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Abstract
Organophosphate is a commonly used pesticide in the agricultural sector. The 
main action of organophosphate focuses on acetylcholinesterase inhibition, and it 
therefore contributes to acute cholinergic crisis, intermediate syndrome and 
delayed neurotoxicity. From sporadic case series to epidemiologic studies, 
organophosphate has been linked to hyperglycemia and the occurrence of new-
onset diabetes mellitus. Organophosphate-mediated direct damage to pancreatic 
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beta cells, insulin resistance related to systemic inflammation and excessive 
hepatic gluconeogenesis and polymorphisms of the enzyme governing organo-
phosphate elimination are all possible contributors to the development of new-
onset diabetes mellitus. To date, a preventive strategy for organophosphate-
mediated new-onset diabetes mellitus is still lacking. However, lowering reactive 
oxygen species levels may be a practical method to reduce the risk of developing 
hyperglycemia.

Key Words: Organophosphate; Pesticide; New-onset diabetes mellitus; Mechanism; 
Reactive oxygen species
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Core Tip: Organophosphate may induce acute hyperglycemia by damaging pancreatic 
cells and result in new-onset diabetes mellitus after chronic exposure to organo-
phosphate compounds. Organophosphate-mediated new-onset diabetes mellitus might 
be mediated by a polymorphism of paraoxonase-1, which is associated with organo-
phosphate elimination in hepatocytes. Pancreatic beta cell damage, excessive gluconeo-
genesis, hepatic steatosis, systemic inflammation and possibly sarcopenia all contribute 
to insulin resistance and therefore hyperglycemia.
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INTRODUCTION
Organophosphate is a commonly used pesticide in the agricultural sector because of 
its bioavailability. The main action of the organophosphate focuses on acetylcholin-
esterase inhibition. Because of its wide use, intoxication of organophosphate has been 
commonly encountered by physicians. Intoxication can be divided into acute 
cholinergic crisis, intermediate syndrome and delayed neuropathy[1]. Among the 
complications induced by organophosphates, diabetes mellitus is a common yet often 
overlooked metabolic complication. The aim of this review is to analyze the molecular 
pathogenesis mechanisms of new-onset diabetes mellitus after organophosphate 
exposure.

ORGANOPHOSPHATE TOXICITY: ACUTE CHOLINERGIC CRISIS AND 
CHRONIC OXIDATIVE STRESS GENERATION
The main action of organophosphate is to inhibit acetylcholinesterase within the 
nervous system, and therefore, acetylcholine overactivity exists within the synapse 
and neuromuscular junction[2]. Neurological manifestations are the cardinal 
symptoms of organophosphate intoxication through the activation of muscarinic 
receptors and include myosis, excessive secretions, seizures, severe muscle paralysis, 
cardiorespiratory depression and even death in organophosphate overdose patients
[3]. The hydrophobic character of organophosphate leads to its accumulation in 
adipose tissue, and therefore, intermediate syndrome with delayed neurologic injury 
might occur through the generation of oxidative stress. Gultekin et al[4] demonstrated 
that organophosphate treatment could activate lipid peroxidase and therefore generate 
reactive oxygen species (ROS) by exhausting glutathione and superoxide dismutase in 
a dose-dependent manner. Similar oxidative stress with excessive acetylcholinesterase 
activity has been reported in workers with chronic exposure to organophosphate[5]. 
Apart from neurotoxicity, accumulation within different tissues could cause different 
end-organ damage in the chronic phase. The mitogen-activated protein kinase 
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(MAPK) signaling pathway could activate associated kinases, such as extracellular 
responsive kinases, c-Jun N-terminal kinase (JNK) and p38 MAPK, which could 
worsen downstream apoptosis[6]. The main contributor to MAPK signaling from 
organophosphates is mediated by oxidative stress. From in vitro studies, the adminis-
tration of organophosphate could activate the expression of quinone oxidoreductase-1, 
heme oxygenase 1, paraoxonase-1, catalase or superoxide dismutase in blood 
mesenchymal stem cells[7] or human umbilical vein endothelial cells[8]. Therefore, 
distant organ damage should arouse concern in chronic organophosphate-intoxicated 
subjects.

CLINICAL STUDIES OF NEW-ONSET DIABETES MELLITUS AFTER OR-
GANOPHOSPHATE EXPOSURE
Previous studies revealed that organophosphate exposure could increase the risk of 
new-onset diabetes mellitus (Tables 1 and 2). Moore and James[9] first noticed that 
acute organophosphate ingestion was associated with hyperglycemia, and 
hyperglycemia required insulin intervention for blood sugar control (Table 1). Serial 
studies also demonstrated that organophosphate-mediated acute pancreatic injury 
might induce hyperglycemia[10,11]. In 2008, Montgomery et al[12] provided epidemi-
ologic data to link chronic exposure to organophosphate with diabetes mellitus 
(Table 2). Within the 5-year follow-up, the incidence of diabetes mellitus increased in 
organophosphate users. The study conducted by Liu et al[13] demonstrated that acute 
exposure to organophosphate led to hyperglycemia, but the effect on the development 
of diabetes mellitus was only marginal. In a meta-analysis study conducted by 
Lakshmi et al[14], hyperglycemia was common. A recent study by Panda et al[15] 
demonstrated that organophosphate exposure was associated with higher insulin 
resistance and higher plasma glycated hemoglobin levels. From the clinical study, 
acute organophosphate exposure was associated with hyperglycemia and then 
regressed after atropine treatment. From the study published by Leonel Javeres et al
[16], red blood cell acetylcholinesterase activity decreased within the organophosphate 
exposure group, and the plasma concentrations of lipase/amylase and insulin 
increased in the organophosphate-exposed group. Such evidence demonstrated the 
effect of organophosphate on insulin resistance and direct damage to pancreatic cells 
in clinical investigations.

Clinical studies have shown that acute hyperglycemia develops in acute organo-
phosphate-intoxicated subjects and that such hyperglycemia is associated with poor 
clinical patient outcomes. However, hyperglycemic status was mostly observed in 
animals with chronic or subchronic exposure[17,18]. Several in vivo studies 
demonstrated the acute effect of organophosphate on the variation of blood sugar. 
Rodrigues et al[19] reported variations in blood sugar after acute organophosphate 
exposure. For rats receiving a single intraperitoneal injection of malathion, blood 
glucose increased within 2 h, followed by hypoglycemia 8 h after injection[19]. In brain 
tissue, organophosphates can decrease the storage of glycogen within the brain by 
activating glycogenolytic enzymes such as glycogen phosphorylase and phosphogluc-
omutase[20]. Glycolytic enzymes, such as phosphofructokinase and hexokinase, might 
decrease in the acute exposure of organophosphate[21]. Collectively, these 
mechanisms could explain the occurrence of acute hyperglycemia following organo-
phosphate exposure.

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: DYSFUNCTION OF PANCREATIC BETA CELLS
Nagaraju and Rajini[22] reported that rats receiving chronic organophosphate had 
higher insulin secretion from pancreatic islet cells and associated pancreatic 
hypertrophy. Insulin plays an important role in activating glucose transporter 9-
mediated glucose transport into cells. Therefore, the regulation of insulin secretion is 
important in mediating the plasma concentration of glucose. Acetylcholinesterase lies 
within the pancreas either within acinar cells or insulin-secreting beta cells[23,24]. In 
insulin-secreting beta cells, acetylcholine binds to the muscarinic receptors of beta cells 
and then increases the cytosolic calcium concentration and enhances the efficiency of 
calcium-mediated exocytosis, which activates insulin-secreting activity[24]. 
Acetylcholinesterase also occurred within the alpha cells of the pancreas. Alpha cells 
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Table 1 Published human studies on the association between acute organophosphate exposure and the development of new-onset 
diabetes mellitus

Ref. Area Pesticide Exposure Sample 
size Association

Moore and James[9], 
1980

Australia Coumaphos Acute 1 Hyperglycemia

Hui[10], 1983 Hong 
Kong

Organophosphate Acute 2 Hyperglycemia

Weizman and Sofer
[11], 1992

Israel Organophosphate and 
carbamate

Acute 17 Hyperglycemia in 29.4% of patients

Yurumez et al[98], 2007 Turkey Organophosphate Acute 220 Hyperglycemia in 67.7% of patients

Liu et al[13], 2014 Taiwan Organophosphate Acute 118 Hyperglycemia after poisoning was not associated with 
higher mortality

Moon et al[99], 2016 South 
Korea

Organophosphate Acute 184 Hyperglycemia after poisoning was associated with 
higher mortality

Table 2 Published human studies on the association between chronic organophosphate exposure and the development of new-onset 
diabetes mellitus

Ref. Area Pesticide Exposure Sample 
size Association

Montgomery et al
[12], 2008

United 
States

Organophosphate and 
organochlorine

Chronic 33457 Positive association with diabetes

Raafat et al[100], 
2012

Egypt Malathion Chronic 98 Positive associations among blood malathion concentration, 
waist circumference and insulin resistance

Velmurugan et al
[30], 2017

India Organophosphate Chronic 3080 Positive association between blood organophosphate residues 
and glycated hemoglobin levels

Velmurugan et al
[90], 2020

India Organophosphate and 
arsenic

Chronic 865 Positive associations of organophosphate and arsenic with 
diabetes, prediabetes and atherosclerosis

stimulate insulin secretion in a paracrine manner within the pancreas[25]. Bendayan 
and Gisiger[23] also reported that acetylcholinesterase existed within acinar cells. 
Acinar cells are commonly regarded as governing lipase, but insulin secretion ability 
has been noted in several human studies beyond alpha and beta islet cells[26]. Case 
series studies showed that organophosphate overdose could induce pancreatitis and 
elevation of serum amylase[27]. Such clinical studies have provided evidence of 
organophosphate-mediated pancreatic damage. In addition, the acetylcholinergic 
receptor also governs the viability of pancreatic cells. The study conducted by 
Pfitzinger et al[28] demonstrated that cholinergic activation slowed the progression of 
pancreatic cancer. On the other hand, Zhang et al[29] presented evidence in a type I 
diabetes mellitus animal model mediated by streptozotocin that an acetylcholin-
esterase inhibitor protected pancreatic beta cells against apoptosis. Therefore, organo-
phosphates might disrupt insulin secretion directly by dysregulating acetylcholin-
esterase activity (Figure 1).

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: DYSFUNCTION OF GLUCONEOGENESIS
Organophosphate-mediated gluconeogenesis by disrupted lipolysis
The pathogenesis of diabetes mellitus involves impaired regulation of hepatic glucon-
eogenesis. Hypersensitive glucose production in response to gluconeogenic stimuli 
poses organophosphate exposure as a risk factor for prediabetes[30,31]. As organo-
phosphates are ingested via the intestine, the conversion of organophosphates by 
cytochrome 450 enhances cholinergic inhibition up to 70%[32]. As organophosphate 
accumulates within hepatocytes, the activation of adenylyl cyclase produces excessive 
cyclic adenosine monophosphate[31], which increases hepatic glucose production and 
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Figure 1 Postulated molecular mechanisms of new-onset diabetes mellitus after organophosphate pesticide exposure. Organophosphate 
pesticides are metabolized in the liver to toxic derivatives via cytochrome P450 via a first-pass effect. Paroxonase isoform 1 serves as the enzyme handling 
hydroxylation and cleavage of the toxic form. The active metabolite might induce new-onset diabetes mellitus via pancreatic beta cell damage and disturb the 
homeostasis of gluconeogenesis and insulin sensitivity. Organophosphates could directly induce apoptosis of pancreatic beta cells by activating nuclear factor-κappa 
beta, and therefore, insulin secretion may be hampered. Beyond pancreatic cells, gluconeogenesis within the liver could be activated by reactive oxidative species 
generation and inflammation induced by microvesicular steatosis, enhanced cyclic adenosine monophosphate generation, excessive catecholamine and abated 
insulin sensitivity of hepatocytes via insulin receptor substrate-1. Distal organ damage by organophosphates may also disturb the homeostasis of gluconeogenesis. In 
organophosphate-related acute kidney injury, gluconeogenesis within the proximal tubules is disturbed. Decreased proximal gluconeogenesis exacerbates excessive 
hepatic gluconeogenesis. In skeletal muscle, sarcopenia mediated by intermediate syndrome might reduce glycogen storage within skeletal muscle, which may 
induce hyperglycemia. Organophosphates also deposit within adipose tissue and therefore exacerbate adipogenesis by activating peroxisome proliferator-activated 
receptor-gamma. Excessive adipose tissue might enhance insulin resistance and further hasten the development of new-onset diabetes mellitus. CYP450: 
Cytochrome P450; PON1: Paroxonase isoform 1; ROS: Reactive oxidative species; AMP: Adenosine monophosphate; IRS-1: Insulin receptor substrate-1; PPAR: 
Peroxisome proliferator-activated receptor.

therefore increases body weight along with adipose tissue[33]. In a study conducted 
by Velmurugan et al[30], acetic acid increased hepatic glucose-6 phosphate and citric 
acid production after inducing inflammation. Apart from activation of cyclic 
adenosine monophosphate, the organophosphate itself also increases oxidative stress 
within hepatocytes by exhausting enzymes that reverse oxidative stress[34], and such 
oxidative stress may disrupt membranous lipids by activating lipid peroxidation[35]. 
Hepatic injury also occurs in organophosphate intoxication, and therefore, sequential 
sinusoidal dilatation and microvesicular steatosis impair glycogen synthesis[36]. 
Insulin mediates the suppression of adipose lipolysis physiologically and therefore 
downregulates gluconeogenesis[37]. Ince et al[38] demonstrated that lipid metabolism 
was disturbed in organophosphate-treated mice, with excessive end-products of lipid 
peroxidation. As excessive acetylcholinesterase leads to subjects having chronic 
hypercholinergic status, dietary habits are altered. From the study by Slotkin et al[39], 
neonatal rats exposed to organophosphate had hyperactive acetylcholine function 
within the neuron body, and such activity could be ameliorated only by a high-fat diet.

Organophosphate-mediated gluconeogenesis mediated by impaired glycogen 
storage
Under hyperglycemic conditions, glycogen storage could lower circulating glucose 
and enhance the anabolism process rather than catabolism. Glycogen phosphorylase, 
which counteracts glycogen storage, is activated by organophosphates[40]. Dichlorvos, 
as an example, increased the messenger ribonucleic acid expression of glycogen 
phosphorylase and decreased glycogen storage[41]. However, the different organo-
phosphates had diverse actions on glycogen-storing proteins. Malathion, while 
activating the gluconeogenesis process, decreased glycogen phosphorylase but 
resulted in compensatory hepatomegaly[42,43]. The modulation of organophosphate 
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on glycogen storage could contribute to the gluconeogenesis process.

Organophosphate-mediated gluconeogenesis mediated by altered hormone 
regulation
Glucagon and catecholamine are the major hormones regulating gluconeogenesis[37]. 
Glucagon and catecholamine could directly enhance hepatic gluconeogenesis by 
activating cyclic adenosine monophosphate via phosphorylation of protein kinase A 
activity[44] and bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphos-
phatase 2 (PFK2/FBPase-2)[45]. Glucagon activity also decreased glycogen storage by 
coupling with the inhibitory G protein[46]. Catecholamine, on the other hand, also 
activates gluconeogenesis via cyclic adenosine monophosphate activity[47]. Stress-
associated catecholamine release can increase the gluconeogenesis process and 
therefore insulin resistance, and organophosphate itself activates catecholamine 
release after inhibiting acetylcholinesterase activity[42]. Organophosphate could 
activate catecholamine release within neurons, and unbalanced catecholamine release 
might prolong the gluconeogenesis process.

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: INSULIN RESISTANCE MEDIATED BY IN-
FLAMMATION OR DYNAMIC CHANGES IN THE MICROBIOTA
Insulin resistance, excessive gluconeogenesis and insufficient glucose uptake in the 
presence of insulin place subjects as hyperglycemia status and therefore invoke 
sequential adipose tissue formation. Physiologically, insulin activates the insulin 
receptor by tyrosine phosphorylation of insulin receptor substrate-1[48], and serine 
phosphorylation inhibits the insulin receptor and offsets insulin activity[49]. Insulin 
resistance is common in chronic organophosphate exposure subjects. From the in vivo 
study conducted by Nagaraju and Rajini[22], insulin hypertrophy and the increased 
secretion of insulin were accompanied by circulating insulin-like growth factor 1, free 
fatty acids, corticosterone, and paraoxonase activity. As organophosphate increases 
excessive cholinergic activity, insulin resistance is associated with systemic inflam-
mation. From the study reported by Liang et al[50], organophosphates could induce an 
increase in body weight in experimental mice treated with a high-fat diet. In organo-
phosphate mice treated with a high-fat diet, systemic inflammation mediated by 
lipopolysaccharide might occur. Systemic inflammation mediated by the intestinal 
barrier might activate systemic inflammation. In addition, the lipid peroxidation end 
product malondialdehyde (MDA) increased in organophosphate-treated rats, and the 
oxidative end product was associated with a higher level of inflammation[38].

Chronic exposure to organophosphate could directly enhance systemic inflam-
mation. In a study by Ince et al[38], organophosphate-treated rats had higher 
proinflammatory cytokines, such as interferon gamma, interleukin 1 beta, tumor 
necrosis factor alpha, and nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB), than control rats. Hepatocytes are the major cells confronting proinflam-
matory cytokines. As NF-κB is activated by inflammatory cytokines, IκB kinase-β 
might be activated and therefore hamper the downstream action of insulin[51]. In 
addition to IκB kinase-β, JNK signaling was also activated in organophosphate 
intoxication. When endoplasmic reticulum stress is enhanced after organophosphate-
mediated excessive oxidative stress, JNK is activated under conditions of proinflam-
matory cytokine release via NF-κB[52]. Based on the evidence above, organophos-
phates might induce inflammation and produce proinflammatory cytokines mediating 
insulin resistance.

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: INSULIN RESISTANCE MEDIATED BY ROS
Excessive oxidative stress is associated with insulin resistance. Polyunsaturated fatty 
acids are the main source of oxidative stress. Low concentrations of ROS mediate the 
proliferative signals of insulin by phosphatidylinositol 3-kinase and protein kinase B
[53]. In acute or chronic organophosphate intoxication, ROS regeneration is common 
as the exhaustion of endogenous antioxidant species occurs. The MDA level and 
superoxide dismutase increased in organophosphate intoxication, and reduced 
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glutathione was depleted[5]. Possamai et al[54] showed that both acute and chronic 
exposure to malathion could generate ROS within the kidney and brain acutely and 
liver and skeletal muscle chronically. The study performed by Aly et al[55] also 
demonstrated that the liver serves as the reservoir in chronic organophosphate 
exposure with the generation of ROS. To enhance the elimination of ROS, adenosine 
triphosphate is generated from the activated gluconeogenesis process within the liver
[56]. In addition, ROS also directly disturb insulin receptor signaling. Morino et al[57] 
demonstrated that ROS activated serine residues on insulin receptor substrate 1 and 
therefore inhibited glucose transporter type 4. From the aspect above, the ROS 
generated by organophosphate could disturb insulin signaling and therefore worsen 
insulin resistance.

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: DYSFUNCTION OF PEROXISOME PROLIFE-
RATOR-ACTIVATED RECEPTOR GAMMA
Peroxisome proliferator-activated receptor (PPAR) is a transcriptional receptor within 
the nucleus, and its main action governs the proliferation of peroxisomes within the 
nucleus. PPARs regulate the metabolism of carbohydrates, lipids and proteins along 
with insulin sensitivity. The role of organophosphates in lipid metabolism has been 
demonstrated. Since organophosphate is a highly fat-soluble component, accumu-
lation within adipose tissue could prolong its toxicity and generate oxidative stress 
within adipose tissue[58]. Smith et al[59] demonstrated that diazinon induces 
adipogenesis within preadipocytes by activating PPAR gamma receptors along with 
the transcription factor CCAAT-enhancer-binding protein α (C/EBPα).

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: GLUCAGON-LIKE PEPTIDE-1 RECEPTOR 
AGONIST AND DIPEPTIDYL PEPTIDASE-4 INHIBITOR
Incretin secreted from the intestine is important for insulin secretion. As carbohydrates 
enter the duodenum, the K cells within the duodenum secrete glucose-dependent 
insulinotropic polypeptides into the brain via the vagus nerve. Activated vagal tone 
enhances acetylcholine release to M cells within the distal ileum and therefore 
increases glucagon-like peptide 1 (GLP-1). GLP-1 could therefore increase insulin 
release and lower blood glucose. Organophosphates might increase the acetylcholine 
concentration within the neural cleft and therefore downregulate muscarinic receptors. 
Downregulated muscarinic receptors attenuate GLP-1 release and therefore further 
insulin release[60]. From the study by Rathis et al[61], the GLP-1 response was 
attenuated in subjects with acute exposure to organophosphate with atropine 
treatment. Chronic exposure to organophosphate might downregulate the incretin-
mediated glucose-lowering effect.

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: RENAL HANDLING OF GLUCOSE
From clinical observations, victims of organophosphate exposure had transient 
glycosuria, which was relevant to euglycemia[62]. Based on the evidence, acute 
tubular necrosis might be noticed in organophosphate intoxication subjects. From the 
study reported by Kaya et al[63], acute organophosphate intoxication could mediate 
the vacuolization of tubular epithelial cells and tubular structure approaching atrophy 
within the proximal tubules. The oxidative stress mediated by organophosphates 
worsened proximal tubular damage in an in vitro study performed by Poovala et al
[64]. The activation of the MAPK signaling pathway within nephron precursor cells 
demonstrated direct nephrotoxicity after activating JNK and caspase-3[65]. Proximal 
tubular cells primarily serve as gluconeogenic cells through the utilization of 
adenosine triphosphate, and therefore, damaged proximal tubules might impair 
endogenous gluconeogenesis[66] and are associated with higher mortality and the 
need for dialysis in critically ill patients[67,68], including organophosphate in-
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toxication subjects[69]. Since acute kidney injury and stress-mediated inflammation 
might contribute to insulin resistance and new-onset diabetes mellitus[70], preserving 
kidney function during acute kidney injury status through organophosphate 
intoxication should be important in managing these patients to hamper the 
development of diabetes mellitus.

MECHANISMS OF NEW-ONSET DIABETES MELLITUS AFTER ORGANO-
PHOSPHATE EXPOSURE: INTERMEDIATE SYNDROME
As described in the previous sections, the major clinical manifestation of cholinergic 
crisis was the overactivation of the parasympathetic tone with tachycardia, myosis or 
neurologic complications such as seizures. From a previous study by Liu et al[13], 
acute organophosphate intoxication was minimally predictive of new-onset diabetes 
mellitus. Intermediate syndrome by organophosphate could induce myopathy, 
especially in the proximal skeletal muscle and respiratory muscle[71]. Although the 
direct mechanism is still unknown, necrosis of skeletal muscle and associated 
myopathy might be an entity in chronic organophosphate intoxication subjects[72]. In 
addition, organophosphate-mediated peripheral motor neuropathy is accompanied by 
weakness after acute intoxication[73]. From a review of the literature, a correlation 
between organophosphate intoxication and sarcopenia was rare. However, in patients 
with diabetic neuropathy, sarcopenia was more obvious than in those without 
neuropathy[74]. Persistent muscle weakness in intermediate syndrome might lead to 
sarcopenic status in organophosphate patients, and sarcopenia alone might enhance 
the risk of developing diabetes mellitus. In the study by Hong et al[75], skeletal muscle 
mass was negatively associated with the development of type 2 diabetes mellitus. 
Since skeletal muscle serves as the pool of glucose mediated by insulin, the decreased 
skeletal mass would reduce glucose disposal and therefore worsen the inflammation 
of skeletal muscle and insulin resistance[76].

POSSIBLE THERAPEUTIC PERSPECTIVE IN PREVENTING ORGANO-
PHOSPHATE-MEDIATED NEW-ONSET DIABETES MELLITUS
In acute organophosphate intoxication, the application of atropine is the mandatory 
therapeutic strategy in treating cholinergic crises. The association between atropine 
and insulin secretion has been discussed. In 1978, cholinergic blockade by atropine 
was known to decrease insulin secretion mediated by gastric inhibitory polypeptides 
and gastrin release[77,78]. The action of atropine on gastric inhibitory polypeptides 
lowered postprandial insulin secretion. From the study published by Schafer et al[79] 
and Afonso et al[80], atropine inhibited the release of hepatic insulin-sensitizing 
substances, which therefore lessened insulin sensitivity during feeding. The parasym-
pathetic nerves directly stimulate postprandial insulin secretion; therefore, atropine 
might play an inhibitory role in blood sugar control. However, a study by Svensson et 
al[81] showed that atropine improved insulin sensitivity in both lean and obese 
subjects. In the atropine-treated group, glucose uptake was higher than that in the 
subjects treated with saline alone. In summary, parasympathetic blockade might 
directly decrease insulin secretion mediated by gastric inhibitory polypeptides and 
delay intestinal emptying under cellular dehydration conditions[82]. However, 
atropine might improve insulin sensitivity based on the clinical trial mediated by 
Svensson et al[81]. Since atropine might only be given in the acute intoxication of 
organophosphate conditions, the acute adverse effect might not be potentiated.

ROLE OF ROS GENERATION IN ORGANOPHOSPHATE-MEDIATED NEW-
ONSET DIABETES MELLITUS
From the evidence mentioned above, the oxidative stress generated by organo-
phosphate increased gluconeogenesis and decreased insulin sensitivity. Therefore, 
interventions to lessen ROS generation have been proposed to prevent the 
development of organophosphate-mediated diabetes mellitus. N-Acetylcysteine is a 
widely used scavenger for ROS due to its regeneration of glutathione. From clinical 
trials, N-acetylcysteine has been applied to treat acute organophosphate intoxication. 
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From the clinical trial reported by El-Ebiary et al[83], n-acetylcysteine could achieve 
less atropine use and shorter hospitalization stays in acute organophosphate 
intoxication subjects. Falach-Malik et al[84] demonstrated that in diabetes-prone mice 
treated with a high-fat diet, n-acetylcysteine alleviated glucose intolerance by 
lessening hepatic steatosis. Charron et al[85] also demonstrated that in high-fat diet-fed 
maternal mice, n-acetylcysteine supplementation in the maternal stage decreased 
diabetes mellitus development in offspring. A similar effect was also demonstrated in 
a type 1 diabetes mellitus animal model under insulin deficiency[86]. N-Acetylcysteine 
also lessened organophosphate-mediated toxicity in vivo. A report from Yurumez et al
[87] demonstrated that N-acetylcysteine could rescue antioxidative glutathione, nitrite 
and nitrate and decrease MDA generation in organophosphate-treated mice. The study 
conducted by Bayir et al[88] demonstrated that in organophosphate-poisoned mice, n-
acetylcysteine alone could restore the cholinesterase concentration within erythrocytes, 
and the liver MDA level was lessened in n-acetylcysteine-treated mice rather than 
pralidoxime-atropine-treated mice or sham mice. From the aspect of decreasing 
organophosphate-mediated oxidative stress and the sequential development of 
diabetes mellitus, a therapeutic strategy for lowering ROS should be considered.

FUTURE PERSPECTIVES ON THE PREVENTION OF ORGANO-
PHOSPHATE-MEDIATED NEW-ONSET DIABETES MELLITUS: RISK 
FACTOR STRATIFICATION
Since the development of diabetes mellitus is common in organophosphate-exposed 
subjects, risk stratification should be emphasized. The specific brand of organo-
phosphate pesticide could influence the development of diabetes mellitus. Juntarawijit 
and Juntarawijit[89] noticed that endosulfan, mevinphos, carbamate and one fungicide 
(benlates) contributed to the development of diabetes mellitus in the Thai population. 
Apart from the specific insecticides, the environmental heavy metal content might play 
a synergistic role in the development of diabetes mellitus. From the study by 
Velmurugan et al[90], arsenics could synergize with organophosphate-mediated 
diabetes mellitus. At the same time, genetic polymorphisms should play a role in the 
development of organophosphate-induced diabetes mellitus. As the previous section 
mentioned, organophosphates could be metabolized by hepatic cytochrome p450, and 
metabolites might generate genotoxicity if the polymorphism existed within the 
subjects[91]. The first pass effect of cytochrome p450 generates toxic oxon organo-
phosphate, which would be further oxidatively cleaved by cytochrome or 
hydroxylated by paraoxonase-1[92,93]. From the study by Al-Hakeem et al[94], the 
polymorphism in paraoxonase-1 with glutamine 192 to arginine made the subject 
vulnerable to gestational diabetes mellitus. The evidence shows a link between the 
polymorphism and organophosphate-mediated diabetes mellitus. In addition to 
diabetes mellitus development, lipid metabolism might be altered by paraoxonase-1 
polymorphisms. The study conducted by Onat and et al[95] Leonel Javeres et al[96] 
demonstrated that the paraoxonase-1 polymorphism with the rs662 genotype was 
associated with ApoA1 and ApoB, which also reflected dyslipidemia in metabolic 
syndrome. Finally, personal protective equipment plays an important role in 
moderating the organophosphate metabolites associated with insulin resistance. 
Seesen conducted a study analyzing urinary organophosphate metabolites in pesticide 
sprayers and nonfarm workers[97]. In this study, the pesticide sprayer had a higher 
incidence of insulin resistance, and the only different organophosphate metabolite was 
diethylthiophosphate. No correlation was identified between diethylthiophosphate 
and the severity of insulin resistance. However, personal protection equipment 
lowered organophosphate metabolite generation. Personal protective equipment 
might play a preventive role in alleviating insulin resistance in organophosphate 
intoxication subjects.

CONCLUSION
Organophosphate pesticides have been linked to both acute and chronic intoxication. 
In acute intoxication, organophosphate-mediated cholinergic crisis might sequentially 
be followed by intermediate syndrome. Intermediate syndrome might hamper chronic 
muscle wasting and sarcopenia, therefore increasing the risk of diabetes mellitus. With 
chronic exposure to organophosphates, diabetes mellitus might develop by direct 
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damage to the pancreas and insulin resistance mediated by lipolysis, oxidative stress 
and chronic inflammation. Distal organ damage, such as acute kidney injury, might 
worsen possible organophosphate-mediated diabetes mellitus. The standard 
therapeutic strategy for cholinergic crisis may play a controversial role in managing 
organophosphate-mediated diabetes mellitus. However, reducing ROS might be a 
possible therapeutic strategy. In addition, elucidating the possible genetic 
polymorphisms to predict the development of diabetes mellitus with organophosphate 
intoxication might be essential.
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