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Objective. To develop a combined nomogram based on preoperative multimodal magnetic resonance imaging (mMRI) and
clinical information for predicting recurrence in patients with high-grade serous ovarian carcinoma (HGSOC). Methods. This
retrospective study enrolled 141 patients with clinicopathologically confirmed HGSOC, including 65 patients with recurrence
and 76 without recurrence. Radiomics features were extracted from the mMRI images (FS-T2WI, DWI, and T1WI+C). L1
regularization-based least absolute shrinkage and selection operator (LASSO) regression was performed to select radiomics
features. A multivariate logistic regression analysis was used to build the classification models. A nomogram was established by
incorporating clinical risk factors and radiomics Radscores. The area under the curve (AUC) of receiver operating
characteristics, accuracy, and calibration curves were assessed to evaluate the performance of classification models and
nomograms in discriminating recurrence. Kaplan-Meier survival analysis was used to evaluate the associations between the
Radscore or clinical factors and disease-free survival (DFS). Results. One clinical factor and seven radiomics signatures were
ultimately selected to establish the predictive model for this study. The AUCs for identifying recurrence in the training and
validation cohorts were 0.76 (0.68, 0.84) and 0.67 (0.53, 0.81) with the clinical model, 0.78 (0.71, 0.86) and 0.74 (0.61, 0.86)
with the multiradiomics model, and 0.83 (0.77, 0.90) and 0.78 (0.65, 0.90) with the combined nomogram, respectively. The
DFS was significantly shorter in the high-risk group than in the low-risk group. Conclusion. By incorporating radiomics
Radscores and clinical factors, we created a radiomics nomogram to preoperatively identify patients with HGSOC who have a
high risk of recurrence, which may serve as a potential tool to guide personalized treatment.

1. Introduction

In an age of rapid technological and medical advances, ovar-
ian cancer (OC) diagnosis still poses a daunting challenge to
doctors. High-grade serous ovarian carcinoma (HGSOC) is
the most common histological subtype in the clinic, with
insidious symptoms and high aggressiveness. At the time
of initial diagnosis, approximately 70% of ovarian cancer

patients are already in an advanced stage [1, 2], resulting
in a poor prognosis. The optimal treatment of patients with
HGSOC consists of primary debulking surgery (PDS)
followed by platinum-based adjuvant chemotherapy or neo-
adjuvant chemotherapy (NACT) combined with interval
debulking surgery (IDS) [3, 4]. Approximately 80% of
patients can benefit from this therapeutic strategy, which is
associated with a high rate of complete clinical remission
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[5]. However, approximately 80% of patients with advanced
HGSOC will experience tumour recurrence with less than 3
years of recurrence-free survival (RFS) [2, 6]. The survival
after recurrence is poor, regardless of early or advanced stage
disease [7]. In addition to late detection, preoperative hor-
mone levels, treatment strategies, and tumour residual state
are also important factors that are strongly associated with
recurrence. However, to date, there are no reliable prognos-
tic biomarkers for clinical application [8]. Hence, developing
a method to detect the risk of recurrence of HGSOC is of
great importance for prolonging RFS and improving the
prognosis of patients.

Conventional magnetic resonance imaging (cMRI) plays
a significant role in the diagnosis of pelvic diseases due to its
high soft-tissue resolution [9, 10]. It can clearly reveal the
lesion morphology, characteristics (edema, hemorrhage,
fibrosis, and so on), the relationship between the lesion
and surrounding tissues, and even the status of lymph nodes
(metastatic or inflammatory). The novel functional imaging
technology of diffusion-weighted imaging (DWI), which can
well reflect the differences in cell density and reveal the dif-
fusion information of biological tissues [11–13], has been
widely used in clinical practice to distinguish benign and
malignant tumours, tumour grade, and differentiation [11,
14–16].

Radiomics analysis is a postprocessing method for
extracting information by quantifying the spatial distribu-
tion of pixels or voxels with different grey intensities and
counting the variables, that is, calculating and extracting tex-
ture features based on the texture matrix of the images
[17–19]. Considering the large size and complexity of ovar-
ian masses, radiomics analysis based on the whole tumour
could more accurately reflect the heterogeneity of HGSOCs
by quantifying complex parameter distributions and provide
more accurate information for clinical practice [11, 20]. Pre-
vious researchers have found that FIGO stage, histological
grade, subtype, and tumour residue are important risk fac-
tors for predicting postoperative recurrence. Previous stud-
ies included those based on the preoperative clinical risk
factors for predicting the 3-year and 5-year survival rates
of patients with epithelial ovarian cancer (EOC) [21], studies
based on an analysis of CT images to identify HGSOC risk of
recurrence markers [6], studies based on CT radiomics for
predicting early recurrence of high-grade serous ovarian
cancer [22], and a set of radiomics models based on MRI
for predicting recurrence of patients with advanced high-
grade serous ovarian cancer risk [5]. These studies have
achieved certain progress but are not comprehensive. Our
study is aimed at developing and evaluating a nomogram
combining a radiomics model based on preoperative multi-
modal magnetic resonance imaging (mMRI) and clinical
information for predicting recurrence in patients with
HGSOC to achieve precise and individualized diagnosis
and treatment.

2. Materials and Methods

2.1. Patients. The institutional review board of Anhui Pro-
vincial Cancer Hospital (West Branch of The First Affiliated

Hospital, University of Science and Technology of China),
approved this retrospective study, and the requirement for
informed consent was waived. Our study was conducted in
accordance with the Declaration of Helsinki.

We retrospectively reviewed the clinical records and
imaging results of 191 consecutive patients with surgically
and pathologically proven HGSOC who underwent pelvic
MRI examination at Anhui Provincial Cancer Hospital
between July 2014 and December 2019. Patients were
excluded from the study if they were lost to follow-up within
less than 18 months (n = 44), had few solid components
(n = 3), or had incomplete pathological reports (n = 3).
Finally, 141 patients with HGSOC were enrolled in the pres-
ent study. Various clinical indicators of the patients were
obtained through the medical record system, including age
at diagnosis, preoperative carbohydrate antigen 125
(CA125), and human epididymis protein 4 (HE4) levels.
The median age of the patients was 54 years (age range,
41-78 years). The tumours were staged according to the
2014 International Federation of Gynaecology and Obstet-
rics (FIGO) guidelines [21]. The process of patient selection
is illustrated in Figure S1.

2.2. MRI Protocol.MRI examination was performed using an
MR system (GE Signa HDXT 3.0T MRI scanner, GE
Healthcare, USA) equipped with an 8-channel phased-
array abdominal coil. All patients received an intramuscular
injection of 15mg hyoscine butylbromide 30 minutes before
the MRI scan to prevent gastrointestinal motility. The blad-
der was kept approximately half-filled to improve lesion vis-
ibility without changing the anatomy. Patients were placed
in the supine position and were breathing freely during the
acquisition.

The routine pelvic MRI protocol consisted of the follow-
ing sequences: axial T1-weighted imaging (T1WI), axial/sag-
ittal T2-weighted imaging (T2WI), axial fat-suppressed T2-
weighted imaging (FS-T2WI), diffusion-weighted imaging
(DWI) (b value = 0, 1,000 s/mm2), and multiple phases of
contrast-enhanced (LAVA-FLEX) MRI. When scanning
the axial images, the transverse plane was perpendicular to
the long axis of the uterine body, and for the sagittal images,
the longitudinal plane was parallel to the main body of the
uterus. Contrast-enhanced T1-weighted imaging (T1WI
+C) sequences were acquired at the arterial, venous, and
delayed phases of contrast medium enhancement in the axial
planes, which were acquired at 25, 60, and 120 s after the
intravenous injection of 0.1mmol/kg gadodiamide (Omnis-
can, GE Healthcare) using an Ulrich power injector. The
details of the scanning sequences and parameters are shown
in Table S1.

2.3. MRI Image Analysis. Two radiologists with more than
10 years of experience in gynecological imaging analysed
the images without knowing the pathological results of these
patients and reached a consensus (Figure 1). Using a GE
ADW 4.6 postprocessing workstation, the DWI images of
the tumour layer with b = 1000 s/mm2 were analysed, and
the ADC values were calculated. The measurement was
repeated three times, and then the average value was

2 Journal of Oncology



A: FS-T2WI

(a)

B: T1WI+C

(b)

C: DWI

(c)

D: ADC

(d)

E

(e)

F

(f)

Figure 1: Continued.
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obtained. When sketching the region of interest (ROI), the
T2WI and T1WI+C images were referenced to determine
the tumour boundary, and the mucus, necrosis, cystic
change, and bleeding areas were avoided.

2.4. MRI Image Segmentation and Radiomics Feature
Extraction. Manual segmentation was performed based on
FS-T2WI, DWI, and T1WI+C sequences by using ITK-
SNAP software (version 3.8.0, http://www.itksnap.org). The
ROI of each tumour was manually contoured along the
boundary of the tumour, and the volume of interest (VOI)
was constructed by ROI interpolation for each slice. The
interobserver reproducibility was initially analysed using 30
randomly chosen images for the VOI by the 2 radiologists
mentioned above. Intraclass correlation coefficients (ICCs)
were used to evaluate the interobserver agreement of the
measurement of radiomics features (ICC > 0:75 was indica-
tive of almost perfect agreement).

To reduce the discrepancies between imaging parame-
ters, several preprocessing steps of the MR images were
applied before the process of radiomics feature extraction.
All images were resampled to a voxel size of 1 × 1 × 1mm3

using B-spline interpolation. Each MRI scan was normalized
to obtain a standard normal distribution of image intensities.
Radiomics features were extracted from 3 types of multise-
quence MR images (FS-T2WI, DWI, and T1WI+C) for each
lesion using PyRadiomics software (http://pyradiomics
.readthedocs.io/en/latest/index.html), which can automati-
cally obtain the histogram parameters for the whole solid
tumour VOI. Seven classes of 1316 radiomics features were
extracted: shape features, first-order features, grey-level
cooccurrence matrix (GLCM) features, grey-level run-
length matrix (GLRLM) features, grey-level size zone matrix
(GLSZM) features, neighbourhood grey-tone difference
matrix (NGTDM) features, and grey-level dependence
matrix (GLDM) features (Table S2). A detailed description
of the radiomics image preprocessing is shown in Figure S2.

2.5. Data Preprocessing. The dataset was randomly assigned
in a 7 : 3 ratio to either the training cohort or the validation

cohort. All cases in the training cohort were used to train the
predictive model, while cases in the validation cohorts were
used to independently evaluate the model’s performance.

Variables with zero variance were excluded from the
analyses. Then, the missing values and outlier values were
replaced by the median. Finally, the data were standardized.

2.6. Feature Selection and Classifier Modelling. First, features
with ICCs > 0:75 were retained. Second, feature selection
was performed by using univariate logistic analysis (Correla-
tion-xx) and LASSO with a stepwise selection method. The
Radscore value was calculated as ðradiomics signature ×
coefficientÞ + intercept. Finally, a logistics-based Radscore
model was built based on the established optimal feature
subsets of the training cohort.

After that, we incorporated the radiomics Radscore and
clinical risk factors into a nomogram using multivariable
logistic regression analysis (Figure 2).

Receiver operating characteristic (ROC) curves were
generated to determine the performance of the models,
and the accuracy, sensitivity, specificity, and area under the
curve (AUC) of using these models for predicting tumour
recurrence were calculated. The calibration curves were
assessed to evaluate the model’s performance in predicting
recurrence. The differences for each model were compared
using the DeLong test method (Figure 2).

2.7. Follow-Up and Clinical Endpoint. All enrolled patients
were required to undergo clinical follow-up visits every 2-4
months for 2 years, every 3-6 months for 3 years, and then
annually after 5 years, as suggested by the National Compre-
hensive Cancer Network (NCCN) guidelines. Tumour
markers, a physical examination including a pelvic examina-
tion, and a B-mode ultrasound examination (abdomen and
pelvis) were conducted at each follow-up visit. Patients were
also required to undergo annual imaging examinations, such
as CT, MRI, and PET/CT. During the follow-up period, if
the CA125 value was dynamically elevated, a CT/MRI or
PET/CT examination of the chest, abdomen, pelvis, or a

G

(g)

Figure 1: (a–d) A 54-year-old female was diagnosed with bilateral ovarian high-grade serous carcinoma (HGSOC, FIGO IIIC) by
postoperative pathology on April 18, 2019. Postoperative chemotherapy was performed six times with TC regimen
[docetaxel ð75mg/m2Þ + carboplatin ðAUC = 5Þ]. (e) Reexamination of chest+abdominal CT and pelvic MRI on January 20, 2020. No
clear recurrent diseases were found. (f, g) On April 25, 2021, the CA125 was elevated, and CT examination revealed thickening of the
abdominal peritoneum with multiple nodules (red and blue arrow) and pelvic effusion, so recurrence was considered. DFS was 24 months.
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combination was required to determine if recurrent disease
was present.

We defined DFS as the time interval from the date of
surgery or NACT to the first date of disease recurrence,
and we used the date of the last follow-up to confirm no evi-
dence of recurrence. Recurrence was determined by histo-
logic results or by the combination of imaging evidence
and serum CA125 levels according to the Gynaecologic Can-
cer Intergroup (GCIG) criteria. Patients without recurrent
disease were followed up for at least 18 months.

2.8. Statistical Analysis. Commercial software (SPSS 22.0,
IBM Corporation, Armonk NY, USA) was used for the sta-
tistical analysis. We tested whether the numerical variables
were normally distributed by using a one-sample Kolmogo-
rov–Smirnov test. Data with a normal distribution are
expressed as the mean ± standard deviation (M ± SD), while
nonnormally distributed data are expressed as the median
(interquartile range (IQR), 25th and 75th percentiles). An
independent sample t-test was used for data conforming to
a normal distribution, while a Mann–Whitney U test (a
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Figure 2: (a) Nomogram based on radiomics signatures and clinical factors. In the nomogram, a vertical line was made according to each
parameter to determine the corresponding value of points. The total points were the sum of the three points above. Then, a vertical line was
made according to the value of the total points to predict the recurrence probability of HGSOC. (b–d) Model’s performance assessment and
comparison. (b) Decision curve analysis of radiomics signature, clinical model, and nomogram, respectively. (c) Receiver operating
characteristic curve analysis in the validation cohorts. (d) Delong test for the given models.
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nonparametric rank-sum test) was used for data conforming
to a nonnormal distribution. The chi-square test was used
for unordered categorical variables. To measure the associa-
tions between the risk scores derived from the prediction
models and the RFS status of patients, the early recurrence
rate was obtained using Kaplan–Meier survival analysis
and Cox regression analysis. P < 0:05 was considered statis-
tically significant.

3. Results

3.1. Analysis of Clinical Factors. The basic clinical character-
istics of all patients in our dataset are summarized in
Table 1. Of the 141 patients with HGSOC, 65 patients devel-
oped recurrent disease during the follow-up period, and the
remaining 76 patients were censored with at least 18 months
of follow-up. The median DFS was 27 months (range, 2-53
months). The pretreatment CA125 and HE4 indicators in
the recurrence group were significantly higher than those
in the nonrecurrence group (817.7 (564.5, 2,309.0) vs.
480.1 (220.4, 1062.3) P = 0:001, 499.1 (271.2, 1059.5) vs.
293.5 (175.4, 589.5) P = 0:001, respectively). The ADC value
in the recurrence group was 0.83 (0.73, 0.92), which was sig-
nificantly lower than that in the nonrecurrence group (0.90
(0.77. 0.99), P = 0:011). A total of 63.8% (90/141) of patients
received PDS and postoperative adjuvant chemotherapy,
and 36.2% (51/141) of patients received NACT due to late
staging or large tumours. After surgery, R0 and R1 resection
was achieved in 52.5% (74/141) and 47.5% (67/141) of
patients, respectively. The majority (114/141, 80.9%; 122/
141, 86.5%) of patients had peritoneal metastasis and FIGO
III-IV stage disease. The multivariate analysis showed that
the residual tumour status (R0/R1) was an independent pre-
dictor of tumour recurrence (OR = 4:51 ; 95%CI = 1:252
-16.216; P = 0:021) (Table S3). Clinical statistics for the
training cohort and validation cohort are provided in the
supplementary materials (Table S4).

3.2. Radiomics Models and Model Comparisons. In total,
1316 radiomics features were extracted from each VOI of
the three sequences. The ICC values ranged from 0.771 to
0.988, showing great interobserver agreement. From the ini-
tial feature pool, the T1WI+C-based model selected two fea-
tures, including wavelet LHL glcm correlation and original
shape flatness; the DWI-based model selected two features,
including wavelet LLH first-order kurtosis and original
shape flatness; and the FS-T2WI-based model selected three
features, including wavelet LLH glcm idn, original glcm mcc,
and original glszm small area low grey level emphasis (Table
S5). Although some features had low discrimination power
in distinguishing between recurrence and nonrecurrence
cases (e.g., original glcm mcc and original glszm small area
low grey level emphasis based on FS-T2WI), these features
may provide supplementary information when mixed with
other features.

Based on the above features, radiomics models of single
sequence and multisequence combinations were established.
Table 2 lists the AUC values, accuracies, and corresponding
95% CIs of different models. In the training cohort, the AUC

for the model using DWI, T1WI+C, FS-T2WI, and a fusion
of three sequence features was 0.76 (0.68, 0.83), 0.73 (0.64,
0.80), 0.72 (0.64, 0.80), and 0.78 (0.71, 0.86), respectively.
By incorporating both radiomics and clinical features in
the combined model, its AUC improved to 0.83 (95% CI,
0.77, 0.90). Figure S3 shows the ROC, calibration curves
and DCA curves of the different models in the validation
cohort.

3.3. Analysis of Recurrence-Free Survival. The results of
Kaplan–Meier survival analysis are summarized in Table
S6 and Figure 3. There was a significant difference in DFS
rates between the two groups with a low or high risk of
HGSOC recurrence.

Then, Cox regression analysis showed that residual
tumour status and multi-Radscore were independent risk
factors for recurrence of HGSOC. The results of the specific
stratification factors are shown in Table 3.

4. Discussion

HGSOC has obvious histological heterogeneity, exhibiting a
variety of growth patterns, including papillary, solid, and
glandular, and it often contains regions of cysts, necrosis,
and hemorrhage [22]. Despite very high initial chemosensi-
tivity and a complete clinical response, the majority of
patients relapse within the first 5 years and progressively
develop resistance to various chemotherapeutic treatments
[4]. Recent studies have shown that postoperative residual
tumour status plays an important role in tumour recurrence
[5, 23, 24]. However, the residual tumour status can only be
obtained postoperatively.

As a routine preoperative imaging examination of OC,
FS-T2WI, T1WI+C, and DWI sequences of MRI can pro-
vide information about the morphology, microvascular per-
meability, and cellular structure of tumours. Radiomics
analysis, the process of converting digital medical images
into mineable high-dimensional data, is motivated by the
concept that biomedical images contain information that
reflects the underlying pathophysiology and that these rela-
tionships can be revealed via quantitative image analyses
[25]. Therefore, a combination of clinical and radiomics fea-
tures may reveal prognostic information for HGSOC.

To the best of our knowledge, there are only limited
studies on MRI-based radiomics markers in ovarian cancer.
Therefore, the initial objective of this study was to develop
and validate a fusion model (Nomogram) based on MRI
multisequence signatures and clinical factors to predict the
recurrence risk in patients with HGSOC.

In this study, high levels of CA125 and HE4, lower ADC
values, tumour residual state (R1), advanced FIGO stage
(III-IV), different tumour compositions, PM state, and pri-
mary treatment (more with NACT and IDS) were associated
with shorter DFS. The level of CA125 is widely used in
screening, diagnosis, monitoring of efficacy during chemo-
therapy, and follow-up management of OC [26, 27]. A pre-
vious study found that glycogen CA125 of tumour cells
binds to natural killer (NK) cells and is conducive to
immune evasion [26], which can explain why higher
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CA125 levels are associated with shorter DFS. However, the
high false-positive rate of CA125 may place an unnecessary
psychological and therapeutic burden on women without
OC. Another important monitoring indicator is serum
HE4. HE4 has received authorization from the FDA to mon-
itor disease progression or recurrence of OC [28, 29]. The

combination of CA125 and HE4 can maintain high specific-
ity and improve the sensitivity of diagnosis [30]; therefore,
the FDA recently approved the use of HE4 in conjunction
with CA125 for OC follow-up [31]. To predict DFS of
HGSOC, serological indicators are not enough, and other
clinical factors should be considered.

Table 1: Clinical and pathological characteristics of patients.

Overall (n = 141)
Nonrecurrence (n = 76) Recurrence (n = 65) P value

Age (y), M (IQR) 53.0 (48.3, 60.8) 55.0 (49.0, 62.5) 0.290

CA125, M (IQR) 480.1 (220.4, 1062.3) 917.7 (564.5, 2309.0) 0.001

HE4, M (IQR) 293.5 (175.4, 589.5) 499.1 (271.2, 1059.5) 0.001

ADC value, M (IQR) 0.90 (0.77. 0.99) 0.83 (0.73, 0.92) 0.011

Fibrinogen, M (IQR) 4.17 (3.54, 4.90) 4.17 (3.22, 4.71) 0.565

NLR, M (IQR) 2.98 (2.04, 3.82) 3.05 (1.91, 4.48) 0.434

Residual tumour status, n (%) <0.001
R0 51 (39.9) 23 (34.1)

R1 25 (36.1) 42 (30.9)

Tumour location, n (%) 0.211

Unilateral 36 (32.3) 24 (27.7)

Bilateral 40 (43.7) 41 (37.3)

FIGO, n (%) 0.004

I-II 16 [4] 3 (8.8)

III-IV 60 (65.8) 62 (56.2)

Tumour composition, n (%) 0.042

Cystic 17 (16.2) 13 (13.8)

Solid 46 (40.4) 29 (34.6)

Solid-cystic 13 (19.4) 23 (16.6)

Hemorrhage, n (%) 0.880

+ 10 (9.7) 8 (8.3)

- 66 (66.3) 57 (56.7)

ER, n (%) 0.656

+ 65 (63.6) 53 (54.4)

- 4 (5.4) 6 (4.6)

+/- 7 (7.0) 6 (6.0)

PR, n (%) 0.649

+ 43 (44.2) 39 (37.8)

- 26 (23.7) 18 (20.3)

+/- 7 (8.1) 8 (6.9)

PM, n (%) 0.006

+ 55 (61.4) 59 (52.6)

- 21 (14.6) 6 (12.4)

Primary treatment, n (%) 0.023

NACT+IDS 21 (27.5) 30 (23.5)

PDS+chemotherapy 55 (48.5) 35 (41.5)

Ki-67 PI, n (%) 0.629

High 61 (59.8) 50 (51.2)

Low 15 (16.2) 15 (13.8)

M: median; IQR: interquartile spacing; CA125: carbohydrate antigen 125; HE4: human epididymis protein 4; ADC: apparent diffusion coefficient; NLR:
neutrophil-to-lymphocyte ratio; FIGO: International Federation of Gynecology and Obstetrics; ER: estrogen receptor; PR: progesterone receptor; PM:
peritoneal metastasis; NACT: new adjuvant chemotherapy treatment; IDS: interval debulking surgery; PDS: primary debulking surgery; PI: proliferation index.
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The ADC is a quantitative measurement based on DWI,
used to evaluate water molecule diffusion within a given tis-
sue [18]. It is influenced mainly by tissue cellularity and the
integrity of the cell membranes. Lower ADC values repre-
sent a denser cellular structure and are widely and consis-
tently used for differentiating benign and malignant
diseases and in disease risk stratification. In this study, the
ADC value of the recurrence group was lower than that of
the nonrecurrence group, further verifying the role of ADC
in clinical practice.

Similar to previous studies [1, 5, 32, 33], our study found
that patients with advanced HGSOC were overwhelmingly
associated with peritoneal metastases (PM) and thus were
more likely to have tumour residue after PDS; all factors
were associated with a shorter DFS. The presence of residual
tumour is an independent risk factor for recurrence. To date,
few researchers have considered the effect of tumour compo-
sition on prognosis. Tumours can be classified as having cys-
tic, solid, and cystic-solid components. In this study,
different tumour components were also found to have an
effect on tumour recurrence, although they were not inde-
pendent predictors in multivariate analysis. By observing
the tumour images of the recurrence group and the nonre-
currence group, we found that solid tumours accounted for
the majority of the two groups, while cystic tumours
accounted for the lowest proportion in the recurrence group.
It was speculated that tumours with more solid components
were more aggressive and more likely to lead to disease
recurrence.

In addition, the initial treatment strategy also strongly
affects disease recurrence. According to the guidelines, the
standard treatment for HGSOC is PDS and postoperative
adjuvant chemotherapy. However, due to the late discovery
of ovarian cancer and its extensive metastasis at the time
of diagnosis, the surgical scope is wide, and the trauma is
large. The need for the combined efforts of multidisciplinary
experts to completely remove the tumour often leads to poor
postoperative recovery and even accelerates the occurrence
of death of patients due to the significant trauma. Therefore,
NACT followed by IDS has been proposed for the manage-
ment of advanced HGSOC to increase the rate of complete
cytoreductive surgery and to reduce the postoperative com-
plication rate and mortality [4, 34]. Previous studies have
confirmed that PFS and OS improved significantly with
NACT and IDS in patients diagnosed with FIGO IV disease,

while PFS with PDS was superior in patients with FIGO III
with small extrapelvic metastases [35]. Therefore, when
selecting treatment strategies, we must consider not only
the risk of perioperative morbidity and the possibility of
metastasis from a residual-free tumour but also FIGO stag-
ing and the extent of metastatic disease. Neither of the two
investigated procedures has proven to be superior in terms
of OS and PFS for the treatment of advanced HGSOC. The
results of our study are consistent with most studies showing
that the most important prognostic factor is the absence of
residual disease [36].

Two other clinical factors have to be mentioned, the
neutrophil-to-lymphocyte ratio (NLR) and plasma fibrino-
gen. The NLR, a representative indicator of inflammatory
status, has been reported as a prognostic marker for many
solid malignancies, including OC [37]. Plasma fibrinogen is
a liver-produced protein converted from fibrin by activated
thrombin and is increased in the presence of malignant
tumours or systemic inflammation [38]. Inflammation is
known to play an important role in the development and
progression of cancer. So, the F-NLR, a combination of
NLR and fibrinogen, has been proposed as a prognostic
marker in several tumours. However, in this study, no statis-
tical differences in NLR and fibrinogen were found between
the recurrence group and the nonrecurrence group, which
was different from the results of Yang et al. Yang et al. [38]
showed that F-NLR was an independent prognostic factor
for EOC survival. The later the clinical stage of FIGO, the
higher the lymph node metastasis and CA-125 level, the
higher the F-NLR score, and the shorter the DFS and OS.
Marchetti et al. [39] also confirmed that the F-NLR could
predict tumour burden, platinum resistance, and negative
prognostic impact on PFS. Neutrophil and lymphocyte
counts are nonspecific parameters based on inflammation
and are strongly influenced by infection, inflammation,
and drugs [39], which may account for the different findings.

By using the least absolute shrinkage and selection oper-
ator (LASSO) by unsupervised analysis, seven radiomics fea-
tures were extracted. They are DWI-based wavelet-LLH-first
order-kurtosis and original-shape-flatness; T1WI+C-based
wavelet-LHL-glcm-correlation and original-shape-flatness;
and FS-T2WI-based wavelet-LLH-glcm-idn, original-glcm-
MCC, and original-glszm-small area low grey level empha-
sis. They represent the kurtosis, shape, correlation, and tex-
ture of the tumour and are not visible to the naked eye of

Table 2: Performance of the clinical model, radiomics model, and clinical-radiomics model in the training cohort and test cohort.

Training cohort Validation cohort
AUC ACC SEN SPE PPV NPV AUC ACC SEN SPE PPV NPV

Clinical model 0.76 (0.68, 0.84) 0.74 0.59 0.89 0.84 0.68 0.67 (0.53, 0.81) 0.59 0.48 0.70 0.61 0.57

DWI radiomics 0.76 (0.68, 0.83) 0.69 0.60 0.77 0.73 0.66 0.74 (0.61, 0.85) 0.65 0.44 0.87 0.77 0.61

T1WI+C radiomics 0.73 (0.64, 0.80) 0.67 0.66 0.68 0.67 0.67 0.72 (0.58, 0.83) 0.70 0.52 0.87 0.80 0.65

FS-T2WI radiomics 0.72 (0.64, 0.80) 0.69 0.83 0.55 0.65 0.76 0.70 (0.56, 0.82) 0.63 0.65 0.61 0.63 0.64

Multiradiomics 0.78 (0.71, 0.86) 0.75 0.64 0.85 0.81 0.70 0.74 (0.61, 0.86) 0.67 0.52 0.83 0.75 0.63

Nomogram 0.83 (0.77, 0.90) 0.78 0.73 0.81 0.77 0.78 0.78 (0.65, 0.90) 0.77 0.80 0.74 0.73 0.81

AUC: area under the curve; ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; DWI: diffusion-
weighted imaging; T1WI + C: contrast-enhanced T1-weighted imaging; FS-T2WI: fat-suppressed T2-wighted imaging.

8 Journal of Oncology



0.0 10.0 20.0 30.0
Months

40.0 50.0 60.0

1.0

0.8

0.6

0.4

0.2

0.0

D
FS

FIGO stage

III–IV
Censored
Censored

I–II

(a)

0.0 10.0 20.0 30.0
Months

40.0 50.0 60.0

1.0

0.8

0.6

0.4

0.2

0.0

D
FS

Residual tumor status

R1
Censored
Censored

R0

(b)

0.0 10.0 20.0 30.0
Months

40.0 50.0 60.0

1.0

0.8

0.6

0.4

0.2

0.0

D
FS

PM

Present
Censored
Censored

Absent

(c)

0.0 10.0 20.0 30.0
Months

40.0 50.0 60.0

1.0

0.8

0.6

0.4

0.2

0.0

D
FS

ADC value

≥0.855
Censored
Censored

<0.855

(d)

0.0 10.0 20.0 30.0
Months

40.0 50.0 60.0

1.0

0.8

0.6

0.4

0.2

0.0

D
FS

Multi-Radscore

≥–0.286
Censored
Censored

<–0.286

(e)

0.0 10.0 20.0 30.0
Months

40.0 50.0 60.0

1.0

0.8

0.6

0.4

0.2

0.0

D
FS

Pretreatment HE4 level

≥470.7
Censored
Censored

<470.7

(f)

Figure 3: Continued.
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radiologists. The AUC of the clinical model was lower than
that of the multi-Radscore model, and the AUC of the com-
bined model was higher than that of either the clinical model
or multi-Radscore model (P = 0:044 and 0.011, DeLong
test). These results indicated that the combined model could
be used to assess the added value of radiomics features over
clinical risk factors in HGSOC patients; that is, radiomics
features could be used to improve the diagnostic value of
predicting relapse of HGSOC patients.

Wei et al. [6] and Chen et al. [40] utilized a radiomics
approach to predict recurrence in patients with HGSOC
based on preoperative CT and proved that the combined
model has higher predictive efficiency, which is consistent
with the present study. The difference is that our study used
an mMRI-based radiomics approach, obtained more suffi-
cient tumour information, and confirmed that the diagnostic

efficacy of the multisequence radiomics model was better
than that of a single sequence model. Although residual
tumour status was the only independent risk factor con-
firmed in this study, the other factors were included in the
nomograms considering the important significance of sero-
logical indicators, FIGO stage, and other clinical factors.
Nomograms show the weights of these factors, and their
combined total risk is the probability of relapse of HGSOC
patients. Considering the role of clinical and radiomics sig-
natures, it can help gynecologists change treatment strategies
early and improve patient management.

ROC curves were drawn for clinical risk factors and the
Radscore in the combined model to determine the optimal
cut-off value, and patients were divided into a high-risk
group and a low-risk group. Kaplan–Meier curves can be
used to significantly differentiate DFS between high-risk
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Figure 3: DFS curves of patients with HGSOC in the overall cohort. (a) FIGO stage I-II vs. III-IV, P = 0:004. (b) Residual tumour status R0
vs. R1, P < 0:001. (c) PM absent vs. present, P = 0:003. (d) ADC ≤ 0:855 vs. >0.855, P = 0:005: (e) Multi-Radscore < −0:286 vs. ≥-0.286, P
< 0:001. (f) Pretreatment HE4 < 470:7 vs. ≥470.7, P = 0:005. (g) Primary treatment PDS+chemotherapy vs. NACT+IDS, P = 0:013. (h)
Pretreatment CA125 < 385:0 vs. ≥385.0, P = 0:001. (i) Tumour composition cystic vs. solid vs. solid-cystic, P = 0:103.
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and low-risk relapse groups based on the combined model.
DFS decreased over time in both the high-risk and low-
risk groups, while DFS decreased more rapidly in the high-
risk groups. Therefore, for high-risk individuals, the
follow-up interval should be shortened, and education about
the signs and symptoms of recurrence (such as pelvic pain,
abdominal bloating, early satiety, obstruction, weight loss,
and fatigue) should be provided. At the same time, physical
examination and identification of CA125 levels or corre-
sponding tumour markers are recommended at each
follow-up. In addition, according to the NCCN guidelines
[41], molecular tumour testing is recommended before start-
ing treatment for persistent/recurrent disease so that clini-
cians can tailor drug treatment plans for individual
patients, and patients are encouraged to participate in clini-
cal trials as early as possible. Thus, the combinatorial model
confirms the value of radiomics approaches in better under-
standing HGSOC recurrence.

Kaplan–Meier survival analysis showed that higher
FIGO stage, postoperative residual tumour status, peritoneal
metastases, NACT+IDS treatment strategy, higher CA125
and HE4 levels, and lower ADC and Radscore values pre-
dicted shorter DFS, with statistically significant differences.
There was no statistically significant difference between dif-
ferent tumour components in predicting DFS. Further Cox
survival analysis confirmed that postoperative residual
tumour status and higher multi-Radscore were more likely
to lead to early postoperative recurrence and a shorter DFS.

In this study, BRCA mutations were not studied in depth
due to the lack of relevant data. Genetic counselling and test-
ing rates for OC are less than 7% [42]. Alsop et al. [42] have
shown that BRCA mutations are associated with longer sur-
vival after the diagnosis of OC and an overall favourable
response to platinum-based therapy. BRCA mutation status
was an independent predictor of OS and PFS improvement
in multivariate analysis. However, Marchetti et al. [37]
found evidence that BRCA mutation of OC is not “a disease”
with unique and favourable survival outcomes. Even in the
presence of BRCA mutations, the prognosis can be deter-
mined by other factors, such as the NLR. In addition, the ref-
erence value of NLR, as well as the correlation between
BRCA and F-NLR, has not yet been uniformly defined and
requires further study.

There are still many limitations in this research. First,
our study only considered HGSOC and did not discuss other
subtypes of ovarian cancer. In addition, in this retrospective
study, the stage of the patients was relatively high, and the
sample size was limited, which would introduce a certain
bias into the results. Second, we did not carry out external
validation, which is one of the key factors to be considered
in future research. Finally, as with any radiomics study,
manual profiling errors are unavoidable.

In conclusion, our study analysed in detail the influence
of preoperative, postoperative, and clinical factors along
with imaging features on the early recurrence of HGSOC
patients and constructed a nomogram combining clinical
factors and radiomics models for predicting the early recur-
rence of HGSOC patients. Our results indicate that the pro-
posed radiomics nomogram can be used to improve the
accuracy of preoperatively identifying patients with HGSOC
who have a high risk of recurrence. Our study provides a
new tool for the early prognostic assessment of patients
and the development of personalized treatment.
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Table 3: The result of Cox regression survival analysis.

Factors HR 95% CI P value

FIGO stage (I-II vs. III-IV) 1.209 0.395-3.704 0.740

Residual tumour status (R0 vs. R1) 2.711 1.283-5.728 0.009

PM (absent vs. present) 1.211 0.446-3.288 0.707

Primary treatment (PDS+chemotherapy vs. NACT+IDS) 0.694 0.337-1.427 0.321

Primary treatment CA125 level (<385.0 vs. ≥385.0) 1.581 0.786-3.181 0.199

Primary treatment HE4 level (<470.7 vs. ≥470.7) 1.175 0.681-2.026 0.563

ADC value (<0.855 vs. ≥0.855) 0.802 0.485-1.328 0.392

Tumour composition (cystic, solid, and solid-cystic) 0.808 0.555-1.176 0.265

Multi-Radscore (<-0.286 vs. ≥-0.286) 2.302 1.177-4.503 0.015

FIGO: International Federation of Gynecology and Obstetrics; PM: peritoneal metastasis; PDS: primary debulking surgery; NACT: new adjuvant
chemotherapy treatment; IDS: interval debulking surgery; ADC: apparent diffusion coefficient; HR: hazard ratio; CI: confidence interval.
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