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ABSTRACT: Identification of the most stable structure(s) of a
system is a prerequisite for the calculation of any of its properties
from first-principles. However, even for relatively small molecules,
exhaustive explorations of the potential energy surface (PES) are
severely hampered by the dimensionality bottleneck. In this work,
we address the challenging task of efficiently sampling realistic low-
lying peptide coordinates by resorting to a surrogate based genetic
algorithm (GA)/density functional theory (DFT) approach
(sGADFT) in which promising candidates provided by the GA
are ultimately optimized with DFT. We provide a benchmark of
several computational methods (GAFF, AMOEBApro13, PM6,
PM7, DFTB3-D3(BJ)) as possible prescanning surrogates and
apply sGADFT to two test case systems that are (i) two isomer
families of the protonated Gly-Pro-Gly-Gly tetrapeptide (Masson, A.; et al.J. Am. Soc. Mass Spectrom.2015, 26, 1444−1454) and (ii)
the doubly protonated cyclic decapeptide gramicidin S (Nagornova, N. S.; et al.J. Am. Chem. Soc.2010, 132, 4040−4041). We show
that our GA procedure can correctly identify low-energy minima in as little as a few hours. Subsequent refinement of surrogate low-
energy structures within a given energy threshold (≤10 kcal/mol (i), ≤5 kcal/mol (ii)) via DFT relaxation invariably led to the
identification of the most stable structures as determined from high-resolution infrared (IR) spectroscopy at low temperature. The
sGADFT method therefore constitutes a highly efficient route for the screening of realistic low-lying peptide structures in the gas
phase as needed for instance for the interpretation and assignment of experimental IR spectra.

1. INTRODUCTION
Understanding the correlation between composition, structure,
properties, and functional roles of biomolecules is at the very
heart of biochemistry and biophysics. The first step in this
hierarchy, i.e., the connection between composition and
structure, has thus attracted enormous interest both in the
case of, e.g., entire proteins1−4 and for smaller peptides.5−8

The latter are especially interesting in view of reducing the
complexity of natural systems and studying smaller-size models
under controlled conditions. Furthermore, peptides made of
few amino acids have attracted much attention in recent years
thanks to their promising and wide scope of applications, be it
in the fabrication of biomaterials,9 in the engineering of
biomimetic compounds for catalysis,10 or in drug design.11

Indeed, in addition to contributing to physiological health,12

peptides have brought about conclusive benefits as anti-
infective drugs due to their antimicrobial activity,13−15 leading
to intense efforts in therapeutics development with peptidomi-
metic systems.16,17

The study of gas-phase peptides alone or with a defined
number of solvent molecules constitutes a first step toward the
understanding of the in vivo properties and allows for a
differential picture of well-controlled intramolecular interac-
tions separated from their combination with condensed-phase

and intermolecular effects. Moreover, in some cases, the
experimentally produced gas-phase systems are able to retain
solution-phase features so that scrutinizing native forms in the
gas phase and at near zero temperature can provide valuable
insight into remanent condensed-phase interactions.18,19,20

Experimentally, advances over the past decade have coupled
laser desorption and supersonic molecular beam cooling to
capture IR spectra of neutral biomolecules in the gas
phase.21,22 Alternatively, combinations of electrospraying,
ion-mobility selection, mass spectrometry, and cryogenic ion
traps were reported to separate between conformational
families of charged molecules prior to, e.g., IR measure-
ments.18,21,23 In particular, such experiments performed at
cryogenic temperatures have been able to produce vibrationally
resolved and conformer-selective measurements, but due to the
high intrinsic complexity, the identification of the underlying

Received: October 28, 2022
Published: January 24, 2023

Articlepubs.acs.org/JCTC

© 2023 The Authors. Published by
American Chemical Society

1080
https://doi.org/10.1021/acs.jctc.2c01078

J. Chem. Theory Comput. 2023, 19, 1080−1097

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+Villard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Murat+K%C4%B1l%C4%B1c%CC%A7"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ursula+Rothlisberger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.2c01078&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01078?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01078?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01078?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01078?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01078?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/19/3?ref=pdf
https://pubs.acs.org/toc/jctcce/19/3?ref=pdf
https://pubs.acs.org/toc/jctcce/19/3?ref=pdf
https://pubs.acs.org/toc/jctcce/19/3?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


structures and the full assignment of the observed IR spectra
can only be achieved with the support of computational
methods. In turn, the experimental low-temperature data
provide highly sensitive benchmarks for the assessment of the
performance of computational methods for biorelevant systems
where the availability of accurate quantitative data is often
sparse and hard to obtain. Therefore, the present work also
illustrates a sensitive test case of the complementarity between
simulations and experiments.
At low temperature, conformers are expected to occupy the

thermodynamically most stable configuration on the PES or at
least some kinetically trapped low-lying metastable states.
Therefore, from a computational perspective relevant local
minima (LM) are usually searched on the rugged, high-
dimensional PES and theoretical IR spectra, commonly
computed with DFT including exact exchange at the hybrid
level for sufficient accuracy, are compared to the exper-
imentally observed spectra.18,24−29

The exploration of the PES is typically performed with
molecular dynamics (MD), relying on classical force fields,
semiempirical, or first-principles potentials in combination
with replica-exchange and/or simulated annealing (SA) to
enhance sampling.21−23,26,30−34 Though highly successful in
many cases,18,28,29 this approach based on traditional quantum
chemical tools suffers from severe drawbacks and limitations:
On one hand, the quantitative identification of the lowest
energy structures at low temperature poses stringent accuracy
demands to provide a correct energetic ordering in the 0−2.5
kcal/mol observation range for biomolecules that are
characterized by complex interatomic and noncovalent
interactions.30 This imposes the use of higher level computa-
tional methods for the determination of realistic relative
energetics,23,33,35 while force fields or semiempirical ap-
proaches often fail at providing the necessary accu-
racy.23,30,36,37 On the other hand, even small peptides contain
of the order of tens to hundreds of atoms, making higher level
first-principles calculations time-consuming for all but the
smallest molecules. In particular, using first-principles MD
requires long simulation times with ten thousands of energy
and force evaluations for typical simulated annealing runs and,
in spite of multiple runs with different starting geometries and
varying simulated annealing protocols (in terms of highest
temperature, simulation length at Tmax and subsequent cooling
rate), can potentially fail to recover the most stable structures
due to the presence of high-energy barriers on the PES.22,34

Even when successful, DFT-MD based identifications of the
lowest-energy structures observed in experiments can take
several months and might only be practicable for larger systems
when introducing experimental information to guide the
search.23,29

Here, we tackle the task of rapidly finding the global
minimum (GM) as well as low-lying LM, with the help of
surrogate based genetic algorithms (GA). By leveraging
evolutionary mechanisms, GAs have shown efficiency in
solving highly nonlinear and complex global optimization
problems38−40 where deterministic or analytical methods fail at
finding correct solutions or efficiently search enormous
solution spaces. In particular, the capabilities of GAs were
for instance found to surpass SA in the search for ground state
fullerene clusters41 or perform better at protein structure
predictions compared to Monte Carlo approaches on
simplified energy models.42−44 GAs are also among the most
CPU-/search-efficient methods to computationally identify

low-energy conformations when applied to small organic
molecules45−47 or peptides in the gas phase.36,48,49 For
example, they outperformed systematic and random search
methods for the mycophenolic acid drug-like ligand and were
more efficient than replica-exchange MD for dipeptides in
terms of low-energy conformational coverage (respectively
within 5 and 10 kcal/mol from the GM).50

Despite this algorithmic gain, the predictive power of such
evolutionary methods evidently depends on whether the
energy function is able to faithfully describe the relevant
physical interactions. For example, up to now, the lack of fast
and sufficiently accurate (free) energy models51−55 explains
why ab initio protein folding predictions have met little success
in recovering secondary and tertiary structures in close
agreement with native-like conformations.44,54,56,57 In that
case, the enormous space defined by the number of structural
degrees of freedom severely challenges search engines, so that
protein folding approaches often privilege sequence homol-
ogy3,58 or machine learning4,59 algorithms. However, in the
mid-size range of peptidic systems, GA applications have a lot
of potential if tractable energy models with sufficient accuracy
exist.
Due to the large number of energy evaluations required, GAs

for peptide folding are commonly used in conjunction with
classical force fields36,45−48 or expedient semiempirical
methods,49 at the price of loosing accuracy so that identified
stable structures might correspond to false LM introduced by
the energy function and relative energies between different
conformers might be far off experimental observations.36,45,47

As a potential remedy, GA optimizations were recently
combined with DFT local relaxations.50 However, this
approach was rather limited to short GA instances of
dipeptides and molecules up to ∼40 atoms so that applications
of this fully DFT-based approach to larger systems are
currently compromised even when resorting to massively
parallel computational resources.
We rather explore here the possibility of using less accurate

surrogate models for a faster (pre)evaluation of the PES and
demonstrate that a judicious choice of surrogate level can
provide satisfactory knowledge for establishing a pool of low-
energy candidates, to be ultimately refined at a first-principles
level. This seems also reasonable in view of the fact that
relative energies and vibrational frequencies can differ
markedly upon changing the level of theory, DFT functional,
or basis set18,35,37,60 and that there exists a priori no exact,
tractable and universal baseline for the PES to drive the
optimization with.
To anticipate our results, it turns out that while the

surrogate LM geometries are in general very close to their first-
principles analogues for all lower-level methods considered
here, the energy hierarchy varies significantly between PES
approximations and can considerably deteriorate the search.
Nevertheless, our results show that, in combination with a
state-of-the-art polarizable force field, the approach is highly
successful in generating surrogate low-lying minima that match
experimental structures for the two test case systems including
two isomers of the protonated Gly-Pro-Gly-Gly tetrapeptide
(referred to as GPGG herein) and the doubly protonated
gramicidin S cyclodecapeptide. This encourages the use of
sGADFT as a straightforward, fast, and automatized way to
identify the lowest energy structures of peptides in the gas
phase.
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In what follows, we first describe the reference test systems
in Section 2, along with our GA implementation. After
presenting the computational details and the investigated
surrogate models in Section 3, we provide a quantitative
assessment of their cost-accuracy performance on a test set of
GPGG structures in Section 4.1. Respective GA results are
then presented in Sections 4.2 and 4.3, and their computa-
tional footprint finally is reported in Section 4.4, before
drawing conclusions in Section 5.

2. METHODS
2.1. Reference Data. To test the performance of the

sGADFT approach, we have chosen two reference systems of
different size for which the lowest energy structures have
previously been determined via a combination of high-
resolution conformer-selective IR spectroscopy paired with
electrospray ionization and cryo-cooled ion traps, supported by
a traditional computational approach (as described above) to
determine the most stable structures. The first test case system
comes from the work of Masson et al., who leveraged ion-
mobility techniques to identify and separate two conforma-
tional families of the protonated GPGG peptide (Figure 1)

with different collisional cross-sections, and acquired respective
spectroscopic data.18 Major conformers of each family were
determined as involving either the cis or trans isomers of the
proline residue.
The 3D structure determination was previously established

by running SA ab initio MD starting from random cis/trans
structures extracted from the Protein Data Bank (PDB).61 The
search was conducted at the DFT level with the B3LYP
functional62 and a 6-31G basis set, with extensive trials of
heating temperatures and annealing rates for total simulation
times of several tens to hundreds of picoseconds. After this first
exploration, isomers were structurally and energetically
selected and locally relaxed at the B3LYP/6-31G(d,p) level
of theory to provide a final set of 13 cis and 29 trans
energetically low-lying candidate structures, which serve as the
reference pool in this work. Comparison of theoretical
harmonic vibrational frequencies (at B3LYP/6-311++G(d,p)
level) including isotopic substitutions with the measured
spectra clearly confirmed that the lowest-energy configuration
of each family of these two sets corresponded indeed to the
most abundant of the observed conformers.
Similarly, in 2010, Nagornova et al. published highly

resolved IR spectra of the doubly protonated gramicidin S
peptide (Figure 2) featuring a D rather than an L enantiomer of
a phenylalanine.63 Since the experimental data indicated some
symmetry (C2) for the major conformer, an SA exploration of
the high-dimensional PES could be performed by imposing
structural constraints over multiple FF99SB64 and FF02po-

lEP65 force field trajectories.29 The 3D structure was finally
determined by calculating B3LYP/6-31G(d,p) spectra of few
candidates.
2.2. Genetic Algorithms. Genetic algorithms (GAs) are

global optimizers that belong to the larger class of evolutionary
algorithms rooted in the mechanisms of biological evolution.
As metaheuristic search engines, GAs operate over populations
of individuals that each represent a candidate solution of the
optimization problem and are progressively modified toward
(near-) optimal solutions. GAs are powerful tools when it
comes to hard optimization problems for which the solution
space is supposedly noisy, unsteady, and involves constraints or
many LM as well as many degrees of freedom that do not allow
simpler local optimizers or enumeration searches to perform
efficiently.
Figure 3 depicts a schematic representation of the GA

employed in this work built from conventional genetic

operations. Generally, first individuals are randomly generated,
if no other information or constraints are known, to ensure
diversity and prevent any other bias in the solution space
originating from the initialization. At each generation
(iteration), GA evolves solution individuals with biologically
inspired operators. Each individual is assigned a fitness that
serves as a metric to drive the genetic evolution of the

Figure 1. Schematic structure of the 39-atom protonated GPGG
peptide in its cis (ω = 0) isomer, shown with the respective backbone
dihedrals employed for GA optimization.

Figure 2. Schematic structure of the 176-atom doubly protonated
gramicidin S cyclic decapeptide, shown with respective backbone and
side-chain dihedrals employed for optimization.

Figure 3. Schematic representation of the GA cycle as implemented
in EVOLVE for this study.
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algorithm. Most of the time, this fitness function is nothing else
than the objective function of the optimization problem.
Following the Darwinian principles of mate selection and

survival of the fittest, individuals are stochastically selected
based on relative fitnesses in the population and give birth to
children individuals through crossover of genes. Genes are
encoding fragments of a tentative solution that depend on the
problem at hand and that must be carefully designed by the
practitioner. Examples of such encodings or representations are
bit strings, symbols, or vectors that contain relevant
information to be transferred from one generation to the
next. Children solutions are then randomly mutated to
maintain diversity and possibly extend the search over yet
uncovered regions of the solution space. Finally, elitism
consists of replacing some of the current less-fit individuals
with the best individuals of the previous generation, in order to
maintain the best traits discovered so far over the generations.
Such a selection-crossover-mutation-elitism cycle hence
simulates an artificial evolution and propagates relevant and
optimal features of the representations across GA iterations.
The algorithm terminates after a fixed number of generations
or when improvement of the fitness function stagnates over
several iterations.
Due to the very nature of the initialization, selection, and

mutation, GAs are intrinsically stochastic and provide statistical
results that hopefully contain the GM of the optimization
problem. In the following, our GA implementation toward the
optimization and generation of low-lying peptide geometries is
described.
2.3. Optimization of Peptide Conformations with

EVOLVE. All of the work presented in this article was
performed with the in-house implementation of a single-
objective and multiobjective GA engine called EVOLVE.66,67

As a versatile and modular Python code for peptide and
protein sequence optimization, EVOLVE was successful in the
optimization of a biomimetic peptidic scaffold for the fixation
of CO2

68 and in the engineering of a highly thermostable
metalloprotein.69 It also served in the elaboration of training
sets for enhanced machine learning models of molecular
properties.70

For the compositional optimizations mentioned above, side
chain rotamer libraries were used in order to restrict the search
space to discrete sets of residue conformations. In contrast
here, EVOLVE is extended into a complete in silico optimizer
of a peptide structure (including both the backbone
conformation and side chain dihedrals) with a fixed amino
acid sequence whose degrees of freedom therefore cover a
huge space. In the gas phase at near zero temperature, the
objective function is nothing more than the potential energy as
a function of atomic coordinates, meaning that the lower the
energy (fitness), the better the structure. Such an “ab initio”
peptide folder is capable of exploring the low-lying LM or
reaching the GM of the PES, which is particularly relevant for
assigning 3D structures to measured IR spectra.18,21,26,28,29 In
addition, it also provides an exhaustive search that enables a
quality test of the method used to describe the PES.
In practice, genetic operators have parameters that are fixed

before execution, which strongly influence the efficiency and
reliability of the algorithm. The optimal choice of these
parameters is a multivariate problem in itself and depends on
the forms of the operator, the problem to be solved, and the
characteristics of the fitness function.71 We studied the effect of
several parameters such as population size, crossover

probability, or mutation rate and selected a set for which
independent runs progress steadily toward the lowest energies
in a small number of iterations. In what follows, we describe
the specificities of the algorithm (Figure 3) and list the
corresponding parameters in Section 3.1.

2.3.1. Representation. Each individual or tentative solution
of the optimization problem is a peptide conformation.
Translated in a GA framework, each geometry is represented
by the backbone ϕ and ψ torsional angles as well as possible
side chain torsional angles χ. The genes of one individual
composed of N amino acids with respective k numbers of side
chain dihedrals are therefore

( , , , ..., , ..., , , , ..., )k
N N N N

k
1 1 1

1
1

1 N1= (1)

encoded into a single numerical vector Θ that defines the
internal coordinates of the optimizer. The specific torsional
angles used for the optimization of the two test systems studied
herein are indicated in Figures 1 and 2. This choice of
representation, inspired by the underlying characteristics of the
Ramachandran plot,72 was already exploited in previous
evolutionary methods36,50 and has the advantage of easily
defining genetic operators that preserve the peptide atomic
connectivity.

2.3.2. Initialization. The information about the amino acid
sequence, the atom types, and atomic connectivity are
provided to EVOLVE in the form of a PDB file which serves
as an initial template. From this, a Θi representation of size K is
randomly generated in which each individual i of the first
population has a uniform distribution of its torsional angles
such that Θk

i ∈ [−180°,180°) for k = 1, ..., K. Technically, such
modifications of the peptide structures are performed with the
help of the Open Babel toolbox.73

2.3.3. Fitness Function. At each generation, the ability of an
individual to be among the lowest energy configurations is
assessed by calculating its potential energy. In order to avoid
the exploration of highly improbable nonphysical structures,
e.g., with too close distances or steric overlaps, initial local
relaxations are performed before assigning the energy. Indeed,
the individuals modified by the genetic operators can be very
distorted and far from LM of the fitness function, which
prevents the algorithm from progressing rapidly to low
energies by stagnation or by bouncing off the PES,48 in a
manner quite similar to a gradient descent with a high learning
rate. To improve this, the search space is consequently focused
on the physically more meaningful regions that involve LM.
The algorithm thus operates at two levels: a coarser (and

wider) exploration of the configurational space driven by
genetic operators acting on Θ, refined by local optimizations of
the Cartesian coordinates R, as illustrated in the central graph
of Figure 3. The relaxed structures R̃ and energies are stored to
construct the pool of putative LM and corresponding fitnesses
and are further translated back to their torsional representa-
tions Θ̃ that are updated before selection:

The computational cost is determined by the number of
fitness function calls (equal to the number of generations times
the population size) times the cost for a single fitness
evaluation. The latter depends crucially on the level of the
surrogate method, while the choice of the PES model (and
thus the fitness function) is critical in order to reliably reflect
experimental results. Thus, compromises have to be made
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between cost and accuracy. EVOLVE is currently interfaced
with several external software programs (Gaussian,74 Amber,75

OpenMM76) that can be used for local gradient based
optimizations at different levels of theory. Note that the
modular structure of EVOLVE and the use of the Atomic
Simulation Environment (ASE) library77 to interface with
external codes greatly facilitate the integration of new fitness
evaluators. Finding an appropriate surrogate model for the PES
in terms of speed and accuracy for the relative energetics is
investigated in Section 4.1. For the GA applications envisioned
here, it is not absolutely necessary to reproduce the PES in
every detail but for a given surrogate model to be satisfactory,
it has to be able to drive the GA optimizations toward regions
with a promising set of candidates also likely to belong to low-
energy regions at the higher-level reference method.

2.3.4. Sanity Checks and Constraints. The resulting
geometries and energies are checked after each fitness
evaluation to ensure that the local optimization was successful,
as it may happen that the initial structures R generated by the
GA operators have clashes or are so deformed that it becomes
difficult for the local optimizer to converge to a stable (local)
minimum, especially within the first few generations. In this
uncommon case, individuals from nonconverged optimizations
are simply ignored and replaced in the next generation by
assigning them a very high (unfavorable) fitness value.
A similar procedure is applied to constrain the GA search. In

particular, when running separate optimizations for the cis- and
trans-GPGG manifolds, the geometries are checked on-the-fly
to ensure that they belong to the chosen isomer class since the
local optimizer can, although very rarely, alter the isomer-
ization state of the proline (Figure S6).
For gramicidin, the cyclic structure is enforced by requiring

the bond between the PRO1 nitrogen and PHE10 carbon
atom not to exceed 2 Å, which again rarely occurs due to the
definition of a cyclic topology in the force fields which imposes
a bonding potential between these two atoms. If we were to
use a surrogate at the electronic structure level, the ring
structure would be constrained similarly by an additional
penalty potential.

2.3.5. Selection. Individuals are selected with tournament
selection: a subset of a given size s is randomly created from the
population and a competition operates between individuals in
this set. The solution with minimal (i.e., most optimal) fitness
in the set is added to a pool of mates for crossing over. The
process is repeated until the number of mates in the mating
pool reaches the population size.

2.3.6. Crossover. The recombination of genetic material to
be inherited by the offspring is achieved with the simulated
binary crossover (SBX)78 operator, which is a real-valued
analogue of the single-point crossover of binary strings that was
used in early GAs with discrete degrees of freedom. This
simple operator cuts and swaps at one random site in the bit
representations. More specifically, SBX is designed to enhance
the probability for two parents to give birth to an arbitrary
child solution and better explore the fitness landscape. More
details about the SBX implementation are provided in
Appendix A.1. This operator demonstrated better performance
in finding global optima of multivariable objective functions
with numerous LM. To illustrate its enhanced search power,
we report the number of LM visited along a GA run with SBX
in Figure S1, compared to simple swaps of Θ components
(genewise crossover) that cover less space on average.

2.3.7. Mutation. Mutations are random disturbances to
ensure that all regions of the solution space are accessible
during the search. A point in the solution space should in
principle be reachable from any other point thanks to
mutations (and their combination with crossover). However,
in conventional GAs, mutations should not be too strong in
order not to scatter promising features out of their optimal
regions as long as the search improves. Mutations are therefore
usually considered as rather local changes aimed at exploiting
the vicinities of current solutions, whereas larger moves
(explorations) are driven by crossovers.40,47

Dealing with a real-valued search space, an instinctive choice
for mutations is the addition of Gaussian noise79 that mutates
an individual Θi like

p KP( , ) ( (0,1), ..., (0,1))
i i

m K1= + (3)

where ◦ denotes the element-wise multiplication between
vectors. P(pm, K) is a vector of size K filled with 0 or 1 that
selects genes to be mutated with probability pm. For pm = 1, all
genes are mutated, while pm = 0 turns off the mutation.
Selected genes are consequently modified with independent
samples from the standard normal distribution (0,1) scaled
with the parameter σ that controls the mutation strength, along
with pm.

2.3.8. Elitism. The crossover and mutation operators mix
and alter the tentative solutions that were among the best
individuals in the previous generation. While the solutions are
expected to improve along a GA run on average, there is no
guarantee that the best fitness at a certain generation is lower
than its previous counterpart and genes can drastically change
in the case of genetic drift, escaping from a region where the
GM actually sits. A way to counteract this is the application of
an elitism operator which consists of replacing a fraction f of
the worst solutions by the best individuals of the previous
generation. This makes sure that the best fragments of
information found so far are automatically transferred to the
offspring generation, which thus always contains the overall
best solution. Such a selective pressure can improve the
convergence speed,71,80 though the efficiency of any GA is
dictated by its ability to balance between exploration and
exploitation and elitism introduces the risk of losing diversity
and converging prematurely to less-fit LM.81

3. COMPUTATIONAL DETAILS
3.1. GA Parameters. We report in Table 1 the parameters

optimized through a series of test runs and finally used in this

Table 1. Input Parameters for EVOLVE

GA parametera GPGG Gramicidin

Population size 40 48
No. of generations 60 80
Tournament selection, s 2
Mating probability 1.0
Crossover, pc 0.5
Crossover, n 5
Mutation probability 0.75
Mutation, pm 1/3 1/10
Mutation, σ 60°
Elitism, f (if applicable) 4/40 5/48

as, set size; pc, genewise probability; n, SBX crossover order; pm,
genewise probability; σ, mutation strength; f, elitism fraction.
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study. The algorithm terminates after a fixed number of
generations, for which we verified that no significant
improvement in fitness was observed anymore.
The mating and mutation probabilities fix the fractions of

the population that are respectively crossed or mutated. For a
solution Θ, pc = 50% of its components are crossed with the
SBX operator while the others remain unchanged. 75% of the
population is mutated and the probability pm of mutating each
gene is chosen so that one ϕ and one ψ backbone dihedral are
modified on average. For gramicidin, the same probability
applies to all 16 side chain dihedrals resulting in an average rate
of 1.6 side chain mutants per individual. We choose a
reasonable replacement of about 10% of the population by
elites, unless otherwise specified, and also study the effect of no
or stronger elitism in what follows.
3.2. Surrogate Fitness Function. Among the plethora of

available methods, we focus our assessment of surrogate PES
on some widely used force fields and semiempirical approaches
that are expected to give fairly accurate results over a broad
chemical and conformational space, as well as for charged or
nonstandard residues.
The first chosen surrogate candidate is the General Amber

Force Field (GAFF)82 as provided in the Amber 2018 suite.75

Fixed partial charges, atom types, and force field parameters
have been assigned with the Antechamber and Leap tools.
Atomic charges are derived from the default restrained
electrostatic potential (RESP) fit83 at the HF/6-31(d) level
of theory. For the purpose of comparison and to test the
sensitivity with respect to the choice of fixed point charges, we
also used charges derived with the faster Austin Model 1 with
bond charge correction (AM1-BCC) scheme.84,85 For both cis-
and trans-GPGG, charges are calculated from structures
constructed with the amino acid sequence editor of Molden,86

while the X-ray-resolved crystal structure is used for
gramicidin.87 van der Waals and electrostatic interactions are
not truncated in the absence of periodic boundary conditions.
Local geometry optimizations are performed using Sander
single-core jobs consisting first of 4000 steepest descent steps
followed by conjugate gradient optimization until convergence
to the default 10−4 kcal/(mol Å) root-mean-square deviation
of the Cartesian elements of the gradient.
Second, we examine the AMOEBA polarizable force field for

proteins88 in its OpenMM implementation76 with the L-BFGS
minimizer tolerance set to 10−4 kcal/mol. In our experience,
the GPU-accelerated version significantly speeds up geometry
optimizations by up to a factor of 80 compared to the CPU
version.
Calculations with the self-consistent-charge (SCC) density

functional tight binding method89 with full third order terms90

(DFTB3) are performed with the DFTB+91 code with the
SCC tolerance set to 10−7 a.u. using the parameter set 3OB.92

Hydrogen interactions are corrected with a damping exponent
of 4.2 in the SCC short-range contribution.90 DFTB3 is
extended with the London dispersion correction D393 as
parametrized for DFTB394 with the Becke−Johnson damping
variant.95 The geometry optimizations are carried out with the
L-BFGS algorithm and default convergence criteria.
We also evaluate the ability to rely on hybrid DFT with a

small basis set (6-31G) as a possible surrogate. For this, we use
the GPU-supported TeraChem software96,97 with L-BFGS
optimizations98 at the B3LYP level of theory performed on 2
parallel GPU cards with default settings.

Finally, Gaussian1674 is used for the semi-empirical PM699

and PM7100 methods with the Berny optimizer101 and default
convergence criteria. The same is true for the B3LYP/6-
31G(d,p) reference calculations with the difference being that
very tight (tight) convergence criteria with ultrafine grid were
chosen for GPGG (gramicidin). The performances of all these
alternative surrogates compared to the B3LYP/6-31G(d,p)
reference are discussed in the next section.

4. RESULTS AND DISCUSSION
4.1. Performance of Different Surrogate Fitness

Functions. The success of the search for good candidate
structures relies on the matching of the surrogate PES with the
one of a reference method capable of reproducing the
experimental results. Ideally, running the GA with the
surrogate should lead to a similar coverage of the configura-
tional space as well as a good match of the relative energetics
between structures within an affordable computational cost.
We therefore seek to establish here which approximation
provides the best compromise between accuracy and computa-
tional expense.
However, a quantitative evaluation of the performance of a

given fitness function is nontrivial due to the stochastic nature
of GAs, in addition to the intractable cost of running multiple
benchmark instances with, for example, hybrid DFT.
Furthermore, assessing accuracy differences between various
methods has been one of the major challenges in computa-
tional chemistry for decades. For this reason, we rather test the
quality of the different PES approximations on a finite test set
of GPGG geometries.
In order to maximize the coverage of different regions of the

PES, the set was generated from 10 high mutation rate GA
instances with the GAFF force field and with the structures
that resulted from GA crossovers and mutations before local
relaxations (and fitness evaluations). Therefore, these latter are
not LM of the GAFF force field which is only used to drive the
sampling. From all visited configurations (20000 in total), 200
diverse geometries were initially selected using a farthest-point
sampling (FPS) algorithm102 in the space defined by the radius
of gyration RG and the number of hydrogen bonds NH (see
Appendix A.2) that turned out to be useful for differentiating
polypeptide configurations.103 Among these, 146 geometries
were successfully relaxed to distinct LM at the B3LYP/6-
31G(d,p) reference level, which we augmented with 42
structures derived from ab initio SA (cf. Section 2.1) that we
know correspond to low energy minima. Hence, the test set
finally contains 69 cis and 119 trans nonrelaxed individuals that
are representative of points potentially visited during GA runs.
As it would happen for a GA process, the different surrogates

are employed to locally optimize the set and produce pools of
respective LM. Therefore, the evaluation of a surrogate’s
performance must be based on its ability to not only
approximate the energy but also the coordinates of the
reference LM; a satisfactory model should provide target
structures with relative energies following the B3LYP/6-
31G(d,p) ranking at best. Illustratively, the wells of the
surrogate in Figure 4 must be as “close” as possible to the
reference wells, in terms of both energy and structure.
However, as also depicted in Figure 4, we note that a direct
(one-to-one) comparison between surrogate and reference LM
is not possible because similar initial points may relax into very
different geometries depending on the method and optimizer
used. Consequently, in the absence of side chains for GPGG,
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the backbone RMSD (bb-RMSD) was chosen as a metric to
identify “closest” LM structures and rely on a more faithful
measure of proximity than a direct comparison from the shared
initial point.
We opted for a statistical analysis to mimic the various

fitness evaluations during a GA run, which also informs about
the performance of the surrogates for different population
sizes: For a random subset of S initial structures taken from the
test set, each reference B3LYP/6-31G(d,p) LM is associated
with its closest (in terms of bb-RMSD) surrogate LM. Then,
the relative energies within the subset are used to calculate the
mean absolute error (MAE) of the surrogate energy:

E
S

E E

S
E E E E

MAE( )
1

1

i
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i i

i
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i i

1

ref surr

1
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= | |

= | + |

=

= (4)

with E0,sub being the minimum energy in the respective subset.
This represents the ranking on which the GA selection would
operate and avoids giving too much importance to whether the
surrogate was able to correctly find the GM of the entire set or
not.
Figure 5a shows the MAE(ΔE) for different subset sizes and

surrogates, and Figure 5b gives the average bb-RMSD between
the closest reference and surrogate LM structures from which
the ΔE were calculated. As could be expected, the B3LYP/6-
31G(d,p) LM are best reproduced using the same method
(B3LYP) but with the smaller (nonpolarized) 6-31G basis set,
with structures showing on average 0.2−0.4 Å bb-RMSD and
∼4 kcal/mol energy differences. While all other surrogates
show similar differences in geometries that saturate at best
around 0.3 Å bb-RMSD for DFTB3, the relative energies
between methods are more variable. The PM6 semi-empirical
method appears to perform best with average energy deviations
of 5 kcal/mol, followed by the GAFF(RESP) and AMOEBA
force fields, as well as DFTB3, which all have energy
differences of about 6 kcal/mol while these exceed 7 kcal/
mol for the remaining surrogates. The worst approach is the
GAFF force field with AM1-BCC charges, which were only

used here to explicitly test the influence of the effective charge
set but are indeed not recommended for common practice.75

Regarding the quality of the structural prediction, Figure S2
gives an illustration of some bb-RMSD between reference and
surrogate LM. In general, structures with a bb-RMSD of less
than 0.5 Å are very similar and thus more likely to relax to their
B3LYP/6-31G(d,p) counterpart upon reoptimization. As for
the energetic performance, the closest reproduction of the
reference geometries is found for the smaller basis set B3LYP
variant, but also all remaining surrogate methods perform
relatively well in terms of geometric predictions, yielding LM
geometries with a bb-RMSD around 0.5 Å from a subset size of
40, which is the population size of the GA chosen for GPGG.
Therefore, we conclude that over a set of representative
geometries encountered in a GA optimization, all non-DFT
surrogates show a similar performance in terms of reproducing
B3LYP/6-31G(d,p) structures. However, correct relative
energies are more difficult to approximate and differ between
methods, with PM6 slightly outperforming GAFF(RESP),
AMOEBA and DFTB3 in terms of overall MAE.
Apart from the fact that the surrogate method should be able

to generate a diverse set of structures, we are particularly
interested in the performance for the low-energy regime,
whose members will drive GAs to the most optimal regions of
the PES. The pool of low-energy LM at the surrogate level also
represents the candidates that will be selected for a
reoptimization with a higher level reference. For all cis,
respectively trans isomers, Table 2 presents the MAE of the
relative energies of LM at less than 10 kcal/mol of the
respective GM in the set. Again, the energies are compared

Figure 4. Illustration of the local relaxation of test structures on the
surrogate and reference PES projected along two arbitrary reaction
coordinates. The LM resulting from the same initial points are not
necessarily close in energy and/or geometry.

Figure 5. (a) MAE of relative energies between surrogate LM and
their bb-RMSD closest B3LYP/6-31G(d,p) counterparts for the
GPGG test set. (b) Average bb-RMSD between the surrogate LM and
their closest B3LYP/6-31G(d,p) counterparts. Average values over
max(S, 70) random subsets for each size S are plotted; standard
deviations are of the order of 1 kcal/mol, respectively, 0.03 Å, and are
provided in the Supporting Information (Figure S5a,b). The energies
of the reference LM span 30 kcal/mol with two outliers around 40
and 60 kcal/mol.
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between corresponding pairs of surrogate-reference geometries
that exhibit the smallest bb-RMSD.
All methods provide on average satisfactory geometries with

a difference in bb-RMSD of less than 0.5 Å with the reference
LM. In addition to providing the closest structural match, the
B3LYP/6-31G PES is the best surrogate with respect to
relative energies in the low-energy realm. However, the
performance of some of the other tested surrogates can
markedly deviate from the overall energetic performance
shown in Figure 5. Both GAFF(RESP) and DFTB3, are
comparatively less accurate with MAEs between 6 and 7 kcal/
mol for both cis and trans configurations. Although PM7
performs well for trans low-lying minima, it shows more
weaknesses in ranking higher energy configurations (Figure 5a)
as well as cis isomers in the low-energy range, which highlights
the fact that the performance of surrogates can be system-
dependent. Finally, AMOEBA and PM6 exhibit the smallest
MAEs of all non-DFT methods with balanced accuracies for
the two configurational classes.
While the previous analyses assessed the quality of the

structural as well as energetic predictions of the different
surrogate methods, their overall computational cost also plays a
major role in the choice of the most appropriate fitness
function. To give an overview of the different time scales
involved we give estimates of the average time needed for a
local geometry optimization for each surrogate method in
Table 3. For the sake of comparison, running a GA search with
the B3LYP/6-31G(d,p) reference would take more than 2.5
months on a desktop workstation for the 39-atom GPGG
molecule, highlighting the need for more expedient ap-
proaches. Although it is found that resorting to a smaller
basis set provides the best accuracy, a GPU-accelerated
implementation only reduces the elapsed time to the order
of a month, while other surrogates bring it down to less than a
day for semi-empirical methods (PM6, PM7, DFTB3) and
only few minutes for force fields (GAFF, AMOEBA).
The small improvement in accuracy of PM6 does not seem

to justify its use over AMOEBA, which is about 180 times
faster. From these tests on the GPGG tetrapeptide, AMOEBA
is thus emerging as a promising surrogate for GA optimization
of peptides in terms of cost and accuracy and it will therefore
be our choice in the following sections along with the fast but
presumably less accurate GAFF (HF/6-31G(d) RESP) force
field for comparison.

4.2. GA Optimization of GPGG. 4.2.1. Global Minimum
Search. The results presented here are all based on a common
pool of surrogate geometries generated after 10 GA runs, for
which the minimum energy progressions are plotted in the
Supporting Information (Figures S7 and S8). Without prior
knowledge about structures and energies, the GM is assumed
to be the lowest-energy individual found over all instances.
In terms of GA performance, it is worth mentioning that

elitism markedly increases the chance of finding the GM as
reported in Figure 6 that shows the cumulative success of
reaching the GM at a given iteration. A 10% replacement of the
current population with the best parent individuals substan-
tially improves the GM search for all schemes but the cis-
GPGG on the AMOEBA PES due to its rapid convergence
(the energy decrease between the first and last generations is
only 0.1/0.6 kcal/mol as shown in Figure S7) For the other
cases, the GA might not always succeed in finding the GM but
elitism allows enhancement of the convergence rate by 30%.
Since the minimum energy will fix the overall ranking of
surrogate LM, and consequently the selection of candidates to
be reoptimized, it is essential for the GA to reach the surrogate
GM or at least low-lying structures within a few kcal/mol from
it.
Comparing the sampled structures of the cis isomer with the

DFT-resolved GM, it is found that the putative GM of

Table 2. Assessment of Surrogate Methods in the Low-Energy Regime ΔẼ ≤ 10 kcal/mola

cis trans

Surrogate MAE E( ) Av bb-RMSD NLM MAE E( ) Av bb-RMSD NLM

GAFF AM1-BCC 7.1 ± 3.1 0.48 ± 0.25 10 5.9 ± 4.3 0.41 ± 0.12 15
GAFF HF/6-31G(d) RESP 6.1 ± 7.6 0.29 ± 0.25 10 6.1 ± 4.9 0.35 ± 0.17 29
AMOEBApro13 3.6 ± 4.1 0.36 ± 0.11 23 4.8 ± 4.7 0.27 ± 0.16 49
PM6 3.7 ± 4.6 0.37 ± 0.14 25 4.4 ± 3.4 0.23 ± 0.16 32
PM7 5.5 ± 6.7 0.43 ± 0.18 31 2.6 ± 1.9 0.21 ± 0.06 13
DFTB3-D3(BJ) 6.9 ± 4.7 0.36 ± 0.21 34 6.0 ± 6.7 0.36 ± 0.22 45
B3LYP/6-31G 1.6 ± 2.8 0.16 ± 0.17 30 1.1 ± 0.9 0.13 ± 0.13 35

B3LYP/6-31G(d,p), reference 27 21

aNLM is the number of local minima within the range. E E E E EMAE( )
N i

N
i i

1
1

ref
0
ref surr

0
surr

LM

LM= | + |= in kcal/mol, where E0
ref and E0

surr are

the respective cis or trans putative GM found over the entire test set. The energies of the surrogate and the reference are compared according to the
smallest bb-RMSD match, whose average value and standard deviation are reported in Å.

Table 3. Average Elapsed Time t ̅ for Local GPGG Geometry
Optimization on Ncores Cores (or GPU) for Different
Surrogate Methods Based on the GPGG Test Seta

Surrogate t ̅ (min) Ncores tG̅A
b

GAFF AM1-BCC 0.024 1b 3 min
GAFF HF RESP 0.028 1b 3 min
AMOEBApro13 0.005 1 GPUc 5 min
PM6 1.072 8b 15 h
PM7 1.578 8b 22 h
DFTB3-D3(BJ) 1.331 1b 2.7 h
B3LYP/6-31G 19.508 2 GPUsc 1 mth

B3LYP/6-31G(d,p) 150.235 8b 2.7 mths
atGA is an estimate of the average time spent on fitness evaluations for
a 60-generation 40-individual GA run if executed on a 24-core 2-GPU
workstationb. The calculation details of each method are reported in
Section 3.2. b24-core Intel Xeon E5-2650 v4 @ 2.20 GHz CPU, 2
Nvidia GeForce GTX 1060 GPUs. c16-core Intel Xeon E5-2630 v3 @
2.40 GHz CPU, 2 Nvidia GeForce GTX 970 GPUs.
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AMOEBA has a heavy-atom RMSD of only 0.5 Å (Figure 7a).
However, this is not the most similar structure found, as the

GA was able to provide an even closer structure with an RMSD
of 0.4 Å about 0.6 kcal/mol higher in energy that better
reproduces the configuration of the proline cycle (Figure 7b).
At the GAFF level, although the lowest energy structure is
more compact (Figure 7c) and therefore shows a larger RMSD
from the reference, a geometry almost equal to the DFT GM is
also discovered about 1 kcal/mol higher in energy (Figure 7d).
For the trans isomer, the AMOEBA GM is more distant

from the DFT reference (Figure 8a) than it is with GAFF
(Figure 8c) with respective RMSDs of 1.1 Å against 0.6 Å, but
both force fields yield almost identical structures to the DFT
GM within 2 kcal/mol above their putative GM (Figure 8b
and 8d).
Hence, for both cis- and trans-GPGG, GAFF and AMOEBA

are able to identify the DFT GM as a low-lying surrogate
structure within a maximum of 2 kcal/mol above their

(putative) GM demonstrating that a surrogate approach can
indeed be beneficial before resorting to higher-level refinement
as it is done in the next section.

4.2.2. Low-Lying Minima Search and Refinement. GA
optimization offers the additional advantage that one can profit
from all of the LM visited during evolution. Maximizing the
number of low-energy structures is therefore important in
order to capture all surrogate candidates likely to relax to the
desired reference minimum. As an example, the progression of
the number of new minima explored is shown in Figure 9 for a
single GA as well as after several executions. The average
number of minima found over the GA iterations is very similar
with or without elitism and reaches a plateau after a certain
number of GA generations (Figure 9a). Figure 9b shows that it
is more efficient to perform independent runs in parallel to
improve the search and sample more LM, rather than
extending a single execution with more generations. In this
case, however, the use of elitism can alter diversity and reduce
the exploration of low-lying LM, which is observed for all
schemes (Figure S9).
The collection of thousands of structures provided by the

GA is followed by their ultimate reoptimization at the
reference level. For this purpose, only surrogate structures
within 10 kcal/mol of their putative GM are selected and
locally relaxed with DFT (B3LYP/6-31G(d,p)). To establish
the actual accuracy of the surrogate, Figure 10 compares the
energies and coordinates between the AMOEBA LM and their
reoptimized counterparts and Table 4 reports respective MAE
on energy and bb-RMSD for all schemes. As expected, relative
energies are not perfectly reproduced and the largest errors
(outliers) cannot be systematically attributed to larger RMSDs.
However, AMOEBA provides a rather good MAE of only 1.9
kcal/mol for the cis isomers, while it increases to 4.4 kcal/mol

Figure 6. GPGG: cumulative success of finding the surrogate GM at
each generation, averaged over 10 GA optimizations per surrogate/
isomer combination.

Figure 7. cis-GPGG: putative GM and closest LM found on surrogate
PES after 10 GA runs for (a, b) AMOEBA and (c, d) GAFF. E E0
is the relative energy of the LM with respect to the putative GM. The
B3LYP/6-31G(d,p) GM is depicted in green with respective
backbone/heavy-atom RMSD. Similar structures are obtained with
or without elitism.

Figure 8. trans-GPGG: putative GM and closest LM found on
surrogate PES after 10 GA runs for (a, b) AMOEBA and (c, d) GAFF.
E E0 is the relative energy of the LM with respect to the putative
GM. The B3LYP/6-31G(d,p) GM is depicted in green with
respective backbone/heavy-atom RMSD. Similar structures are
obtained with or without elitism.
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for the trans structures. Surprisingly, the relative energies
obtained for the GAFF (fixed point charge) force field are only
slightly worse than the ones of AMOEBA for cis and even
slightly better for trans isomers. In spite of the few kcal/mol
error in the predictive power of the surrogates, LM are

generally very close to their DFT counterparts with a small
backbone (heavy-atom) RMSD around 0.3 (0.5) Å on average.
Some of them relax into identical minima on the DFT PES, but
the GA candidates still provide an extensive set of realistic low-
lying minima: We note that all LM that were identified as
closest to the DFT GM for AMOEBA (Figures 7b and 8b) and
GAFF (Figures 7d and 8d) did indeed relax to the DFT GM.
Therefore, the surrogate GA approach was overall successful in
retrieving the target DFT GM structures that were assigned to
experimental IR spectra.
Compared to a previous SA search,18 the sGADFT found

more (theoretical) LM on the B3LYP PES within the
convergence criteria and basis set employed, as it is shown
in Figure 11. In the cis subspace, the AMOEBA GA gave four
similar lowest-energy geometries to SA within 2 kcal/mol and
misses four of them within 5 kcal/mol. Nevertheless, it
provides additional structures that were not found in the SA
search. Ditto for the GAFF force field, except for some very
low energies that are not recovered. For the trans-GPGG, the
very low region is more sparse and a structure at 0.05 kcal/mol
is missed with AMOEBA, as is another one close to 5 kcal/mol
that was spotted with GAFF. Overall, this demonstrates that
GA-sampled structures are indeed relevant for the low-energy
resolution of the ab initio PES. Should the results not be
satisfactory, there is always the possibility of running additional
GAs and/or performing a higher number of reoptimizations.

Figure 9. trans-GPGG: number of low-lying minima found on the
AMOEBA PES within 15, 10, and 5 kcal/mol with respect to the
putative GM. (a) Per GA generation, averaged over 10 GA runs. (b)
By running independent GAs. Distinct LM are taken to be at least
separated by 10−4 kcal/mol and 0.2 heavy-atom RMSD.

Figure 10. GPGG: predictive performance of AMOEBA in reproducing geometries and relative energies of LM at the B3LYP/6-31G(d,p) level for
(a) cis isomers and (b) trans isomers. Backbone (bb) and heavy-atom (no-H) RMSDs are reported. Also indicated are the median and 75%
quantile of absolute errors on energies. The 75% quantile outliers are marked in green with their respective RMSD. Corresponding plots for the
GAFF force field are given in the Supporting Information (Figure S10).

Table 4. GPGG: EMAE( )a in kcal/mol and Average
Backbone RMSD in Å between the Surrogate LM and Their
Reoptimized Counterparts at B3LYP/6-31G(d,p)

Surrogate/isomer MAE E( ) Av bb-RMSD NLM
b

AMOEBA/cis 1.9 ± 1.5 0.28 ± 0.10 31
GAFF/cis 2.9 ± 1.9 0.29 ± 0.14 94
AMOEBA/trans 4.4 ± 2.9 0.31 ± 0.21 64
GAFF/trans 4.0 ± 2.5 0.38 ± 0.23 87

aAs defined in Table 2. bNLM is the number of LM reoptimized within
10 kcal/mol from the putative GM.
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The obtained ab initio LM can describe very similar
structures that are chemically indistinguishable. To group
essentially identical structures, a minimum RMSD can be
imposed and the number of distinct LM becomes of the same
order for both AMOEBA and GAFF (Figures S11 and S12).
This shows that it is important to sample not only as many
low-lying minima as possible at the surrogate level but also
those that are farthest away and likely to relax into distinct
DFT minima. An effective approach in this sense would be to
select distant structures using clustering,104 FPS,102 or RMSD
analysis prior to reoptimization and avoid irrelevant relaxations
due to small numerical differences.
4.3. GA Optimization of Gramicidin. 4.3.1. Global

Minimum Search. An even harder performance test is
represented by the larger gramicidin system with explicit side

chain optimization. As reported in Figure S13 using the
AMOEBA surrogate PES, the energy progression is clearly
hampered or stagnates after a few tens of iterations in the
absence of elitism. On the other hand, a (too) high fraction of
elitism of 20% increases the variance and does not reach the
lowest energies, whereas the putative GM is finally found in 3
over 10 GA runs using a medium 10% rate of elites.
Astonishingly, the surrogate GM is also the closest geometry
to the DFT-resolved structure, which are both reproduced in
Figure 12. The agreement between the AMOEBA and the
B3LYP geometries is remarkable with a backbone (heavy-
atom) RMSD of only 0.2 (0.4) Å.
In contrast, the GAFF putative GM is found with a 20%

elitism rate (Figure S13), which highlights the fact that elitism
is an essential factor in the search for GM on complicated PES,
but its magnitude may be system- and method-dependent and
remains a parameter to be assessed or adjusted in order to find
an ideal exploration−exploitation trade-off. As opposed to
AMOEBA, the GAFF putative GM is very far from the DFT
GM with a large (2.1 Å) backbone RMSD (Figure S14a). Over
30 GA runs, the closest LM found is only located within 26
kcal/mol (!!) from the putative GM, has a 0.5 (1.5) Å
backbone (heavy-atom) RMSD and does not relax to the DFT
GM (Figure S14b). In order to assess if this poor performance
originates from the limitation of the GA search or the quality
of the surrogate PES, we relaxed the DFT GM with the GAFF
force field and obtained a very similar structure (0.1 (0.3)
RMSD) located 18 kcal/mol above the GAFF putative GM.
Therefore, the DFT GM is indeed a LM on the GAFF PES but
does not lie in the low-energy regime which definitely renders
the GAFF force field unsuitable for the GM search, in
particular because several hundreds of structures were found
within 18 kcal/mol (Figure S15) and, in the absence of prior
knowledge, reoptimizing all would be far from tractable.

4.3.2. Low-Lying Minima Search and Refinement. As seen
previously, the number of explored minima depends on the
ability of the GA to reach different low-energy regions and
varies with the fraction of elitism and the choice of fitness
function. Running multiple GA instances starting from
different initial structures is again more efficient than extending
a single run whose variance decreases with the number of
iterations (Figure S16). Elitism reduces in principle the overall
diversity of the LM (cf. Section 4.2.2) but becomes essential to
explore the very low energy regions of more complex systems.
Indeed, for gramicidin, the greater number of low-energy

Figure 11. GPGG: zero point energy-corrected energies of B3LYP/6-
31G(d,p) reoptimized structures obtained with ab initio simulated
annealing (SA) at B3LYP/6-31G18 and GA with AMOEBA or GAFF
force fields. The green and shorter red levels are respectively matches
and misses compared to SA. The respective number of LM is
indicated in parentheses.

Figure 12. Gramicidin: two views (a) and (b) of the AMOEBA putative GM that is also the closest LM found over 10 GA runs (with 10% elitism).
The DFT B3LYP/6-31G(d,p) reference GM is depicted in green. Backbone/heavy-atom RMSDs are 0.2/0.4 Å.
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minima was obtained by the elitism fraction capable of
identifying the putative GM (Figures S15 and S16). Therefore,
mitigating elitism with other mutation-like operators could
potentially improve the search power in the low-energy regime
by providing a certain diversity of structures visited while
maintaining low energies.
B3LYP/6-31G(d,p) reoptimizations of gramicidin candi-

dates are much more CPU intense than those of the smaller
GPGG peptides, so that only structures sampled with 10%
elitism and located within 5 kcal/mol could be retained for
subsequent optimizations. It is therefore crucial that the
surrogate, although not optimal, provides relevant candidates
located in a range of only a few kcal/mol, as the number of
structures and their refinement cost increase considerably with
the size of the system. Again, we plot relative energies and
RMSDs against DFT reoptimized geometries in Figure 13 and
report averages in Table 5.

For gramicidin, AMOEBA performs as well as for GPGG
with a MAE around 4 kcal/mol and small 0.3 Å average
backbone RMSD. Successfully, the three lowest candidate
structures relax to the DFT GM (Figure 13a). For GAFF, the
geometries of the candidate structures are also very similar to
their closest DFT minima, but relative energies are significantly
off due to GAFF’s inability to correctly reproduce the lower
regions of the DFT PES of this system (Figure 13b). By
visualizing the LM in the RG-NH space in Figure 14, we notice
that GAFF biases the search toward higher-energy DFT
regions. In these, GAFF does rather well on relative energies

despite a large energy offset (∼18 kcal/mol, Figure 13b).
Hence, we conclude that GAFF cannot reliably approximate
the energetics for screening low-energy gramicidin structures
and sampling realistic regions of the PES, which the polarizable
AMOEBA force field, on the other hand, seems to achieve
surprisingly well.
Figure 15 finally demonstrates that the straightforward GA

approach with AMOEBA produces an extensive set of low-
lying B3LYP/6-31G(d,p) structures with little effort, as
opposed to the more technically involved restrained SA
simulations that were used in the initial search for the
experimentally observed structure29 (cf. Section 2.1). Although
the overall sGADFT method did not find similar LM, its
explored energy space is denser in the low-energy range and
the experimental GM is retrieved, advocating the use of
surrogate GAs for low-energy sampling with little setup
management and cost, as discussed in the next section.
4.4. Computational Performance. Thanks to the use of

surrogates that allows one to bypass a direct exploration of the
PES at the first-principles level, searching for GPGG
conformers takes less than 15 min on a conventional
workstation as indicated in Table 6, albeit requiring more
than 2400 local relaxations per GA execution.
For GAFF, benefits come from a parallel split of fitness

evaluations over multiple cores. The timing difference between
cis- and trans-GPGG originates from the longer initialization of
a complete cis population that has the tendency to relax to
trans structures. Apart from that, for the smaller GPGG system,
GAFF is generally faster than the more sophisticated
(polarizable) AMOEBA force field but the recent GPU-
accelerated implementation76 of AMOEBA makes the
optimizations significantly faster for the larger gramicidin
peptide; thanks to a load split of EVOLVE over two parallel
GPUs, the evaluation of more than 3800 fitness evaluations can
be achieved in less than 45 min for this 176 atom molecule.
All in all, in the case of AMOEBA, the pools of low-energy

candidate structures for GPGG and gramicidin were sampled
in respectively 2.5 and 7 h on a single workstation for 10 serial
GA runs, without monitoring or restart procedures, in contrast
to the previously employed B3LYP/6-31G SA search for
GPGG that took several days with multiple runs, with different

Figure 13. Gramicidin: predictive performance of AMOEBA and GAFF in reproducing geometries and relative energies of LM at the B3LYP/6-
31G(d,p) level. Backbone (bb) and heavy-atom (no-H) RMSDs are reported. Also indicated are the median and 75% quantile of absolute errors on
energies. The 75% quantile outliers are marked in green with their respective RMSD.

Table 5. Gramicidin: EMAE( )a in kcal/mol and Average
Backbone RMSD in Å between the Surrogate LM and Their
Reoptimized Counterparts at B3LYP/6-31G(d,p)

Surrogate MAE E( ) Av bb-RMSD NLM
b

AMOEBA 4.3 ± 3.3 0.29 ± 0.11 48
GAFF 17.9 ± 2.0 0.25 ± 0.05 28

aAs defined in Table 2. bNLM is the number of LM reoptimized within
5 kcal/mol from the putative GM, separated at least by 10−4 kcal/mol
and 0.75 heavy-atom RMSD.
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heating temperatures and annealing rates and a postprocessing
analysis of trajectories to extract promising candidates.18 Such
an ab initio exploration is simply out of reach for gramicidin
and only SA based on classical force fields employing
additional experimentally observed constraints could provide
the GM.29

Regardless of the search approach employed, a final ab initio
refinement with a large basis set is necessary for calculating
properties, e.g., reliably assigning IR frequencies to exper-
imental spectra. DFT reoptimizations and (harmonic) vibra-
tional analyses are far more demanding than the GA searches
themselves; in fact, they required 6 days on two workstations
for all AMOEBA/GAFF GPGG LM (276 structures) while 4
days on 8 16-core compute nodes were needed for the
AMOEBA gramicidin (48 structures). However, similar to the
previous SA searches, experimental information like ion-
mobility cross-sections18 or symmetry constraints derived
from typical vibrational fingerprints29 can be used as additional
prefilter for GA applications, to further narrow down the pool
of candidate geometries instead of retaining all structures
within a given energy range. This would drastically reduce the
computational demand when treating larger systems.

5. CONCLUSIONS AND OUTLOOK
In this work, we have presented a GA based search method to
efficiently sample low-energy structures of peptides and its
implementation in our in-house code EVOLVE.67 Rather than
aiming for a full first-principles exploration, we argue that
resorting to more expedient surrogates allows significant
reduction of the computational expense in the screening of
candidate structures to be later reoptimized at the ab initio
level. This is motivated by the fact that coordinates of local
minimum candidates are in general well-approximated by
surrogates, while getting reliable energies is the main difficulty.
Among several approximate methods investigated, the

AMOEBApro13 polarizable force field showed the best
compromise between cost and accuracy. Tested on three
systems that are the cis-, trans-proline protonated GPGG and
the doubly protonated gramicidin S decapeptide, the approach
was successful in identifying B3LYP DFT GM within a
maximum 2 kcal/mol from the putative surrogate GM. The
GAFF force field also succeeded for GPGG isomers but failed

Figure 14. Gramicidin: surrogate AMOEBA and GAFF LM candidates within 5 kcal/mol in the RG (radius of gyration) and NH (number of
hydrogen bonds) space, connected by lines to their reoptimized structures at the B3LYP/6-31G(d,p) level of theory. E0 are the respective energies
of the putative GM for each PES, indicated by GM for the surrogates and GM for B3LYP.

Figure 15. Gramicidin: zero point energy-corrected energies of
B3LYP/6-31G(d,p) reoptimized structures obtained with SA based
on classical force fields (SA/FF),29 and GAs with AMOEBA and
GAFF force fields. The green and shorter red levels are respectively
matches and misses compared to SA/FF. The respective number of
LM is indicated in parentheses. A similar plot restricted to clearly
distinct structures (only LM differing by at least two side chain
dihedrals) is provided in Figure S18.

Table 6. Wall Time t ̅ per GA Execution for the
AMOEBApro13(OpenMM76) and GAFF(Amber75)
Surrogatesa

System t ̅ AMOEBA (min) t ̅ GAFF (min)

cis GPGG 13.9 ± 0.6 14.3 ± 1.6
trans GPGG 12.5 ± 0.1 7.5 ± 0.8
Gramicidin 43.7 ± 3.4 122.8 ± 11.2

aComputational settings correspond to Section 3. Averages and
standard deviations are given for 20 GA runs on a workstation with
24-core Intel Xeon E5-2650 v4 @ 2.20 GHz CPU and 2 Nvidia
GeForce GTX 1060 GPUs. Time differences with or without elitism
are insignificant.
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for gramicidin due to a large offset in the energy predictions.
As opposed to the more cumbersome and expensive ab initio
simulated annealing employed in earlier studies, GPGG local
minima were generated over 10 serial GA runs in less than 3 h
on a single workstation, and only 7 h were necessary for the
larger gramicidin system. Obviously, these timings can be
further improved by parallelizing between multiple GA
instances.
Overall, this demonstrates that the AMOEBA based

surrogate GA alternative can provide substantial advantages
in the three-dimensional determination of trapped metastable
or global minimum peptide structures, as observed in ultracold
spectroscopy, because all resulting GM coordinates were
indeed correctly identified.
Thinking ahead, such a comprehensive generation of low-

energy minima can also be advantageous for a wider range of
research studies: for example as starting points for MD
simulations, free-energy sampling, transition state searches, and
nudged elastic band methods, or as templates for protein−
ligand complexes in the rational design of analogues, or finally
as training data for a variety of machine learning
approaches.105−107

■ APPENDIX

A.1. Simulated Binary Crossover
Let Θk

i be the kth real-coded gene (component) of the parent
individual i with representation of size K (eq 1). For a two-to-
two crossover between individuals i and j, the spread factor β is
defined as the ratio of the distance between children points k

i

to that of the parent points:
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such that for β < 1 (β > 1), the spread of the children points is
smaller (larger) than that of the parents and has a contracting
(expanding) effect on the children extent. Deb and Agrawal78

showed that the probability distribution of having a
contracting or expanding single-point binary crossover with
spread β can be approximated by polynomial functions, such
that
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is used to design a real-value crossover, where n between 2 and
5 appeared to match closely with single-point crossover results.
It is easy to show that contracting or expanding the distance
between children genes is equiprobable (with 0.5 probability)
by integrating in the respective ranges. Figure 16 shows the
probability distribution of eq 6 for different n. Generally, the
probability of creating children close to their parents (β = 1) is
higher than creating very different children. Larger values of n
accentuates this effect. In practice, a fixed n is chosen although
one could broaden the initial search with small n and
progressively narrow the exploration over generations with
larger n.
A sample from this probability distribution is generated by

choosing the point β̅ for which the cumulative probability

u( ) d
0

= , where u is a uniformly generated random

number in [0,1) and the change in contracting or expanding
( ) occurs at u = 1/2. For such a β̅, the children’s genes are

crossed according to
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Up to now, the SBX operator has been presented for
unbounded variables, whereas peptide dihedrals are periodic.
To restrict the search space to specified lower (lb = −180°)
and upper (ub = 180°) bounds used throughout the GA, the
probability distributions are modified so that the probability of
creating dihedrals outside of the bounds is equal to zero;
without loss of generality in what follows, one can assign the
largest value to Θk

i( )k
i and the lowest to Θk

j( )k
j . It is

straightforward to notice from eq 5 that a maximum spread
allowed for k

i
k
j can be chosen as
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which provides a scaling factor α for the probability
distribution in order to make the overall cumulative probability
in the bounds equal to one.
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Therefore, the bounded crossover operates with eq 7 and β̅ is
generated from the normalized cumulative probability

u( ) d
0

1 = , where u is a uniformly sampled random
number in [0,1). The normalized probability distribution
consequently changes at u = 1/(2α) such that
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The extension of the single-variable (Θk
i ) SBX operator to

the multivariate problem is straightforward: setting a
probability pc of crossing over, pcK respective components of

Figure 16. Probability distributions ( ) (eq 6) of contracting and
expanding SBX crossover to mimic binary single-point crossover
distributions.
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the solutions Θi and Θj are selected and crossed with the
single-variable operator described above.
A.2. Radius of Gyration and Number of Hydrogen Bonds
The radius of gyration used in this work is the geometric radius
rather than its mass-weighted analogue, defined as
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where Nbb is the number of backbone heavy atoms located at
positions ri, so that RG represents the RMSD of the backbone
coordinates with respect to the average center of the backbone
chain. It therefore differentiates between linear or more
globular structures. For gramicidin, all heavy atoms are rather
considered in eq 11 to establish a finer resolution of the side
chains packing around the cyclic backbone.
The number of hydrogen bonds is evaluated as
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with d0 = 1.8 Å and i, j running over all oxygen and hydrogen
atoms of the peptide, excluding their covalent bonds. This
second quantity informs about the secondary structure and
distinguishes between molten globular geometries or properly
folded peptides. The RG and NH geometric descriptors are for
example used as collective variables in the context of
metadynamics.103
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