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A B S T R A C T   

The prime goal of the present research is to synthesize pristine zinc sulfide (PZS) and cobalt (Co)- 
doped zinc sulfide (CDZS) thin films with different doping concentrations (DC) via chemical bath 
deposition (CBD) method. The effect of Co-doping on the surface topography, structural, optical 
and dc-electrical behaviors of PZS thin films has been ascertained. Scanning electron microscopy 
images exhibited nearly sphere-shaped agglomerates of grains dispersed throughout the surface 
with cracks in PZS thin film whereas cracks were absent in CDZS. Atomic force microscopy image 
displayed smooth surface of CDZS thin film with evenly dispersed small grains. The hexagonal 
wurtzite structure of PZS and CDZS thin films with varied X-ray diffraction (XRD) parameters was 
confirmed via XRD analysis. Optical investigation revealed that the optical direct band gap energy 
increased with decreasing DC from 12 % to 4 %. Alteration of other optical parameters namely 
absorption coefficient, extinction coefficient, refractive index, real and imaginary parts of 
dielectric constant, etc. with DC was also discussed. Direct current electrical investigation 
revealed that the current-voltage characteristics are linear for all thin films signifying that the 
electrical conduction in CDZS is ohmic in nature.   

1. Introduction 

Now-a-days thin film (TF) technology is advancing remarkably to develop novel materials namely nanomaterials, biomaterials, 
magnetic materials, graphene, metal-organic framework, etc. [1,2]. Zinc sulfide (ZnS) is a compound semiconductor of ӀӀ-VӀ group 
which has drawn the attention of many researchers due to its excellent properties and numerous potential optoelectronic and spin
tronic applications for example flat panel displays [3], injection lasers [4], light emitting diodes [5], cathode ray tubes [6], thin film 
luminescence [7], buffer layer in the solar cell [8], etc. Nevertheless, to exploit some additional properties as well as enhance its 
physico-chemical properties, pure ZnS (PZS) thin film has been tailored by doping it with transition metals like Fe [9], Ni [10], Mn 
[11], Cu [12] and Co [13]. PZS doped by these transition metals has received much attention because this permits researchers to 
enhance many functions by transporting and controlling various types of spin. The metal doping concentration (DC) may alter the 
energy band gap (Eg) and affect photoluminescence (PL) due to the creation of different trap centers as compared to the PZS [14–17]. 
Among several transition metal doping elements, the high solubility of Co, (30 %) makes the doping process with ZnS possible, faster 
and easy. Much research displayed that Co seems to be a highly favored doping element that can enhance the optical and PL properties 
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of II-VI semiconductor thin film [15,18]. Generally, Co-doped ZnS (CDZS) provides new opportunities for full-color luminescence in 
the UV–visible region which is used for various applications as well as research purposes. CDZS displayed stronger coupling owing to 
the mixing of Co d-orbital with the valence band and conduction band of the II-VI materials [19]. Semiconductor thin films (STF) can 
be deposited via diverse methods namely chemical vapor deposition (CVD) [20], chemical bath deposition (CBD) [21–23], 
plasma-assisted CVD [24], SILAR method [25], pulsed laser deposition [26], electrodeposition [27], spray pyrolysis [28], and atomic 
layer epitaxy [29], etc. Among these, the CBD method nabbed attention as it is a budget-friendly, simple and low-temperature 
technique for producing STF [30]. Substantial research works have been performed on STF synthesized by CBD techniques. Aksay 
et al. [31] reported the structural and optical behaviors of Sn-doped ZnO thin films synthesized by the CBD method. X-ray diffraction 
patterns indicated the hexagonal structure of these STFs. With the increase of Sn dopant, the intensity of transmittance (T%) spectra is 
increased within the range 200–900 nm and the Eg is increased from 3.27 to 3.37 eV. The surface roughness declined with the 
increasing DC as detected by atomic force microscopy. Goudarzi et al. [11] prepared CBD-deposited Mn-doped ZnS thin films. The 
consistent and dense narrow film surface was observed by field emission scanning electron microscopy (FESEM). The optical study 
revealed that the films were exceedingly transparent (>80 %) in the visible region. Ashok et al. [32] prepared cadmium sulfide thin 
films (CSTF) via CBD technique and different characterizations were done. The CSTF grows in a stable hexagonal wurtzite structure 
having a favored orientation along the (002) lattice plane. Even, grainy, and plane surfaces with an average grain size of less than 100 
nm were observed by FESEM. The Eg were obtained in the range of 2.3–2.35 eV of CSTF. Maria et al. [33] prepared PZS and Al-doped 
ZnS thin films by CBD method onto glass substrates at 85 ◦C. XRD pattern exhibited a hexagonal wurtzite crystal structure and showed 
(008) preferential orientation. The FESEM images exhibited that the glass substrate was nicely covered by compact and dense 
mosaic-like nanostructures. UV–visible analysis exposed that approximately 70%–80 % T% happened in the visible to near-infrared 
region, with an Eg in the range of 3.52 eV–3.76 eV. 

The literature review is evident that there are scanty reports on the investigation of CDZS thin films. Particularly, it is the least 
studied material regarding different optical parameters and electrical properties. In this research, PZS and CDZS thin films were 
deposited onto a glass substrate via CBD method. To understand the effect of Co-doping on the various properties of PZS and to 
correlate these, the topographical, compositional, structural, photosensitive and dc-electrical behaviors of the deposited thin films (TF) 
were investigated using SEM, AFM, energy dispersive X-ray spectroscopy (EDX), XRD, UV–vis spectroscopy and four-point probes 
method, respectively. It is projected that these analyses may put light on its improved properties after Co-doping that may be suitable 
for some device applications. 

2. Experimental details 

2.1. Materials and method 

All the reagents used for the synthesis of TF were analytical grade. 0.2 M Zinc acetate (40 ml), 0.4 M thiourea (80 ml), 0.2 M tri- 
sodium citrate dehydrate (60 ml), 25 % ammonia solution (20 ml) and cobalt chloride hexahydrate were used for the solution. In the 
present work, glass slides were utilized as substrate. The substrates were cleaned with liquid detergent, ethanol, HCl solution sepa
rately for 30 min followed by rinsing in distilled water. After cleaning with acid, the glass substrates were ultrasonically cleaned with 
acetone and de-ionized water each for 10 min. Finally, glass substrates were dried naturally in the air. First, 0.4 M thiourea and 0.2 M 
zinc acetate were mixed separately with de-ionized water and stirred for 15 min to make a homogenous solution using a magnetic 
stirrer. Then, 0.2 M tri-sodium citrate was added to the zinc acetate solution and stirred for 10 min. Thereafter, the earlier prepared 
thiourea solution was mixed with it under a rousing condition to get a clear and homogenous solution followed by an accumulation of 
cobalt chloride hexahydrate in proper amount to attain the chosen doping levels from 4 to 16 wt%. Lastly, a proper amount of de- 
ionized water was assorted to make it a 200 ml solution and 25 % ammonia solution was also mixed with it by a CBD system to 
make the solution alkaline. The beaker of the homogenous solution was placed in the heat chamber of CBD system under a stirring 
condition. The pH was maintained at 10 which was confirmed using a pH indicator strip. The solution was heated to 80 ◦C. Then, one 
pre-cleaned glass substrate was placed vertically inside the bath. After deposition of 2 h, the sample was collected and washed through 
de-ionized water. The thin film samples were dried naturally and well-kept up in a sealed container. The thickness of the TF was 
measured by using the multiple-beam interferometry technique [34]. By using this technique, the thickness, d of the prepared thin 
films was computed using the following equation (1) [34]:  

d = λq/2p                                                                                                                                                                                 (1) 

where, p, q, and λ are the fringe width, step height of the fringe, and wavelength of the used sodium light, respectively. The estimated 
thicknesses are 183, 150, 135 and 125 nm for PZS, 4 %, 8 % and 12 % CDZS thin films, respectively. The possible reactions for the 
formation of ZnS can be presented by the following equations [35]:  

Zn (CH3COO)2 → 2CH3COO− + Zn2+

NH4OH → NH4
+ + OH−
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SC (NH2)2 + OH− → CH2N2 + SH− + H2O                                                                                                                                        

SH− + OH− → S2− + H2O                                                                                                                                                               

Zn[Na3C6H5O7] + SC(NH2)2 + 2OH− → ZnS + Na3C6H5O7+ CO(NH2)2 + H2O                                                                                    

For Co doped ZnS thin films, the possible chemical reactions are  

CoCl2 → Co2+ + 2Cl-                                                                                                                                                                       

Co2+ + OH− → Co(OH)2
-                                                                                                                                                                  

Co (OH)2 + OH-→ Co(OH)3
-                                                                                                                                                              

ZnS + Co(OH)3
- → ZnS:Co                                                                                                                                                                

2.2. Characterization techniques of thin films 

The PZS and CDZS thin film surfaces were analyzed through a scanning electron microscope (SEM) (EVO18, Carl Zeiss AG, UK). The 
functional voltage and magnification of the SEM were 30 kV and × 25 k, respectively. The analysis of compositional elements of the 
prepared samples was completed through an EDX spectrometer (EDAX Team, EDAX, USA). AFM analysis was carried out through an 
AFM (Nanosurf, model- FLEXAFM, Switzerland). The structural characterization was performed by BRUKER D8 X-ray diffractometer 
(Netherlands) using Cu-Kα radiation of wavelength 1.5418 Å across a 2θ range of 15-60◦. A dual-beam UV–Vis spectrophotometer 
(Shimadzu UV-1601, Japan) was used for optical analysis of the prepared samples in the spectral range 300–1100 nm. Finally, 
absorbance data were used to estimate optical parameters. Dc electrical investigation was done by a four-point probe system (Ossila, 
UK). 

3. Results and discussion 

3.1. SEM analysis 

Fig. 1 (a, b) displayed SEM images of (a) PZS and (b) a representative 8 % CDZS thin films at ×25 K magnifications respectively. The 
SEM images displayed different surface morphologies as the presence of doping element with PZS. The PZS thin film has a non-uniform 
surface with a crack and sphere-shaped agglomerates of grains are dispersed through the substrate surface. The size of grain is tiny and 
their distribution is more even without any crack in CDZS in comparison to PZS one, which is suitable for optoelectronic applications. 
The agglomerates’ number appears to decrease in the existence of cobalt content. Previously Akhtar et al. [36] observed that the 
absence of crack and almost equal size spherical clusters are present in their CDZS thin films. 

3.2. EDX analysis 

The EDX spectra of a representative 8 % CDZS thin film and in the inset table for weight % and atomic % of different elements 
present in this film are exhibited in Fig. 2. The sturdy and sharp peaks of Zn and S elements and weak peak for Co content are observed 
in EDX spectra. In the spectrum there were no additional elements were observed, which confirms the purity of the samples. 

Fig. 1. SEM image of (a) PZS and (b) 8 % CDZS thin film at × 25K magnification.  

R. Nasrin et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e29337

4

3.3. AFM analysis 

The 2-D topographical image of a representative 8 % CDZS thin film is demonstrated in Fig. 3. The film displayed a smooth surface 
with fairly distributed small spherical shaped grains over an area of 10.6 × 10.6 μm2 with root-mean-square (RMS) roughness of 28 
nm. 

3.4. XRD analysis 

Fig. 4 exhibited the XRD pattern of PZS and CDZS thin films deposited under different DC. It is observed that a diffraction peak at 2θ 
values of 20.62◦, 20.36◦, 20.64◦ and 20.54◦ respectively for PZS, 4 %, 8 %, and 12 % due to reflection from the (102) plane. The XRD 
pattern also corresponds to diffraction patterns of the hexagonal structural phase which agreed with the reported JCPDS data card no: 
01-074-5003 [37]. The peak (102) originated at around 2θ = ~21◦ in the PZS and CDZS is basically due to the ZnS phase. However, 
there might be an impurity phase like Zn(OH)2 [38] which merged with the PZS and CDZS phase. With the increase of doping content, 
the intensity of this peak (at 21◦) decreased. Finally at 12 % CDZS thin films two new peaks at 2θ values of 23◦ and 32◦ have been 
observed, which indicated the hexagonal structures of the films. A similar type of structural orientation was observed by Khalil et al. 
et al. [39] for deposition parameter-dependent ZnS thin films prepared by the CBD method where a broad peak has been formed at 
around 2θ = ~22◦and a sharp peak at around 2θ = ~32◦ (104 plane) which signifying hexagonal structures of the films. From Fig. 4, it 
was also identified that the intensity of sharp and strong peak present at (102) crystal plane of PZS thin film decreased with increasing 
DC but an increase in DC caused the emergence of crystal planes [(110) and (104)] in the CDZS thin films (12 % CDZS). In contrast, 
Heiba et al. [13] prepared CDZS thin films using thermolysis method and in XRD pattern they observed a single-phase cubic zinc blende 

Fig. 2. EDX spectra of a representative 8 % CDZS thin film (inset table for weight % and atomic % of different elements present in 8 % CDZS 
thin films). 

Fig. 3. AFM image of a representative 8 % CDZS thin film.  
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structure. In another study [40], the observed CBD-deposited. 
PZS thin film was amorphous in nature and annealed zinc sulfide (AZS) thin film became polycrystalline in nature with only one 

weak diffraction peak corresponding to the (008) plane of the hexagonal ZnS. This discrepancy may be attributed to the different 
deposition processes and parameters. Structural parameters namely crystallite size (D), dislocation density (δ), micro-strain (ε), 
number of crystallites per unit area (N) and interplanar spacing (d) were computed by the subsequent equations (2)–(6), respectively [ 
[41–43,43,44]: 

D=
0.9λ

β cos θ
(2)  

δ=
1

D2 (3)  

ϵ=
β cos θ

4
(4)  

N =
t

D3 (5)  

1
d2 =

4
3

h2 + k2 + l2

a2 +
l2

c2 (6)  

Where β is the full width at half maximum of the diffraction angles, λ is the wavelength of Cu-Kα radiation, a is the lattice constant and 
θ is the diffraction angle. All the calculated XRD parameters of PZS and CDZS thin films are compiled in Table 1. Table 1 displayed that 
with increasing DC, the lattice parameter, a of the thin films decreased. The lattice parameter (a) decreases due to the smaller ionic 
radius of Co2+ (0.072 nm) as compared to Zn2+ ions(0.074 nm) indicating that the CDZS lattice is under compressive strain due to 
smaller radii of Co2+ ions [45]. The calculated average crystallite size of the PZS thin film was 30.9 nm which is larger than CDZS thin 
films. For 4 %, 8 %, and 12 % Co, the average crystallite size was 23.9, 26.0, and 28.2 nm, respectively. ZnS thin film doped with 4 % 
cobalt revealed the lowest average crystallite size. Thus, it can be said that the particle size is reduced due to co-doping. 

The decrease in crystallite size with doping was also observed by Mukherjee et al. [46] in tin-doped ZnS thin films prepared using 
CBD process. From Tables 1 and it is also noticed that the microstrain in the ZnS thin films increased due to Co-incorporation. The value 
of microstrain enhanced from 1.12 × 10− 3 for PZS to 1.45 × 10− 3 for 4 % CDZS film. The decrease in average particle size might be due 
to the enhancement of strain in the film. Similar effects of decrease of particle size with increasing strain have been reported for 
Cd-doping in ZnO thin film [47]. 

Fig. 4. XRD pattern of PZS and CDZS thin films at variable doping concentration.  

Table 1 
Structural parameter of PZS and CDZS thin films.  

Samples type Experimental Standard (JCPDS no. 01-074-5003) β A c D δ × 10− 3 ε × 10− 3 N× 10− 3 

2θ (◦) d 2θ (◦) d (rad) (nm) (nm− 2) (nm− 2) 

PZS 20.61 4.35 20.12 4.41 0.0046 3.83 8.66 30.9 1.04 1.12 6.18 
4 % CDZS 20.36 4.30 – – 0.0059 3.81 8.77 23.9 1.74 1.45 10.9 
8 % CDZS 20.64 4.32 – – 0.0054 3.80 8.65 26.0 1.48 1.33 7.71 
12 % CDZS 20.78 3.94 – – 0.0050 3.79 8.59 28.2 1.26 1.23 5.61  
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3.5. Optical properties 

3.5.1. Absorbance 
Fig. 5 displayed the absorbance (A) Vs wavelength (λ) curve for PZS and CDZS thin films with different doping concentrations. The 

absorbance spectra are dropped rapidly with the λ. 
within the UV region (UVR) then decreases slowly in the visible region (VR) and later it becomes nearly flat in the IR region. All TF 

demonstrated higher A value in the UVR making it helpful as a windscreen covering and driving mirror to predict the effect of striking 
light into a driver’s eyes from a forthcoming vehicle and next vehicle [31]. The maximum A is observed for PZS thin film. With 
increasing Co-doping concentration, the A value of the TFs decreased within the considered range of λ. 

3.5.2. Transmittance 
The variation of transmittance, T (%) spectra with wavelength of PZS and CDZS thin films at diverse DC is demonstrated in Fig. 6. It 

can be noticed that with the rise of Co-doping concentration, the T% of the TF’s surges and all TFs have higher T% values in the visible 
range indicating the result of the wide Eg of the TF. The maximum T% is about 50 % for 12 % CDZS thin film at 750 nm. From the 
previously reported work [19] it is displayed that with the increase of wavelength, the T% increases for CDZS thin films and the 
maximum T% was found to be 45 % in VR which is in good agreement with our works. However, another study revealed that [36,45] 
the maximum T% of CDZS thin films is about 80 % at VR. This might have happened due to variation of reagent in preparation of 
precursor solution or the slower reaction rate. Another observation is that in our case the presence of cracks and sphere-shaped ag
glomerates of grains were detected by SEM analysis whereas a smooth surface of no crack and almost equal size spherical clusters are 
present in their [36] CDZS thin films. 

3.5.3. Refractive index 
The refractive index (n) was computed using the following equation (7) [48]: 

n=
1 +

̅̅̅
R

√

1 −
̅̅̅
R

√ (7) 

The n vs λ curve for PZS and CDZS thin films at diverse DC is illustrated in Fig. 7. It is detected that the value of n decreased with the 
rising of Co concentration. This might have happened due to the increase in the number of voids. Göde et al. [49] reported the reverse 
nature in their work where the n values of PZS increase with increasing Cu and Mn concentrations. It is also worth noting from Fig. 7 
that for all films, the n value gradually increased with the rise of λ in the UVR and a peak behavior was observed at around 380 nm, then 
the n value decreased in the VR. After 650 nm wavelength, it became sturdy or nearly even in the VR and near IR region. The similar 
peak behavior of the refractive index for CBD-deposited PZS and CDZS thin films was reported by Jrad et al. [50] and the computed 
maximum n value was about 2.4. In another study [51], the maximum n value of the PZS thin films prepared through CBD method was 
found to be 1.35. However, the n value is comparatively lower in our sample (nearly 1.20). 

The reason for decrease in n value might be attributed to the formation of non-stoichiometric oxide phases in the ZnS films [52]. 

3.5.4. Absorption coefficient 
The absorption coefficient, α can be estimated by using the following equation (8) [53]: 

Fig. 5. Absorbance spectra (A) of PZS and CDZS thin films at different DC.  
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Fig. 6. Transmittance (T%) of PZS and CDZS thin films at diverse DC.  

Fig. 7. Refractive index of PZS and CDZS thin films at different DC.  

Fig. 8. Absorption coefficient of PZS and CDZS thin films at different DC.  
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α=
2.303A

d
(8)  

Where, d is the thickness of the TF. The plot of α vs λ is presented in Fig. 8. In this Fig.,the value of α decreased with increasing λ and it 
becomes almost flat after 800 nm. The TF shows high absorption for wavelength below the VR. 

3.5.5. Optical energy bandgap 
The optical band gap energy, Eg of the prepared samples was determined using the Tauc relation (9) [54]: 

αhʋ= k
(
hʋ − Eg

)n (9)  

Where, k is a constant and the value of n is equal to ½ since the transition in the present case is direct allowed.Where, k is a constant. 
The value of Eg was resolved via deriving the linear part of the plots (αhʋ)2 vs hʋ curve to zero α value (Fig. 9). In Fig. 9, the Eg values 
were found within the range of 3.63-3.38 eV respectively for PZS and CDZS thin films at diverse DC (Table 2). The value of Eg decreased 
with adding DC in PZS. The reduction of Eg with rising DC may be ascribed to the slight upsurge in the crystallite size as calculated from 
the XRD pattern and/or the amalgamation of a slight quantity of oxygen interstitially in the PZS, creating an imperfection level in the 
Eg. In earlier research, the Eg value of the CBD deposited PZS thin film was found to be 4.01 eV, whereas in our study it decreases, which 
may be due to modification of deposition condition [40]. 

3.5.6. Extinction coefficient 
The extinction coefficient (k) can be computed by using the following equation (10) [55]: 

k=
αλ
4π (10) 

Fig. 10 presented the variation of k with λ for PZS and CDZS thin films. It is observed that the value of k decreased deliberately at the 
starting of VR and after reaching a minimum value it increased with the increase of wavelength. Another observation is that k is 
relatively high in the IR region, a close-fitting medium transparent attribute of the prepared TF which well matches with the 
transmission. 

3.5.7. Dielectric constant 
The dielectric constant, ε of a material is connected with the density of states inside the Eg 
and rely on the electronic assembly of that material and can be expressed by the following relation (11) [56]:  

ε = ε1 +iε2                                                                                                                                                                             (11) 

where ε1 is real and ε2 is imaginary part of dielectric constant and these two quantities can be found out by using the following 
equations (12) and (13) [57]:  

ε1 = n2 - k2                                                                                                                                                                            (12)  

ε2 = 2nk                                                                                                                                                                                (13) 

Fig. 11 (a, b) respectively presented the(a) real and (b) imaginary part of ε for PZS and CDZS thin films as a function of λ at different 
DC. In Fig, 11a, it can be noticed that with the increase of λ, the ε1 value gradually increased up to VR after that it falls at the IR region. 
The maximum ε1 value is observed for 12 % CDZS thin film at VR. Conversely, In Fig, 11b, ε2 value firstly increased close to 380 nm and 
after that gradually declined with increasing λ. A sharp peak is also detected at about 380 nm in both cases. Another observation is that 
for all TFs the values of ε1 are higher in comparison to ε2. 

3.6. Electrical properties 

3.6.1. I–V characteristics 
Fig. 12 demonstrated the current (I) -voltage (V) characteristics curve for PZS and CDZS thin films with different DC. The obtained 

I–V curves are linear prior to the working range of functional voltage, which implies that the samples exhibit an ohmic nature. 
Moreover, the resistivity (ρ) of the deposited TF is around 105 Ωm. These consequences are analogous to previously reported values 
(106–1014 Ωm) [58,59]. The greater value of ρ may be ascribed by the nano crystallinity of TF, grain edge gaps, existence of exterior 
states and lesser d of the film signifying the suitability of the PZS and CDZS namely buffer layer in the TF technology [60]. 

4. Conclusions 

PZS and CDZS thin films have been fruitfully deposited on glass substrates through CBD technique by varying DC. XRD patterns 
revealed the hexagonal structure of deposited TF. The crystallite size and lattice parameter of the CDZS thin films decreased in 
comparison to PZS which might be due to the enhancement of strain in the film. The dislocation density and number of crystallites per 
unit area also increased due to co-doping. SEM images presented the spherical shape agglomerates and cracks for PZS thin film whereas 
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CDZS thin films cracks were not noticed. AFM confirmed fairly distributed small-sized grains with RMS roughness of 28 nm. The 
existence of Zn, S and Co were identified through EDX analysis. From Uv–vis spectroscopic analysis, it is noticed that all TFs have 
higher T% values in the visible range and the maximum T% is about 50 % for 12 % CDZS thin film at 750 nm. The calculated Eg values 
were found in the range of 3.38–3.63 eV for deposited TFs. The value of Eg decreased with increasing DC in PZS. The reduction of Eg 
with increasing DC might be attributed to the slight increase in the D creating a defect level in the Eg. With the increase of λ, the ε1 value 
gradually increased up to VR after that it fell at IR. Conversely, ε2 value firstly increased close to 380 nm and after that gradually 
declined. The values of ε1 are higher in comparison to ε2. DC electrical analysis demonstrated that the TFs are semiconducting in nature 
partaking the resistivity (ρ) of the deposited TF is around 105 Ωm. Finally, it can be signified that the prepared CDZS thin films may be 
suitable as a window material in the manufacture of solar cells and optoelectronic devices. 

Fig. 9. (αhʋ)2 vs hʋ plot of PZS and CDZS thin films at different DC.  

Table 2 
Optical direct band gap for different samples.  

Types of TF samples Direct Energy Band Gap (eV) 

PZS 3.63 
4 % CDZS 3.60 
8 % CDZS 3.41 
12 % CDZS 3.38  

Fig. 10. Extinction coefficient vs wavelength curve of PZS and CDZS thin films at different DC.  
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