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Abstract: Parkinson’s Disease (PD) is a progressive central nervous system disorder that is caused
due to the neural degeneration mainly in the substantia nigra in the brain. It is responsible for the
decline of various motor functions due to the loss of dopamine-producing neurons. Tremors in
hands is usually the initial symptom, followed by rigidity, bradykinesia, postural instability, and
impaired balance. Proper diagnosis and preventive treatment can help patients improve their quality
of life. We have proposed an ensemble of Deep Learning (DL) models to predict Parkinson’s using
DaTscan images. Initially, we have used four DL models, namely, VGG16, ResNet50, Inception-V3,
and Xception, to classify Parkinson’s disease. In the next stage, we have applied a Fuzzy Fusion
logic-based ensemble approach to enhance the overall result of the classification model. The proposed
model is assessed on a publicly available database provided by the Parkinson’s Progression Markers
Initiative (PPMI). The achieved recognition accuracy, Precision, Sensitivity, Specificity, F1-score from
the proposed model are 98.45%, 98.84%, 98.84%, 97.67%, and 98.84%, respectively which are higher
than the individual model. We have also developed a Graphical User Interface (GUI)-based software
tool for public use that instantly detects all classes using Magnetic Resonance Imaging (MRI) with
reasonable accuracy. The proposed method offers better performance compared to other state-of-the-
art methods in detecting PD. The developed GUI-based software tool can play a significant role in
detecting the disease in real-time.

Keywords: Parkinson’s disease; CNN Model; ensemble method; DaTscan images

1. Introduction

Parkinson’s disease (PD) has a prevalence rate of 1% in the over-60 age group, and
affects about 0–2 per 1000 people. It is the second most common brain disease after
Alzheimer’s disease [1]. A central nervous system disorder, especially those affecting
the brain, causes the neurons to degenerate. A person suffering from this disease will
experience tremors at rest, bradykinesia (slow movement), rigidity, sleep disturbances,
asymmetry in posture, depression, and other such symptoms. In the advanced stages of the
disease, PD dementia becomes coarse and patients have difficulty sleeping or concentrating.
People with PD lose the nerve endings that produce dopamine, the prime chemical which
controls most of the involuntary functions of the body. This might help explain some of
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the involuntary symptoms of PD, like tiredness, non-uniform blood pressure, reduced
peristalsis, and a sudden drop in blood pressure.

PD appears hereditary in some cases, and certain mutations can be traced to it, but
most of the time this disease is random. There is a growing consensus that it is caused by a
combination of genetics and environmental factors, such as exposure to toxins. A loss of
dopaminergic neurons in the substantia nigra region of the brain is one of the leading causes
of Parkinson’s disease [2]. Currently, there is no particular test for its diagnosis [3]. The
diagnosis till date is primarily based on the symptoms mentioned above and their response
to PD medications. However, non-invasive imaging like Positron Emission Tomography
(PET) scans can help with the diagnosis. Since these are not purely scientific, the need for
Artificial Intelligence (AI) based techniques for diagnosis become important. Researchers
have been addressing the need for AI-based systems because many of them have been so
far adopted successfully in different medical imaging applications [4–6].

The aim of this paper is to present an ensemble approach for the detection of PD
that integrates decision scores obtained from four different DL models. In addition to
assisting practitioners in performing disease diagnosis, the outcomes of this model will
enable physicians to take action before patients’ disorders become more serious. The
present study has been conducted using a publicly available database of DaTscan Single
Photon Emission Computerized Tomography (SPECT) images accessed from the PPMI
data [7]. The proposed model provides a higher recognition score than many of the existing
methodologies in the literature.

The organization of the paper is as follows: some co-related works for the classification
of PD have been mentioned in Section 2. Section 3 describes the motivation and overview of
the proposed work. The details regarding the dataset used, along with the pre-processing
steps applied to the dataset have been mentioned in Section 4. In Section 5, we have
explained the methodology used in the present experiment including the details of the base
models and the applied ensemble approach. Section 6 describes the results obtained by the
proposed model and also compares its performance with other state-of-the-art techniques
found in the literature. Section 7 describes the application that is developed by using the
proposed methodology. Finally, Sections 8 and 9 discuss and conclude the overall work.

2. Related Work

Till date, researchers across the world have been trying to observe the outcomes of
various Machine Learning (ML) and DL-based methods for prediction of PD. Though
several of these techniques have provided satisfactory results, it has also been noticed that
different models yield different outcomes.

This section briefly highlights a few of the approaches available in the literature.
Abos et al. [8] extracted features from Resting-State Functional MRI (rsfMRI) and used
Support Vector Machine (SVM) for the detection of PD. They achieved an 86.96% accuracy,
78.95% sensitivity, and a specificity of 92.59%. Amoroso et al. [9] used network and clinical
features to classify PD patients using an SVM. They experimented on the PPMI dataset and
got a 93% recognition accuracy and sensitivity, and 92% of specificity. A Sparse feature
selection model was proposed by Lei et al. [10], reporting an accuracy of around 80%.
Salvatore et al. [11] considered healthy, PD, and supranuclear palsy MRI images to extract
features. Next, they have used Principal Components Analysis (PCA) to find the relevant
features and fed them to an SVM classifier for classification purposes, having obtained
above 90% accuracy for the case of PD patients vs. controls. Prashant et al. [12] used SVM
with striatal binding ratio to classify PD patients and they got an accuracy of 96.14%, a
sensitivity score of 95.74%, and 77.35% specificity.

Brahim et al. [13] performed their experiments for classifying PD using shape and
surface-fitting-based features and an SVM classifier. They achieved a 92.6% accuracy, a
91.2% sensitivity, and a specificity of 93.1%. An Artificial Neural Network (ANN) archi-
tecture for PD classification was proposed by Rumman et al. [14] and they obtained an
accuracy of 94%, sensitivity of 100%, and specificity of 88%.
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Sivaranjani et al. [15] proposed a Convolutional Neural Network (CNN) trained on
the PPMI dataset and achieved an accuracy of 88.9%. Another DL-based framework was
proposed by Esmaeilzadeh et al. [16] for classification and regression of PD on PPMI images.
Shah et al. [17] have shown the effectiveness of their proposed CNN-based model used
for the categorization of PD on the PPMI MRI dataset with good results. Another work to
detect PD from Neuromelanin sensitive MRI using a CNN has been shown in [18] that has
achieved an 85% accuracy. Magesh et al. [19] trained the VGG16 model on the PPMI dataset
and obtained a 95.2% accuracy, and a specificity of 90.9%. Quan et al. [20] considered the
transfer learning concept and used the InceptionV3 model in their experiment of predicting
PD. They obtained a 98.4% accuracy, a sensitivity score of 98.8%, and a specificity score
of 97.6%. Whereas, Ortiz et al. [21] trained two DL models—AlexNet and LeNet for the
classification of PD and Health Control. They achieved a better accuracy of 95 ± 0.3% when
using AlexNet.

After analyzing the methods reported in [18–21], we have observed that most of the
models have some limitations. For example, a few models [17,19] have shown higher false
positive rate, whereas some others [18,21] have shown higher false negative rate. The
probable reason for that may be the weakness of the models to deal with the nature of data.
According to the authors in [19], this may happen due to abnormal increase in dopamine
activity in the Region of Interest (ROI) of the scans.

On the other hand, the literature reveals that the fusion techniques have already been
applied successfully in distinct domains to produce a better result than any individual
learning model [22–24]. An ensemble is a model which is used to combine the predictions
made by different learning models. The predictions made by the members of an ensemble
model may be combined using statistics (like mode or mean) or they can be combined
using more sophisticated strategies. Generally, an ensemble model tries to learn how much
to rely on each member and under what conditions. Though ensemble methods come with
additional computational cost and complexity, there are reasons to use an ensemble model.
Usually, an ensemble model makes better predictions and shows superior performance over
a single learning model. Also, such a model reduces the dispersion of the predictions of
the different base models. From the literature it can be observed that ensemble techniques
have shown competent results in varied domains like predicting COVID-19 using CT
scans [25], human activity recognition using sensor data [26], breast cancer detection using
histopathology images [27], plant identification using leaf images [28], cervical cancer
detection [29], handwritten music symbol recognition [30].

However, a limited number of research works are there which try to improve the
overall classification accuracy of PD by introducing ensemble-based techniques applied to
ML approaches. The author in [31] has shown the usefulness of the K-Nearest Neighbours
(KNN) ensemble technique for the detection of PD. Authors in [32] combined SVM with
linear kernel classifiers for different tests considering RNA, Cerebrospinal Fluid, Serum
tests, and pre-processed neuro-images features from PPMI database subjects. Table 1
highlights a few past methods proposed so far in this domain.

Table 1. A comparative study of some past methods related to the proposed work.

Work Ref. Dataset Method/Classifier Accuracy Sensitivity Specificity

[8] Custom SVM on rsfMRI 86.96% 78.95% 92.59%

[9] PPMI SVM 93% 93% 92%

[10] PPMI Sparse feature selection model 80% 84.70 ± 19.29% -

[11] PPMI PCA followed by SVM >90% >90% >90%

[12] PPMI SVM with striatal binding ratio 96.14% 95.74% 77.35%

[13] PPMI SVM 92.6% 91.2% 93.1%
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Table 1. Cont.

Work Ref. Dataset Method/Classifier Accuracy Sensitivity Specificity

[14] PPMI ANN 94% 100% 88%

[15] PPMI AlexNet 88.9% - -

[18] Custom CNN 85% - -

[19] PPMI VGG-16 95.2% - 90.9%

[20] PPMI InceptionV3 98.4% 98.8% 97.6%

[21] PPMI AlexNet and LeNet 95±0.3% - -

[31] PD dataset KNN 98.46% - -

[32] PPMI SVM with linear kernel classifiers 96% - -

[33] Custom Modified Grey Wolf Optimization 94.83% - -

[34] Custom Optimized cuttlefish algorithm 94% - -

[35] PPMI PCA and ANN 97% - -

[36] Custom ROI based diagnosis 86.67% - -

3. Motivation and Overview

As in most cases, it has been observed that DL models perform better as compared to
ML models due to their ability to extract powerful features automatically from inputs using
convolution and pooling operations. Hence, in this work, we have considered DL models
as the base learners. It is to be noted that DL based neural networks are actually nonlinear
networks which come with better flexibility and also scale in proportion to the training data
available. However, a flip side of this flexibility is that these models generally learn through
a stochastic training method, and due to this they become very sensitive to the training
data. Also, they may find a varied set of weights every time the models are trained, and
hence they generate varied predictions about the input samples. A competent alternative
to minimize the variance of neural network models can be to use different models instead
of a single model, and to unite the prediction scores obtained from these models.

Keeping this fact in mind, we have used an ensemble learning approach where dif-
ferent standard CNN models are used to generate the initial predictions from the input
DaTscan images related to PD, which are then combined using a Fuzzy-ranked based fusion
approach. Although literature of PD detection divulges that a few number of researchers
have made an attempt to apply ensemble approaches which are very naive, and hence may
fail to capture information yielded by different learning models intelligently.

4. Dataset

The present experiments were conducted using a dataset containing 645 DaTscan
SPECT images extracted from the Parkinson’s Progression Markers Initiative (PPMI) [7]
DaTscan images were widely used in the automatic diagnosis of Parkinson’s Disease after
being preprocessed and reorganized from PPMI SPECT images. Each PPMI SPECT image,
then, is built into a volume of 91 × 109 × 91 [37,38].

4.1. Dataset Preparation

All the DaTscan images were in DICOM format, and each consisted of 91 slides of
shape 109 × 91. To make them fit for the current study, we extracted the 41’st slide from
every DaTscan image and converted it into png format. Due to the difference in the size
of the brain of males and females, we cropped the extra unnecessary black portion. This
resulted in the irregularity of the dimensions of the extracted images. To fit the extracted
images into our DL models, we resized them to 224 × 224 resolution and were scaled
between [0, 1], keeping the brightness range between [0.1, 1.5]. Figure 1 shows some of the
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sample images from the PPMI dataset for a person having PD and Figure 2 shows samples
from PPMI dataset for a person without PD.

Figure 1. Sample images (a–f) from PPMI dataset for a person suffering from PD.

Figure 2. Sample images (a–f) from PPMI dataset for a person not suffering from PD.

4.2. Dataset Splitting

The dataset, consisting of a total of 645 images (432 PD and 213 non-PD), is randomly
divided into an 80:20 ratio for train-test splitting. The details of the images (PD and non-PD)
present in the train and test sets have been mentioned in Table 2.

Table 2. Dataset details.

Category PD Non-PD Total

Train 346 170 516

Test 86 43 129

5. Proposed Methodology

In the current work, initially we have trained four popularly used DL models namely
VGG16 [39], Xception [40], ResNet50 [41], and Inception-V3 [42] on the training set of PPMI
dataset. The trained models have been used for the evaluation of the test set. The obtained
outcomes from these four models are then ensembled using the Fuzzy Rank Level Fusion
(FRLF) based approach to elevate the overall performance of the model. Figure 3 shows the
basic workflow of the proposed work.
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Figure 3. Workflow of the proposed work.

5.1. DL Models

In the current work, we have used VGG16, ResNet50, Inception-V3, and Xception
models to train the training dataset. A brief description of the four DL models is mentioned
in the following subsections.

5.1.1. VGG16

VGG16 was one of the best performing architectures in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2014 [39]. The model achieved a 92.7% test accuracy
on the ImageNet dataset. The model contains a total of 16 layers - 13 Convolutional layers,
3 Fully Connected layers, 5 Max Pooling layers, and a Softmax layer.

All the hidden layers in this model use Rectified Linear Unit (ReLU) as its activation
function. ReLU results in faster learning and also decreases the likelihood of vanishing
gradient. To solve the current binary classification problem, we have added a final layer of
Softmax activation. Figure 4 depicts the VGG16 architecture.

Figure 4. Architecture of VGG16 model.

5.1.2. ResNet50

ResNet50 [41] introduces a 50-layer deep residual learning framework having shortcut
connections that simply perform identity mappings. We have added a final layer of Softmax
activation for the binary classification problem under consideration. Figure 5 depicts the
architecture of the ResNet50 model.
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Figure 5. Architecture of ResNet50 model.

5.1.3. Inception-V3

Inception-V3 [42] is a frequently used model for the image classification tasks. This
model is composed of symmetric and asymmetric constituents including layers like con-
volution, average and max pooling, and fully connected layers. Despite having a 42-layer
architecture and approximately 12 million parameters, the cost of computation is remark-
ably less and it is very much efficient than VGGNet [39]. Figure 6 depicts the architecture
of the Inception-V3 model.

Figure 6. Architecture of Inception-V3 model.

5.1.4. Xception

Xception stands for “extreme inception”. It re-frames the way we look at neural nets —
Convolution Nets in particular. As the name suggests, it takes the principle of Inception to
an extreme. In Xception there is no intermediate activation function for non-linearity [40].

We have added a final layer of Softmax activation for the current binary classification
problem. The architecture is shown in Figure 7.

In this work, we have trained VGG16, ResNet50, Inception-V3, and Xception models
over a total of 500 epochs with batch size and step size of 16 and 32, respectively for each of
the epochs. The learning rate of all the models was set to 0.001, and Adam optimizer has
been used to handle sparse gradients on noisy images [43]. Confidence scores of these base
models are then ensembled to improve the overall performance. The ensembled method
used here is detailed in the next subsection.
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Figure 7. Architecture of the Xception model.

5.2. Ensemble Method

Essentially, classifier combinations are developed from the idea that each classifier
operates in a unique way so that different outcomes can be observed depending on the
classifier. So, choosing only one classifier might not be the best idea since the used classifier
might not be able to extract potential useful information. In order to avoid this problem,
ensemble methods can be used that take into account the outcomes of the various classifiers
and make the final choice so that overall accuracy is enhanced. The FRLF [44] algorithm
here generates fuzzy ranks by using the confidence scores of a classifier on a Gaussian
function. It compares the proximity of classifier outputs as opposed to conventional ranking
methods. When a return is ideal, the fuzzy rank is 0, which corresponds to the highest
rank (rank 1) in conventional ranking; when the outcome is far away from the ideal, the
fuzzy rank gradually approaches unity. This ensemble approach aims to generate a ranking
system based on the confidence scores of the base learners, which will become apparent
later in this section.

The FRLF method can be expressed mathematically as follows. Let there be N different
models (M1, M2, . . . , MN) for a particular input. In our case, the value of N is 4, as
mentioned above.

In the first step, our proposed system chooses a model (say M1) and generates confi-
dence scores for all the corresponding classes. Let the confidence scores be (CSM1

1 , CSM1
2 , . . . ,

CSM1
C ). The confidence scores are then used to calculate fuzzy ranks. The Gaussian density

function is used to assign lesser rank to scores with higher confidence. Let the fuzzy ranks
be (RM1

1 , RM1
2 , . . . , RM1

C ) where C represents the sum of the number of distinct classes in
consideration. In specific, The CSM1

i and RM1
i represent the confidence score and fuzzy

rank of the ith class while classifying through the model M1. Correspondingly, we have
(CSM2

1 , CSM2
2 , . . . , CSM2

C ) and (RM2
1 , RM2

2 , . . . , RM2
C ) and so on for the models used in the

experiments.
In order to fulfill the following condition, the confidence scores have to be normalized:

C

∑
c=1

CSMi
c = 1; i = 1, 2, ..N (1)

The fuzzy rank for a class c using Mi model is generated by taking the complement of
the Gaussian density Function, as shown below:

RLi
c = (1− exp−

(CS
Mi
c −1.0)2
2×1.0 ), i = 1, 2, ..., N; C = 1, 2, .., C (2)

As a result, it should be noted that RMi
c lies between [0, 1] and lowest value is said to

be the winner which is analogous to top ranked in conventional ranking.
Let, KMi represents the set of top K fuzzy ranked classes generated by the model Mi. It

is to be noted that KMi and KMj (i 6= j) might differ as they belong to two different classifier
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models. The complement of confidence score sum CSSc and the rank sum RSc relative to a
class c is determined as follows:

CSSc = 1− 1
N

N

∑
i=1

{
CSMi

c = CSMi
c , i f RMi

c εKMi

CSMi
c = PCS

c , Otherwise
(3)

RSc =
N

∑
i=1

{
RMi

c = RMi
c , i f RMi

c εKMi

RMi
c = PR

c , Otherwise
(4)

where PR
c and PCS

c are the penalties, which are assigned to a class c if it does not belong to the
set of top K ranks (1 in our case). PR

c and PCS
c are the hyper-parameters and for our case PR

c
and PCF

c have values of 0.33 and 0.05 respectively which is obtained experimentally. These
particular set of values have yielded the maximum accuracy score for our dataset. Both
these penalties revoke the possibility of class c to likely become a winner. The combination
of CSSc and RSc are multiplied to obtain the final score used for the final ranking, which is
defined as follows:

FSc = RSc × CFSc (5)

Finally, a class with the smallest (minimum) final score is selected as the predicted
class of the input sample as shown in the equation below:

class(X) = argmin(FSc); c = 1, 2, .., C (6)

6. Results

In this section, we have provided a discussion about the results obtained from the
four base learners, i.e., VGG16, ResNet50, Inception-V3, and Xception. The later part of
this section also reports the explainability of the base learners using Grad-Cam and the
outcomes observed after applying the proposed FRLF method.

To analyze the obtained outcomes, the metrics and the equations used to compute the
values of the metrics have been shown through Equations (7)–(11)

Ac =
TP + TN

TP + TN + FP + FN
(7)

Pr =
TP

TP + FP
(8)

Sn =
TP

TP + FN
(9)

Sp =
TN

FP + TN
(10)

Fm =
2× Pr × Sn

Pr + Sn
(11)

where, TP, TN, FP, and FN are defined as follows:

• True Positives (TP): True positives are the case when the actual class of the data point
was True (1) and the predicted class is also True (1).

• True Negative (TN): True negatives are the case when the actual class of the data point
was False (0) and the predicted class is also False (0).

• False Positive (FP): False positives are the case when the actual class of the data point
was False (1) and the predicted class is True (1).

• False Negative (FN): False negatives are the case when the actual class of the data
point was True (1) and the predicted class is False (0).
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6.1. Results of Base Learners

After training the base learners, i.e., VGG16, ResNet50, Inception-V3, and Xception,
each of them was then evaluated on the test set. Table 3 shows the results obtained by the
four base learners.

Table 3. Observed results from the DL models for the prediction of PD.

Model Accuracy Precision Sensitivity Specificity F1-Score

VGG16 95.34% 96.51% 96.51% 93.02% 96.51%

ResNet 50 93.02% 95.29% 94.19% 90.69% 94.74%

Inception-V3 93.02% 92.31% 97.67% 83.72% 94.81%

Xception 95.34% 94.44% 98.84% 88.37% 96.59%

From Table 2, it is to notice that both VGG16 and Xception models obtained the highest
accuracy among all the base learners, attaining an accuracy of 95.34%. Both ResNet50 and
InceptionV3 models exhibit the lowest performance by providing an accuracy of 93.04%
for the test set. Despite acquiring the same truthfulness in both cases, the models differ
in several f alse positives and f alse negatives. The experimental analysis also reveals that
Inception-V3 and Xception models predict PD patients more accurately as they misclassify
the least number of PD patients. On the other hand, VGG16 and ResNet50 can predict
non-PD patients more accurately.

Figure 8a–d illustrates the accuracy vs. epoch curves for the train and test sets for all
four base CNN models.

Figure 8. Accuracy vs. Epoch curves for the base learners.

Figure 9 depicts the confusion matrix for all the base learners evaluated on the test set.
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Figure 9. Confusion matrices for all base learners.

6.2. Grad-Cam Analysis of Base Learners

The base learners have facilitated impressive accuracy in the classification of PD and
non-PD, yet the biggest problem is in their explainability, which is the vital aspect of
understanding and debugging. To understand where the base learners are looking into the
input images, we have provided Grad-Cam analysis [45]. This method uses the gradients of
a target class, which flows through the final convolutional layer to generate a concentrated
map emphasizing the ROI. Figure 10 depicts the ROI obtained by applying Grad-Cam for
all the base learners.

Figure 10. Grad-Cam of all the base learners.

6.3. Results of Ensemble Approach

After obtaining the results from the base learners, we have ensembled the outcomes
using the previously mentioned FRLF method to enhance the overall recognition perfor-
mance of the proposed system. We have also experimented with a few other basic ensemble
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techniques like Sum Rule, Product Rule, and Majority Voting to compare the outcomes
with the FRLF technique. The working strategy of sum rule, product rule, and majority
voting is mentioned here in brief.

Let there be N different models (M1, M2, . . . , MN). Let the ith model in consideration
be Mi whose confidence score are (CSMi

1 , CSMi
2 , . . . , CSMi

C ) where C are the total number of
classes in consideration. Then for sum rule [46], the final equation for the prediction of the
class for a particular input X is defined as:

FCSum Rule
c =

N

∑
i=1

CFMi
c , i = 1, 2, ..., N; c = 1, 2, ..., C; (12)

class(X) = argmax(FCSum Rule
c ), c = 1, 2, ..., C; (13)

similarly, for the product rule [47], the equation is deduced as follows:

FCProduct Rule
c =

N

∏
i=1

CFMi
c , i = 1, 2, ..., N; c = 1, 2, ..., C; (14)

class(X) = argmax(FCProduct Rule
c ), c = 1, 2, ..., C; (15)

for the majority voting [47] ensemble approach, the equation for the final class prediction
comes out to be:

Pi = argmax([CSMi
1 , CSMi

2 , . . . , CSMi
C ]), i = 1, 2, ..., N; (16)

class(X) = MaxCount(Pi), i = 1, 2, ..., N; (17)

where, FCc, Pi and MaxCount are the final confidence score for a class c, prediction of a
model with the highest probability and a function which returns the category which has
the highest number of occurrences for a given input X.

Table 4 reflects the results obtained after applying these ensemble techniques.

Table 4. Results obtained after applying different ensemble approaches.

Model Accuracy (in %) Precision Sensitivity Specificity F1-Score

Sum Rule 96.89% 96.59% 98.84% 93.02% 97.70%

Product Rule 92.25% 90.42% 98.84% 79.07% 94.44%

Majority Voting 96.12% 95.5% 98.84% 90.69% 97.59%

FRLF method 98.45% 98.84% 98.84% 97.67% 98.84%

From Table 4, it is to notice that the applied sum rule, product rule, majority voting,
and the proposed FRLF method produce an accuracy of 96.89%, 92.25%, 96.12%, and 98.45%.
Looking into the accuracy obtained by the ensembled approach, all of them except the
product rule performed better than the base learners. Despite achieving the lowest accuracy
by-product rule, all the four ensembles can predict the PD patients more accurately by only
misclassifying one PD patient as a non-PD patient, i.e., f alse negative, yet they differ in
several false positives.

The FRLF ensemble-based approach performed significantly higher than the base
learners as well as the other ensembled methods. In contrast to supplementary ensemble
approaches, the FRLF method misclassified only 2 images, 1 for each of the f alse negatives
and f alse positives, obtaining the highest among all the metrics taken into consideration.
Figure 11 shows the confusion matrices obtained from all the ensemble approach.
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Figure 11. Confusion Matrices of Ensemble method.

6.4. Comparison

Table 5 compares the performance of the proposed FRLF system for the classification
of Parkinson’s disease with some past works mentioned in the literature.

Table 5. Comparison of our proposed method with some past methods found in the literature.

Work Ref. Method/Classifier Accuracy Dataset Used

[12] SVM with Striatal Binding Ratio 96.14% PPMI

[13] PCA with SVM 92.60% PPMI

[14] Custom ANN 94.00% PPMI

[19] VGG-16 95.20% PPMI

[20] InceptionV3 98.40% PPMI

[21] LeNet and AlexNet 95% ± 0.30% PPMI

[48] t-test and SVM 86.96% PPMI

Proposed CNN models + FRLF 98.45% PPMI

Authors in [48] used the dataset that was considerably smaller (19 PD patients and
27 healthy subjects) than the PPMI MRI dataset. They have achieved 86.96% recognition
accuracy which is also lesser than our proposed approach. Authors in [19] developed a
DL-based model using LIME and VGG16 for the early diagnosis of Parkinson’s disease
using the same PPMI dataset and obtained 95.20% accuracy that is relatively lesser than
our proposed technique. From the remaining entries of this table, it can be observed that
the works mentioned through [12–14,20,21] also performed the same task of predicting
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Parkinson’s disease on the same PPMI dataset. Looking into the obtained accuracies, it can
be said that our proposed technique outperforms all the works.

7. Software Tool

Based on the proposed model, we have developed an application provided in [49]
for working with MRI images that can be used by any medical personnel as a support
tool for fast preliminary diagnosis. The application is written in Python and runs in both
Windows and Linux environment. The user interface is implemented using the Qt library.
Our application can work directly with Dicom files (.dcm) from an MRI machine or with
any image files (jpg, png, etc.) exported from DICOM viewers. We provided a simple
user interface with drag-and-drop support. Figures 12 and13 depict the outcomes of the
application. In the application, we implement all presented ensemble approaches (Sum
Rule, Product Rule, Majority voting, and new FRLF method). All ensemble methods
use 4 neural networks: VGG-16, ResNet 50, InceptionV3, and Xception. Application
requirements include:

• Operating system:

– Windows 7 or later
– Ubuntu 16.04 or later
– Mac OS 10.12.6 (Sierra) or later (64-bit) (no GPU support)

• Python 3.6 or later
• Hard Drive-Maximum 4GB of free space
• Processor-Intel Core i3
• Internet connection-wideband connection for first use (for neural networks

downloading)
• Admin privileges are not a requirement.

Note: prediction from the application cannot be used as a medical diagnosis.

Figure 12. Illustration of prediction made by the software tool while classifying the DaTscan image
as “Normal” class.
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Figure 13. Illustration of prediction made by the software tool while classifying the DaTscan image
as “PD” class.

8. Discussion

Parkinson’s disease has a prevalence rate of 1% in the over-60 age group, and it is
the second most common brain disease after Alzheimer’s disease. In addition to assisting
practitioners in the process of disease diagnosis, the outcomes of this model will enable
them to take timely action before patients’ disorders become more serious.

Based on previously stated results, we can safely comment that our method works
effectively on the PPMI dataset, and achieves an accuracy of 98.45%. Also, in the medical
image analysis domain especially, it is absolutely necessary to reduce the number of mis-
classifications because a false diagnosis can cause physical, emotional and psychological
damage to the patient and his/her family. We have observed that the number of false
positives and false negatives gets reduced significantly when we have used the FRLF
ensemble technique as compared to when we use the Sum Rule, Product Rule and Majority
Scoring technique.

One limitation of our work is the number of mis-classifications. Though it is less than
most other methods tested on the dataset, we still have wrongly classified images and
hence this cannot be used for medical diagnosis with a 100% accuracy. Also, we do not
know if the FRLF method is domain-specific or can be applied on other diseases except for
Parkinson’s disease. We plan to reduce the number of inaccurate classifications and to test
the FRLF ensemble technique on other datasets.

9. Conclusions

In the present work, we have proposed an ensemble of DL models to predict Parkin-
son’s disease effectively using the PPMI DaTscan images. We have designed a fuzzy
ensemble model, called FRLF, which is applied on the confidence scores of four classic DL
models- VGG16, ResNet50, Inception-V3, and Xception to enhance the overall results of
the model. From the results reported in the above section, we can ensure that the proposed
model achieves state-of-the-art performance. Recognition accuracy, Precision, Sensitivity,
Specificity, F1-score of the proposed model are 98.45%, 98.84%, 98.84%, 97.67%, and 98.84%
respectively. We have also incorporated our model in a GUI-based software tool for public
use that instantly detects Parkinson’s disease in DaTscan images given to it as inputs.
This can play a significant role in detecting Parkinson’s disease in real-time. Our work is
primarily based on DaTscan images. We have not yet extended our work to MRI scans or
CT scans, which is our plan for future work in this domain.
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