities for diagnoses in different periods
of RE (11). Unfortunately, the above discriminative power of gray
matter-derived features has been largely overlooked.

A recent study has demonstrated that functional parameters
are altered earlier and are more vulnerable than those that reflect
structural integrity (5), suggesting that aberrance in functional
domains may play a critical role in the pathogenesis of RE.
Furthermore, using resting-state functional MRI (rs-fMRI), the
Abbreviations: 2DCRT, two-dimensional radiation therapy; ACC, anterior
cingulum cortex; DPABI, Data Processing & Analysis for Brain Imaging; DMN,
default mode network; fALFF, fractional amplitude of low-frequency fluctuations;
g/lFCD, global/local functional connectivity density; IMRT, intensity-modulated
radiation therapy; MPVA, multivariate pattern analysis; NPC, nasopharyngeal
carcinoma; PRoNTo, Pattern Recognition for Neuroimaging Toolbox; RE,
radiation encephalopathy; ReHo, regional homogeneity; ROC, receiver
operating characteristic; rs-fMRI, resting-state functional MRI; SBM, surface-
based morphometry; STG, superior temporal gyrus; SVM, support vector
machine; VBM, voxel-based morphology.
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fact that neurophysiological characteristics of neuroimaging
function alterations in RE involved the whole brain (12) makes
large-scale functional evaluation notable. Functional connectivity
density (FCD) allows researchers to evaluate the whole-brain
functional brain connectivity patterns at the voxel level (13). It
can reflect the early patterns of disease-specific neuronal activity
changes (14–16). To the best of our knowledge, FCD has not yet
been used to predict RE at the pre-symptomatic stage. Therefore,
the combination of FCD and machine learning strategies in the
present study may contribute to a better understanding of the
pathological mechanisms of RE and aid in its early prediction.
MATERIALS AND METHODS

Study Design and Subjects Enrollment
We developed the MVPA from a cohort of 46 NPC patients. All
participants were right-handed and had pathologically confirmed
NPC. Other specific inclusion criteria were as follows: 1) aged
between 20 and 60 years with over 6 years of education; 2) NPC
patients who underwent radiotherapy within the previous 6months;
3) no abnormalities of RE; and 4) no presentation of any other
intracranial or central nervous system diseases. Patients were
excluded if they had a consciousness disorder, central nervous
system disease, or any other disease. All patients were treated with
radiotherapybefore the studyusing either two-dimensional radiation
therapy (2DCRT) or intensity-modulated radiation therapy (IMRT).
To control the confounding effect of chemotherapy on the FCD
changes, all the enrolled patients treated with chemotherapy had
balanced between group clinical stages, chemotherapy mode,
regimens and chemotherapy type by reading their MR images and
medical records (Table 1) (8). The detailed information of
chemotherapy (such as chemotherapy agents, dose for each agent,
time for medication administration, number of courses, and
duration) for patients with NPC in this study could be obtained in
Supplementary Materials (Table S1). The NPC patients were then
divided into subgroups based on whether or not their conventional
imagesmeet theREdiagnoses criterion (3)during the follow-up (72±
8 months). Specifically, the subsequent neuroimaging analysis was
based on original data rather than followed-up data. The exact
procedures are shown in the overall flowchart in Figure 1.
Informed consent was obtained from all subjects, and the ethics
committee approved the study before its execution.
MRI Acquisition
MRI images were collected using a 3.0-T MRI scanner
(MAGNETOM Tim Trio, Siemens, Germany). Functional
imaging data were generated from echo-planar imaging
sequences, and the main parameters were as follows: repetition
time = 2,400 ms, echo time = 30 ms, matrix size = 64 × 64, flip
angle = 90°, number of timepoints = 240, field of view = 230 mm ×
230 mm, and 40 axial slices. During the rs-fMRI sessions,
participants were asked to keep their eyes closed, without falling
asleep or thinking of anything. Three-dimensional T1-weighted
magnetization-prepared rapid acquisition with gradient echo
sequences were taken as follows: 176 sagittal slices overall, voxel
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size = 1.0 mm× 1.0 mm× 1.0 mm, slice thickness/gap = 1.0/0 mm,
matrix size = 256 × 256, field of view = 256 mm × 256 mm,
repetition time = 2,300 ms, echo time = 2.98 ms, flip angle = 9°.
Routine sequences were scanned to ensure a diagnosis of RE and
exclude other diseases.

FCD Analysis
The rs-fMRI data were first preprocessed using the Data
Processing & Analysis for Brain Imaging (DPABI) toolbox
(https://rfmri.org/dpabi) (17), and the initial 10 volumes were
removed. Next, slice-timing, realignment, spatial normalization,
regression of nuisance covariance, and temporal filtering steps
were performed. The preprocessed data were then used for FCD
mapping calculation with an in-house script in MATLAB
according to the methods described by Tomasi and Volkow
(13). FCD mapping was used to compute the global FCD (gFCD)
as well as the local FCD (lFCD) in identified distributions of hubs
in the brain (18). Further details are documented below.

Data Preprocessing
A toolbox for Data Processing & Analysis for Brain Imaging (19)
(DPABI; https://rfmri.org/dpabi) pipeline was used to preprocess
the rs-fMRI data, as follows: (1) The first 10 volumes were
removed to adapt subjects to the scanning environment and
lower the magnetization equilibrium; (2) Slice-timing correction:
the proper slice order and reference order were selected;
(3) Realignment: the time series of each subject were realigned
Frontiers in Oncology | www.frontiersin.org 3
using a linear transformation with six-parameter (rigid-body)
and head motion correction [translational displacement [x, y, or
z directions] <2.0 mm, or maximum rotation <2.0° (20)] were
carried out; individual three-dimensional T1 images were
subsequently co-registered to mean resting images using linear
transformations (6° of freedom) without re-sampling and were
later segmented into the different components of gray matter,
white matter and cerebrospinal fluid; (4) Spatial normalization
was performed using the DARTEL tool (21) for transformations
from the individual native space to the MNI space (3 mm ×
3 mm × 3 mm voxel size); (5) Linear regression was performed
for nuisance covariates, including head motor parameters from
the realignment step (the Friston 24-parameter model), global
mean signals, white matter, and cerebrospinal fluid signals; and
(6) All available images were temporally filtered with a 0.01–0.08
Hz bandpass to minimize the effects of high-frequency
physiological noises and low-frequency drift.

FCD Calculation
The FCD calculation was restricted to voxels within the gray
matter mask, which was predefined through tissue with
probabilities of more than 20% in the gray matter probability
template (22). Pearson correlation coefficient at the threshold of
R >0.6 determined the functional connectivity between voxels.
We selected this threshold of 0.6 because of its relatively high
specificity and sensitivity (14). The related scripts were showed in
Supplementary Material.

lFCD
The lFCD of a given voxel (x0) was computed using a “growing”
algorithm. Specifically, the number of functional connections for
any given voxel (xn) and its adjacent voxels (xni) was calculated.
First, the time series of a given voxel (x0) and its adjacent voxels
(xi) were calculated using Pearson correlation analysis. Each xi
was added to a cluster only when the Pearson correlation
coefficient was larger than the threshold (Ri0 >0.6). Next, the
Pearson correlation for a time-varying series between x0 and a
voxel (xj) adjacent to xi was also evaluated; similarly, each xj was
added to the aforementioned cluster when Rj0 >0.6. This process
was repeated in an iterative way for all other voxels (N − 1) that
were adjacent to voxels in the aforementioned cluster and
functionally connected to x0, until no fresh voxels were able to
be added to the cluster. The lFCD at x0 was defined as the
number of units in the local functional connectivity cluster, k
(x0). After finishing this process for a given voxel (x0), the
calculation was initiated for a different given voxel. This
calculation was performed for all N voxels.

gFCD
The gFCD for a given voxel x0 was defined as the global number
of functional connections, k(x0), between x0 and all other global
voxels. This calculation was also iterated for all given voxels (N)
in the global brain and underwent the operation of N × (N − 1)/
2 correlations.

All FCD maps were normalized to the average FCD of
individual whole brains (FCD normalized [x, y, z] = FCD [x, y, z]
/mean FCD [k0]). Finally, all FCD maps were spatially smoothed
TABLE 1 | Demographic and clinical characteristics.

Characteristics NPC patients
followed-up

with RE (n = 20)

NPC patients
followed-up
without RE
(n = 26)

P-value

Age (year) 45.10 ± 9.63 44.54 ± 11.24 0.86
Gender (male/female) 15/5 17/9 0.53
Clincial stage 0.883
I/II, n 5 (10.87%) 7 (15.22%)
III/IV, n 15 (32.61%) 19 (41.30%)
Teatment option 0.289
Radiotherapy only, n 2 (4.35%) 7 (15.22%)
Radio-chemotherapy, n 18 (39.13%) 19 (41.30%)
Radiotherapy time (month) 22.70 ± 28.43 32.54 ± 27.43 0.89
Chemotherapy mode for
patients treated with radio-
chemotherapy 0.604
Neoadjuvant and concomitant
chemotherapy, n

16 (43.24%) 18 (48.65%)

Others, n 2 (5.41%) 1 (2.70%)
Chemotherapy regimens for
patients treated with radio-
chemotherapy 0.447
TPF/TP/PF, n 13 (35.14%) 16 (43.24%)
GP, n 5 (13.51%) 3 (8.11%)
Chemotherapy type NA
Target-directed chemotherapy, n 0 (0) 0 (0)
Conventional chemotherapy, n 18 (48.65%) 19 (51.35%)
Note: NPC, nasopharyngeal carcinoma; RE, radiation encephalopathy; TPF, docetaxel,
cisplatin and fluorouracil; TP, docetaxel and cisplatin; PF, cisplatin and fluorouracil; GP,
gemcitabine and cisplatin; NA, not available. Clinical stage were obtained according to the
7th edition of the UICC/AJCC (2009) TNM. Stage I: T1N0M0; Stage II: T0-1N1M0 and
T2N0-1M0; Stage III: T0-2N2M0 and T3N0-2M0; Stage IV: T4N0-2M0,or N3 or M1.
July 2021 | Volume 11 | Article 687127

https://rfmri.org/dpabi
https://rfmri.org/dpabi
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. FCD for RE Prediction
using an 8 mm full-width at half-maximum (FWHM) Gaussian
kernel before the subsequent analysis.

Statistical Analysis
Demographic information and FCD maps were compared
between pre-symptomatic RE and non-RE groups. Unpaired t-
tests and c2 tests were used to analyze demographic information.
Unpaired t-tests were conducted to compare FCDmaps with age,
gender, and years of education as covariates. P <0.05 was
considered to indicate statistical significance.

SVM Analysis Using FCD
A linear kernel SVM algorithm was applied based on Pattern
Recognition for Neuroimaging Toolbox (PRoNTo version 2.0,
http://www.mlnl.cs.ucl.ac.uk/pronto) to estimate the underlying
brain regions that most contributed to classifying pre-
symptomatic RE versus non-RE subjects (23). The central
bodies of the SVM method were briefly concluded as follows:
1) features extraction and selection, 2) discriminative regions
selection, 3) the SVM classifier model training using the training
Frontiers in Oncology | www.frontiersin.org 4
data, and 4) evaluation of the performances of the SVM model
using the evaluation data.

In this present study, feature selection consisted of the FCD
values that were expected to show statistical significance between
the two groups. The procedures aforementioned above were
automatically processed using Prepare feature set pipeline
of PRoNTo.

The leave-one-out cross-validation method was applied to
validate the SVM classifier’s validation. Each time, feature
selection was conducted using the training data to avoid
circularity effects. The training data in this step involved (n −
1) subjects, and the excluded single subject was used to test the
generalization ability (i.e., the ability to reliably classify new
samples). These above steps were repeated n times (n = the
number of subjects) until the classifier generalizability was
unbiased. The process was automatically computed using the
‘specify model’ pipeline of PRoNTo.

Classifier performance was evaluated by its accuracy,
sensitivity, specificity, and area under the receiver operating
characteristic operator curve (AUC), with the procedure
FIGURE 1 | The flowchart of this study. *, patients with radiation encephalopathy were confirmed by Merritt’s Neurology; NPC, nasopharyngeal carcinoma; RE,
radiation encephalopathy; BOLD, blood oxygen level-dependent; T2, T2 weighted image; T1+C, T1 weighted image + contrast.
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repeated for each pair of the subject. Furthermore, a 5,000 times
non-parametric permutation test performed the evaluation, with
corrected P <0.05 denoting significance in this evaluation. The
aforementioned procedures were selected and automatically
computed using the ‘run model’ and ‘display results’ pipelines
of PRoNTo.

The ‘compute weights’ and ‘display weights’ pipelines were
also run using PRoNTo. These pipelines produced the voxel
weight vectors and a list of regions in descending order according
to their contributions to the classification model. The voxel
weight vectors were subsequently converted to a map, which
was visualized using the BrainNet Viewer (24).
RESULTS

Demographic and Clinical Characteristics
The demographic and related clinical results are displayed in
Table 1. The two groups were matched for age, gender, clinical
stage, treatment options, and therapy time. Chemotherapy
parameters such as chemotherapy mode, regimens, and types
were not significantly different between the two groups (P >0.05).

Classification Results
The gFCD was significantly different between the two groups
(P <0.05), while the lFCD was not. We therefore selected the
gFCD as the feature for classification. The linear SVM analysis
predicted a diagnosis of RE using gFCD with a total accuracy of
89.13% and a balanced accuracy of 88.08% (sensitivity of 80.00%,
and a specificity of 96.15%). The receiver operating characteristic
(ROC) curve and AUC were also plotted (Figure 2). The AUC
was 0.97, and permutation tests for the AUC revealed
statistical significance.

Brain Weighted Location Model
For the gFCD, we presented the weighted voxel distribution to
classify between RE patients and non-RE patients (Figure 3).
The top 20 spatial distribution in terms of normalized weights
per region was revealed to 43.29% of the predictive weights
(Table S2). These regions identified (Figure 4) through weighted
landmarks mainly included the bilateral temporal pole and
cuneus. Unilateral regions of the left hemisphere covered the
superior temporal cortex, middle occipital cortex, amygdala,
angular and supramarginal cortex, and anterior cingulum
cortex (ACC). In contrast, regions of the right hemisphere
consisted of the opercular and triangular parts of the inferior
frontal cortex, the parahippocampus, and the postcentral and
precuneus gyri, together with part of the right regions of the
cerebellum and its crus.
DISCUSSION

This was the first study to examine FCD alterations between pre-
symptomatic RE and non-RE NPC patients, which were then
used to predict the occurrence of RE using a machine learning
approach. The FCD analysis revealed that gFCD was altered in
Frontiers in Oncology | www.frontiersin.org 5
patients with pre-symptomatic RE. Upon closer inspection of
these results, we revealed that brain regions with gFCD
abnormalities were mainly found in the bilateral temporal lobe,
as well as in regions involved in the visual pathway, the
somatosensory system, and the default mode network (DMN).
Moreover, gFCD alterations in these brain regions were able to
predict RE in high performance with an accuracy of 89.13%. This
finding suggests that gFCD may be a novel imaging biomarker
for the early detection of RE, which may contribute to a better
understanding of its pathogenesis.

Classification Interpretation
In this current study, the predictive performance of the model
was generally favorable, as evidenced by its accuracy of 89.13%
and an AUC of 0.97. The prediction efficiency observed in our
study was also higher than those of previous MVPA studies (10,
11, 25). For example, using functional connectivity as a feature,
Ma et al. reported an accuracy of 81.36% for differentiating
patients with and without RE (25). Another MVPA study used
fractional anisotropy or white matter connections to identify the
individuals at a high risk of RE, with a maximum accuracy of
84.5% (11). Furthermore, based on conventional MRI, a recent
radiomics model study reported a maximum AUC of 0.83 for
predicting RE (10). We speculated that different feature selection
and/or modeling strategies might be responsible for the
inconsistencies in the prediction accuracies for RE among
these studies. Given that distinct features may reflect a specific
physiological process, our findings of a better performance in the
prediction of RE using FCD suggested that FCD may be a
sensitive neuroimaging biomarker for reflecting the radiation-
induced functional impairments.

Brain Weight Location Model
Notably, we found that gFCD, rather than lFCD, made a
substantial contribution to the predictive model for the early
FIGURE 2 | Receiver operator curve (ROC) for individual prediction of RE at
the pre-symptomatic stage in patients with NPC. RE, radiation encephalopathy;
NPC, nasopharyngeal carcinoma; AUC, the area under the curve.
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diagnosis of RE. Our results are partially supported by those of
previous studies, which demonstrated that gFCD is more sensitive
to individual differences than lFCD in terms of functional
connectivity (18). It has been well documented that altered
Frontiers in Oncology | www.frontiersin.org 6
gFCD is linked to functional deficits in multiple domains [such
as attention (15), cognition (26), memory, and visual perceptual
(16)], which are all common clinical symptoms in patients with RE
(3, 27). Although the potential factors secondary to pathological
FIGURE 3 | The brain maps of pre-symptomatic RE and non-RE based on gFCD at the voxel level. RE, radiation encephalopathy; NPC, nasopharyngeal carcinoma;
FCD, functional connectivity density.
FIGURE 4 | The top 20 weighted brain regions’ distribution spatially. The color bar denotes the percentage of total normalized weights that each brain region
explains. DMN, default mode network.
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alterations of radiation-induced vascular endothelial cell injury
and vascular stenosis may lead to FCD abnormalities (28), the
exact neural mechanisms underlying the observed patterns of FCD
changes remain unclear.

The current study revealed that gFCD in the temporal regions
and cuneus had good identification efficiency in patients with RE.
These results were not surprising; the temporal areas [including
the medial and inferior aspects (29)] are located in the radiation
field and are thus vulnerable to injury (30). Recently, several
neuroimaging studies (7, 8) have reported structural alterations
in the temporal lobe following radiation therapy (31). For
example, using voxel-based morphology (VBM) (31),
decreased cortical volumes of the temporal regions were
reported after radiation therapy in patients with NPC. One
surface-based morphometry study reported increased cortical
thickness of the left superior temporal gyrus (STG) in patients
with NPC following radiation therapy (7). Another SBM study
(32) revealed an increased cortical surface area in the temporal
lobe and decreased cortical thickness in the bilateral temporal
pole and STG. Aside from the structural evidence, our findings of
altered gFCD in the temporal lobe are further supported
by previously documented radiation-induced functional
impairments (such as abnormal regional homogeneity (ReHo)
and functional connectivity) in the temporal pole and STG
(5, 12). Of note, the temporal gyrus and cuneus, where gFCD
was altered in our study, can integrate visual information from
the anterior visual pathway (33), whose lower stream (eyes lens,
optic nerve, and optic chiasm) undergoes severe radiation-
induced damage (34). We therefore speculated that the altered
gFCD in the cuneus and temporal regions might reflect
functional impairments in the anterior visual processing
pathway (cuneus–temporal lobe loop). Furthermore, a
previously reported increase in visual evoked potential latency
and a decrease in the amplitude (35) of the anterior visual
pathway of patients with RE may further support our hypothesis.

In our study, gFCD in the postcentral gyrus and ACC also
contributed substantially to the early diagnosis of RE. Our
findings are partially supported by several previous functional
studies (6, 12), which reported increased ReHo in the postcentral
gyrus and decreased FC in the postcentral gyrus and ACC.
Furthermore, one SBM study provided structural evidence with
cortical thickness abnormalities in the postcentral gyrus and ACC
inpatientswithNPCafter radiation therapy (7).Physiologically, the
ACC receives inputs from the spinothalamic tract (36), which then
projects to the postcentral gyrus, thus constituting the
somatosensory pathway. One case report has also demonstrated
that the injury of the spinothalamic tract can occur as a result of the
primary brainstem injury (37), as the brainstem is located in the
radiation field and receives a high radiation dose in patients with
NPC (34). Taken together, the abnormal brain activity of the
postcentral gyrus and ACC thus be a secondary response to the
damagedsensoryneural circuit in thebrainstem.Moreover, sensory
deficits, such as facial (38) and limb numbness or pain perception
(39), that are observed in NPC patients after radiotherapy suggest
that functional impairments occur in the sensory in the
neural circuit.
Frontiers in Oncology | www.frontiersin.org 7
We observed that the gFCD within the precuneus,
supramarginal gyrus, and angular gyrus was crucial for
predicting RE. The precuneus (32), and the inferior parietal
cortex (supramarginal gyrus and angular gyri), are functionally
connected and formed a resting-state brain network, known as
the DMN. As has been reported, the DMN has self-referential,
introspective-state functions, and processes an individual’s
thoughts and feelings (40, 41). To date, many previous studies
have identified structural and functional abnormalities in DMN-
associated brain regions, such as decreased cortical thickness (7),
the abnormal fractional amplitude of low-frequency fluctuations
(fALFF) (5), ReHo, and FC (6, 12). Thus, together with the
previous observations, our results indicated that the activity of
DMN activity might be a potential neurological biomarker for
radiation-induced cognitive impairments; however, this needs
further investigation.

Limitations
Some limitations were presented in this study. First, the study
contained a relatively small series of patients because of the
relatively low morbidity of RE as well as low patient compliance
during follow-up. Although the current SVM algorithm was
appropriate for a small sample size, future studies would
benefit from a larger sample and would have a more stable
predictive performance. We have thus started to create a larger
RE database for further investigations. Secondly, the lack of any
comprehensive assessments of cognitive function weakens the
interpretability of our results. Future studies that use detailed
cognitive scales will be indispensable for the validation of such an
investigation. Thirdly, chemotherapy has been reported to exert
side effects on the cerebral functional domain in patients with
NPC following radiotherapy. We tried to control for the effects of
confounding factors by keeping TNM stages and chemotherapy
regimens consistent. However, further research is warranted to
exclude the chemotherapy-related confounding effects on the
radiation-induced functional impairments.
CONCLUSIONS

In the current study, we analyzed FCD maps using a machine
learning SVM algorithm to predict RE in NPC patients for the
first time. The gFCD was revealed to have a good prediction
efficiency. This finding provides insights into voxel-level cerebral
information and suggests that gFCD might be a valid biomarker
of RE. Furthermore, brain regions within the temporal pole and
those involved in visual processing, the somatosensory system,
and the DMN showed high discrimination, which may help to
explain the sensory and cognitive disturbances that occur in RE.
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