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Abstract: An efficient and practical approach towards bifunctional phosphorus phenols has
been developed through a reaction of diphenylphosphine oxide and the o-quinone methides in
situ generated from 2-tosylalkyl phenols under basic conditions. This protocol features simple
experimental procedures under mild conditions and is easily scaled up. With this method, a variety
of diarylmethyl phosphine oxides can be produced with up to 92% yield.

Keywords: o-quinone methides; 2-tosylalkyl phenols; phosphorus phenols; diphenylphosphine oxide;
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1. Introduction

Since the pioneering work of Wittig, organophosphorus compounds have emerged to be enormously
important for various areas in chemistry and resonate across numerous disciplines [1–4]. Among them,
phosphine oxides have attracted considerable attention due to their wide structural diversity and properties.
In recent years, an increasing number of documents on the application of phosphine oxides in ligand
chemistry [5,6], pharmaceutical chemistry [7–9], organic synthetic chemistry, and materials science have
been demonstrated [10,11]. In particular, aside from the well-known triphenylphosphine oxide, plenty of
novel phosphine oxides have been designed and synthesized as useful molecules for both industry and
academia. For example, the chiral phosphine oxide compound A (BINAPO) [12] and the bisoxazoline
phosphorus ligand B [13] have been employed as a catalyst or ligand to catalyze versatile asymmetric
reactions; the phosphorus chromones C is a progesterone receptor antagonist [14]; compound D is known
as a preeminent flame retardant [15] (Figure 1).

Accordingly, the preponderance of phosphine oxides has expedited the exploration of efficient
and environmentally benign synthetic methods for their preparation [16–20]. Although much
progress has been achieved in this chemistry, only a few approaches have been developed for the
synthesis of arylated-methyl phosphine oxides, particularly diaryl and triarylmethyl phosphine oxides.
Some classical approaches include the Michaelis−Arbuzov or Michaelis−Becker reaction [21,22]
and the FeCl3-mediated Friedel−Crafts reaction [23] (Scheme 1a). However, these reactions require
harsh reaction conditions and are limited to a narrow substrate scope. Walsh’s group developed
the Pd-catalyzed α-arylation of benzylic phosphine oxides with haloarenes in medium to good
yield [24]. Although this method involves a relatively wide substrate scope, the use of expensive
metal catalysts and difficulty of scaling up make it unattractive. Recently, the Anand [25] and
Kang groups [26] revealed 1,6-hydrophosphonylation of para-quinone methides (p-QMs) for the
construction of diaryl phosphonates under metal-free conditions. Nonetheless, the di-tert-butyl group
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on p-QM derivatives, which needs extra removal steps, may decrease the synthetic value of the product.
Very recently, Kang and co-workers [27] developed the Brønsted acid catalyzed phospha-Michael
addition reaction of trialkylphosphites with the ortho-quinone methides (o-QMs) in situ generated
from o-hydroxybenzyl alcohols. This strategy needs a catalytic amount of Brønsted acid based on
N-heterocyclic phosphorodiamidic acids (NHPAs) that should be synthesized from N-phosphonyl
chloride, which limited its application. Consequently, metal-free and easy operating methods for the
synthesis of diarylmethyl phosphine oxides are still highly desirable. Considering the well-documented
nucleophilic addition reactions with secondary phosphine oxides (R2P(O)H), we hypothesized that
the direct phospha-Michael addition of R2P(O)H to o-QMs would be an attractive way to construct
diarylmethyl phosphine oxides with both Lewis base and Brønsted acid functional groups (Scheme 1b).
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Figure 1. Some organophosphorus compounds.

In general, secondary phosphine oxides exist in two tautomeric forms, i.e., the most stable and
dominant phosphane oxide isomer (form A), and the phosphinous acid isomer (form B), which is the
nucleophilic form (Scheme 1b) [28,29]. The equilibrium toward the active phosphinous acid form B
should be promoted by the presence of a base. In addition, due to the wide application of o-QMs in
organic synthetic chemistry, several methods have been successfully developed for the generation of
o-QMs, including oxidation, acid or base catalysis, etc. [30–43]. Zhou and co-workers developed an
efficient base-induced approach for the generation of o-QMs via the desulfonylation of 2-tosylalkyl
phenols under mild conditions [44–51]. Therefore, we supposed that this direct phospha-Michael
addition to o-QMs in situ generated from 2-tosylalkyl phenols could be realized under appropriate
basic conditions. To fulfill this target, the following obstacles should be considered: firstly, the base
employed should promote the formation of o-QMs and meanwhile facilitate the equilibrium shifts to
nucleophilic active form B; secondly, the reaction rate of phospha-Michael addition must be faster
than the dimerization or other nucleophilic reaction of the in situ generated highly reactive o-QMs.
In view of the importance of the phosphine oxides, and in order to broaden the application scope
of phospha-Michael addition reactions, we report our initial findings toward the construction of
bifunctional phosphorus phenols through phospha-Michael addition of diphenylphosphine oxide to
the o-QMs under basic conditions.
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2. Results and Discussion

With the abovementioned consideration, we initiated our investigation with the readily available
2-(phenyl(tosyl)methyl)phenol 1a and diphenylphosphine oxide 2a in the presence of K2CO3

(1.2 equiv.) at 60 ◦C. To our delight, the desired diarylmethyl phosphine oxide product 3a was isolated
in 32% yield (Table 1, Entry 1). Subsequently, the effects of various solvents on the reactivity were
investigated (Entries 1–4). Evaluation of solvents revealed that the transformation was sensitive to the
reaction medium; no desired product was achieved with dichloromethane (DCM) or tetrahydrofuran
(THF) as the solvent, whereas toluene proved to be the most favorable solvent, giving a promising
yield of 36%. Further increasing the reaction temperature to 110 ◦C, the reactivity was effectively
improved and high yield of 92% was obtained (Entry 6). The base played a vital role in the reaction,
which promotes the desulfonylation to generate o-QM, meanwhile facilitating the formation of
nucleophilic active phosphinous acid form of secondary phosphine oxide. The screening of several
other inorganic bases revealed that K2CO3 remained superior to Na2CO3, Cs2CO3, and NaOH. It is
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worth noting that the weak base NaHCO3 was completely unable to promote this reaction. Therefore,
the optimal conditions for this reaction were established by using K2CO3 (1.2 equiv.) as the base and
toluene as the solvent at 110 ◦C. Then, phosphites including diethyl phosphite and diphenyl phosphite
were also investigated as the phosphorus nucleophiles. Disappointingly, no desired products could be
isolated under this reaction condition (Entries 11, 12).

Table 1. Optimization for the reaction of 2-(phenyl(tosyl)methyl)-phenol 1a with secondary phosphine
oxide a.
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Entry Solvent Base T Yield b/%

1 EtOAc K2CO3 60 ◦C 32
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4 Toluene K2CO3 60 ◦C 36
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10 Toluene NaOH 110 ◦C 86
11 c Toluene K2CO3 110 ◦C N.A.
12 d Toluene K2CO3 110 ◦C N.A.

a Conditions: 1a (0.50 mmol), 2a (0.6 mmol), Base (1.2 equiv.), Solvent (5 mL), 4 h, N.A. = Not Available. b Isolated
yields. c 2b (0.6 mmol) was used instead of 2a. d 2c (0.6 mmol) was used instead of 2a.

With the aforementioned reaction conditions maintained, we next sought to explore the scope
of the substrate generality. As summarized in Table 2, the transformations proceeded very well and
good to excellent yields were achieved. For aryl substituents such as R1, the position of substituents
in the aryl ring barely affected the reaction activities (3a–3d). In addition, the electronic property
had a slight influence on the reaction yields. For instance, substrates with different substituents
(1e, 1f) reacted with diphenylphosphine oxide in 86% and 80% yields, respectively. The reaction
tolerates both electron-deficient and -donating groups on the benzene ring of the phenols, providing
the corresponding products in good yields as well (3g, 3h). We also explored the scope of alkyl,
aryl-mixed substrates. For example, the 2-(1-tosylethyl)phenol 1i was demonstrated to be a suitable
reaction component and provided the target product 3i in 84% yield. What is more, the sesamol derived
2-tosylalkyl phenols (1j–1l) also proved to be suitable substrates, and provided the corresponding
products with good yields.

Furthermore, to illustrate the synthetic utility of the diaryl phosphonate products, we first tested
a large-scale experiment with 1a (1.0 g, 5.0 mmol), and it afforded the target adduct 3a (1.44 g) in
82% yield (Scheme 2). In consideration of the reports that copolymerization of phosphorus phenols
with phenolic resin could be used as preeminent flame retardants [52,53], we transformed 3a to
monomers for polymerization reactions. Gratifyingly, the treatment of 3a with acryloyl chloride under
basic conditions afforded the phosphorus acrylate 4 in 70% yield, and thus provided a promising
flame-retardant candidate.
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Table 2. Scope for the reaction of 2-tosylalkyl phenols 1 with diphenylphosphine oxide a.
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Based on the above experimental results and previous studies on the formation of o-QM under
basic conditions reported by Zhou [44–51], a plausible mechanism is depicted in Scheme 3. Firstly,
the desulfonylation of 2-(1-tosylalkyl) phenols occurred to generate o-QM intermediate in the presence
of a suitable base, meanwhile the base promoted the formation of nucleophilic active phosphinous
acid (Ph2POH). Subsequently, the phosphinous acid proceeded phospha-Michael addition to the active
o-QM species and delivering the desired product 3.
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3. Experimental Section

General Procedures: A reaction mixture of 2-tosylalkyl phenols 1 (0.50 mmol), potassium
carbonate (0.6 mmol, 82.9 mg) and diphenylphosphine oxide (0.6 mmol) in toluene (5 mL) was
stirred at 110 ◦C for 4 h. Then water (20 mL) was added to the mixture. The organic layer was
separated and the aqueous layer was extracted with dichloromethane (30 mL × 3). The combined
organic layer was dried by anhydrous sodium sulfate, concentrated in vacuo. The crude product
was purified through column chromatography using dichloromethane and ethyl acetate to give the
corresponding product 3.

((2-Hydroxyphenyl)(phenyl)methyl)diphenylphosphine oxide (3a). 176.8 mg, 92% yield, unknown
compound, pale white solid, m.p.: 238–240 ◦C, Rf = 0.45 (DCM/EA = 50/1); 1H-NMR (400 MHz, DMSO-d6)
δ 9.85 (s, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.83–7.77 (m, 2H), 7.75–7.65 (m, 2H), 7.48–7.34 (m, 8H), 7.17–7.13 (m,
2H), 7.12–7.03 (m, 1H), 6.96–6.92 (m, 1H), 6.72–6.68 (m, 2H), 5.62 (d, JH-P = 9.2 Hz, 1H); 13C-NMR (100 MHz,
DMSO-d6) δ 154.9 (d, JC-P = 7.9 Hz), 137.8 (d, JC-P = 4.4 Hz), 134.1 (d, JC-P = 12.2 Hz), 133.1 (d, JC-P = 12.4 Hz),
131.9 (d, JC-P = 2.3 Hz), 131.8 (d, JC-P = 2.3 Hz), 131.2 (d, JC-P = 8.7 Hz), 130.9 (d, JC-P = 8.7 Hz), 130.7 (d,
JC-P = 5.7 Hz), 130.3 (d, JC-P = 6.3 Hz), 128.8 (d, JC-P = 18.5 Hz), 128.8 (d, JC-P = 4.1 Hz), 128.5, 128.4, 126.9,
125.0 (d, JC-P = 3.1 Hz), 119.5, 115.7, 43.2 (d, JC-P = 68.2 Hz); 31P-NMR (162 MHz, DMSO-d6) δ 31.3; IR (KBr):
3413, 3058, 1576, 1485, 1437, 1275, 1248, 1144, 1119, 811, 750, 691, 560, 530; HRMS (ESI) calcd for C25H22O2P
[(M + H)]+: 385.1352, found: 385.1352.

4. Conclusions

In conclusion, we have developed a concise protocol for the rapid synthesis of bifunctional
phosphorus phenols by using diphenylphosphine oxide and 2-(1-tosylalkyl) phenols via the
phospha-Michael addition of organophosphorus compounds to in situ generated o-QM intermediates
under basic condition. This work broadens the scope of phospha-Michael addition reactions that
can be employed in the synthesis of diarylmethyl phosphine oxides. Further investigations into the
synthetic applications of existing phosphorus phenols are ongoing in our laboratory.
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