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Abstract: The center of plantar pressure (COP) reflects the dynamic balance of subjects to a certain
extent. In this study, wearable pressure insoles are designed, body pose measure is detected by
the Kinect sensor, and a balance evaluation system is formulated. With the designed games for the
interactive actions, the Kinect sensor reads the skeletal poses to judge whether the desired action
is performed, and the pressure insoles simultaneously collect the plantar pressure data. The COP
displacement and its speed are calculated to determine the body sway and the ability of balance
control. Significant differences in the dispersion of the COP distribution of the 12 subjects have
been obtained, indicating different balancing abilities of the examined subjects. A novel assessment
process is also proposed in the paper, in which a correlation analysis is made between the de facto
sit-to-stand (STS) test and the proposed method; the Pearson and Spearman correlations are also
conducted, which reveal a significant positive correlation. Finally, four undergraduate volunteers
with a right leg sports injury participate in the experiments. The experimental results show that the
normal side and abnormal side have significantly different characters, suggesting that our method is
effective and robust for balance measurements.

Keywords: plantar pressure; pressure insole; Kinect; balance estimation; virtual reality

1. Introduction

Balance ability is an important physiological function of human body, and it plays an irreplaceable
role in maintaining the normal posture and activity of human body [1-3]. Balance also represents
coordinating function for the trunk muscles and joints, especially hips, knees, and ankles [4].
Muscle dysfunction and weak core strength can lead to poor balance performance, which can result
in incorrect walking posture and even sports injuries. Aging, stroke, physical disability, and other
factors will cause muscle dysfunction and thus lead to decline of human body balance ability, which is
commonly considered as a risk factor for falls and fall-related injuries in older adults [5]. Therefore,
the assessment of balance ability plays a pivotal role in the diagnosis of physical diseases.
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In literature, the balance scale has been served as the assessment method in clinics and research.
The balance performance of subjects can be obtained using the scores when they perform the
corresponding actions. The sit-to-stand (STS) test has been used as a measure of lower-limb strength
in older people and those with significant muscular weakness [6]. Recent studies suggest that
performance in the STS test is influenced by factors that are associated with balance and mobility [6].
Whitney S.L., et al. has proved that the data from the sitting posture test can reflect the balance of
patients with balance disorders [7].

The force measuring platform and 3-D motion capture system have been employed in laboratory
studies of postural stability [8-10]. To maintain an upright stance, the center of mass (COM) should
be stable and controllable [11-13]. Cherng RJ., et al. have found that the COM could explain the
degree of body shaking, which is related to the balance ability and risk of falls [13]. However, due to
the inhomogeneous density distribution of human body, it is difficult to accurately measure the
COM [14]. The ability to maintain the center of pressure (COP) within the base of support can
also estimate the balance ability well [11,15-17]. Tomoya T., Abby M., et al. have used COP for
balance assessing and rehabilitation training [18,19]. Kawano T., et al. have used the COP and surface
electromyography to formulate the degree of postural instability and concluded that postural instability
increased exponentially with the COP displacement [20]. In addition, there is a significant effect of
sway amplitude and direction on the measurement error of COP, with an increase in error as sway
amplitude increases and a significantly accumulated error in the sway direction [21]. These results
show that the COP can reflect the state of motion, and the shift speed of COP provides valuable
information for the assessment of human balance ability.

Compared to other pressure measurement systems, pressure insoles can effectively collect data
during a variety of activities and the wireless communication technology provides much more flexible
data acquisition [22-26]. Moreover, the wearer is under the natural state without inconvenience and
discomfort [22]. For an integrated solution, the Kinect sensor enables effective human-computer
interaction utilizing its motion capture technology. However, it is still difficult to estimate the balance
activity accurately if the Kinect sensor is not used in connection with the other COP and COM
devices [4,27-29].

In view of the pros and cons of the existing technologies, we propose a novel dynamic balance
evaluation system, combining the functions of the Kinect sensor and wearable pressure insoles.
The following major contributions are made: (i) The subjects can undergo the Kinect interaction and
plantar pressure data acquisition at the same time. (ii) When the subject’s body leans forward to
the designed degree, the Kinect interaction can be judged as standard and then the subject can pick
the apples with upper limb movement while collecting the plantar pressure. (iii) The COP can be
calculated from the plantar pressure data, and the COP displacement is employed to assess the balance
ability of the subjects. (iv) In order to verify the availability of the balance estimation method, the STS
test is conducted for 12 subjects and the COP displacement is extracted for analysis. The results of the
two experiments have been analyzed using the Pearson and Spearman correlation analyses. (v) Finally,
the balance of four abnormal subjects are assessed by the proposed balance assessment system to
further verify its effectiveness.

2. Methods

2.1. Experiment System

The designed system consisted of a Microsoft Kinect sensor, pressure insoles, a personal computer
(PC) and a display screen, as shown in Figure 1a. The Kinect sensor was preconditioned and calibrated
before use. The PC received, archived, and processed the data. The interactive virtual scene was
visualized instantly with the help of the Kinect sensor and its toolkits. In this study, an apple picking
game was designed as shown in Figure 1b, and the inserted figure shows the schematic of the forward
leaning of the body.
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Figure 1. (a) Schematic drawing of the designed balance assessment system; (b) Kinect interaction
interface. The inserted figure shows the schematic of the forward leaning of the body.

The Kinect sensor is a widely used color-depth (RGB-D) camera that can capture human motion
in real-time via Kinect, and it can give a pose action interactive screen to guide the subject to follow.
In combination, the developed pressure insole is a pair of equipment that measures and acquires the
foot plantar pressure and transmits the data via WiFi. The insoles have 28 sensing elements with a
sampling rate of 50 Hz for each element, hence 1400 foot pressure data points can be collected per
second. The Tekscan pressure pad (Tekscan BPMSTM, Inc., South Boston, MA, USA) was employed
in the measurements for verifying the plantar insole’s effectiveness. The Tekscan sensors are 0.1 mm
thin and contain 572 individual sensor-elements (62 per cm?), which are oriented along 26 rows and
22 columns. Each sensor covers a measurement area of 22 mm X 33 mm, with a resulting spatial
resolution per sensel of 1.02 mm x 1.27 mm.

2.2. Experiment Procedure

Twelve healthy university student volunteers (ages 24.0 & 1.0, height 178.0 £ 5.3 cm) and four
volunteers with right leg sports injury (2 males with ages 21, height 176.5 & 1.5 cm and 2 females with
age 20.0 £ 0.5, height 157.0 £ 1.0 cm) were recruited to participate in the experiment. The twelve
healthy university student volunteers had no muscle or nerve diseases related to balance disorders,
and were requested to wear loose clothes. The four abnormal volunteers had different degrees of right
leg injuries, but they can be stressed at full foot. All participants were informed about the contents of
the experiment and signed an informed consent form.

To validate the effectiveness of the insole pressure system, the gait data were acquired and
compared with the Tekscan system. One subject stood naturally upright on the pressure pad, wearing
the pressure insoles and hanging his hands on both sides of his body. After that, they were to adjust
their feet to the same width as their shoulders, without moving or turning their head, and to keep their
eyes looking forward. The flowchart of the experiment procedure is shown in Figure 2. A time cost
of 30 s was required per experiment and each experiment was repeated at least three times. Before
performing the experiment, the subjects wore the pressure insoles and stood within the identifiable
range of the Kinect sensor. In the process of human interaction, the feet were not moved. After the
volunteers got familiar with the process of the Kinect interaction, each subject was requested to perform
the experiment until 1500 frames of valid data were obtained. Valid data were the plantar pressure data
that were collected when the body leant forward to the designed angle (30 degree in the experiment).
The pressure data were preprocessed on PC with de-noising, then the COP was calculated and the
maximum COP displacement within 30 s was taken for analysis.
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Figure 2. The flowchart of Kinect guided balance measurement.
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The developed pressure insoles are shown in Figure 3a. The coordinate system of the insoles was
set up and used to calculate the COP, as shown in Figure 3b. The Kinect sensor guided the subject to
perform an action of picking apples displayed on screen while keeping the body leaning forward, as
shown in Figure 3c. The COP displacement and the shift speed of COP were calculated for analysis.
Subsequently, the sit-to-stand (STS) test was performed as shown in Figure 3d. Each subject sat on a
chair with the same height as their knee, the feet were apart parallel to one another with the same as
the humeral ministry wide. When the start command was issued, the subject stood up from the chair
and then sat down, repeating the action continuously for 30 s. The experiment should be repeated
at least three times, the plantar pressure data of each experimental subject was recorded and the
maximum COP displacement was taken as the analysis data. Finally, the feasibility and effectiveness
of the proposed method was verified by comparing with the results obtained using the STS tests.
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Figure 3. (a) Plantar pressure insoles; (b) pressure insoles coordinate system; (c) Kinect interactive
scene; and (d) the sit-to-stand (from left to right) process.

2.3. Data Processing

The pressure insoles were connected to the PC through Wi-Fi. The pressure insole transmits 28
raw data points per frame to the PC in real time. According to the design principle of the circuit
schematic, the pressure value of each sensor element F; can be calculated using the formula:

4096

2 A m (i=1,23,...,28) )

F;
Xl

where x; is the captured raw data from each sensor element, and m is an adjustment parameter,
which is determined to be 2000 according to the calibration of actual force value.

We set up a coordinate system for the insoles and the coordinates of each sensor element were
obtained. Then, the COP coordinate, COP lateral displacement, COP longitudinal displacement,
COP displacement, and the shift speed of COP can be calculated through the following equations [22]:

28
Xcor = S5~ 113 - )
i=1"1
n28
22X
Ycor = 21}1—11;1 3)
i=1"1
LateralDcop= Xcop<t) — Xcop(t — 1) (4)
LongitudinalDCOP: Ycop(t) — YCOP(t — 1) 5)

Nl—

Discop= (LateralD cop2+L0ngitUdimch0P2) (6)
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1 t+At
Speedop = A Z Discop (7)
t

where the ith sensor element is defined by the X; and Y; coordinates, Xcop and Ycop are the
COP coordinates, t(s) is the current time, LateralDcop (cm) is the COP lateral displacement,
LongitudinalD-qp (cm) is the COP longitudinal displacement, Discop (cm) is the COP displacement,
Speedop (cm/s) is the shift speed of COP, and At is the time interval.

3. Results and Discussions

As shown in Figure 4, the pressure change curve was acquired from characteristic points of the
insoles during standing. The points of Nos. 9, 14, and 25 were taken from the forefoot, midfoot,
and rearfoot, respectively. In the static positions of a relaxed standing posture, the forefoot and rear
foot were loaded with a large force, while the midfoot was almost unloaded. As shown in Figure 4,
the forces of point 9 and 25 were much larger than that of point 14 at midfoot, which was consistent
with the actual foot pressure distribution. In order to show the dynamic characteristic, the subject was
asked to do a tilting motion at 8 s. Therefore, there was a change at 8-10 s for point 9 and point 25,
which was caused by the transition from the standing to the forward leaning posture. In the forward
tilt, the midfoot is almost unstressed, so point 14 had no significant change. The change of force
indicated that the characteristic point of insoles had a sensitive response to foot pressure.

(h)
80
[—#9
o L——#14
z
@
o
(o]
w

Time (s)

Figure 4. (a) Sensor distribution of plantar pressure insoles; (b) Pressure variation of characteristic
points in plantar.

The regularity of foot pressure in the forefoot, midfoot, and rearfoot regions was investigated
with the insoles and compared with the pressure distribution measured using Tekscan. As shown in
Figure 5, the results from two types of equipment were basically the same. In Figure 5d, the force in the
midfoot region was lower than that in Figure 5b, which may have been caused by the relatively lower
sensor element density of the insole. At 7 s, both forefoot forces appeared as a wave peak and the
midfoot ones appeared as the valley. Although the change was not obvious, the same trends occurred
at the 10 s and 134 s.
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Figure 5. Pressure variations of forefoot, midfoot, and rearfoot regions during standing. (a) The plantar
pressure distribution image obtained from Tekscan; (b) Pressure curves measured using Tekscan;
(c) The plantar pressure image obtained from insole; (d) Pressure curves measured using insoles.

To investigate the validity and reliability of the pressure insole, we collected the data of 12 healthy
subjects with different body weights over 30 s each and compare them with the pressure value of
Tekscan sensors at the same position. Each subject wore the pressure insole and stood on the Tekscan
pressure pad, and data from the two devices was collected simultaneously; the mean pressure data
over 30 s was analyzed. This experiment was based on the theory of Pearson correlation in which
the Pearson correlation coefficient (r) can reflect the linear correlation between two sets of vectors.
Thus, the validity could be conducted in accordance to the r between the two sets of the pressure
force. The pressure force of each sensing point of five subjects is shown in Table 1. The Pearson
correlation coefficients of the corresponding points for each subject was 0.8820, 0.8705, 0.8372, 0.7535,
and 0.7443; the Pearson correlation coefficient of the other seven subjects were 0.8186, 0.8808, 0.6704,
0.8452, 0.7682, 0.7749, and 0.7521, and the mean value of the 12 subjects was 0.7934, which revealed a
strong correlation between the two devices.

Table 1. The pressure data obtained by two pressure measurement systems.

Subject
Point 1 2 3 4 5

Insole 2 Tek P Insole Tek Insole Tek Insole Tek Insole Tek
1 26.22 150 19.23 179 17.24 135 25.22 187 15.25 147
2 13.77 78 15.25 144 5.88 30 12.78 122 4.89 45
3 13.77 66 9.81 71 5.88 30 5.88 37 12.78 115
4 25.22 141 11.29 119 19.23 172 11.29 102 18.23 168
5 12.78 96 27.22 218 13.77 113 12.78 150 12.78 119
6 20.72 112 20.72 137 13.77 113 13.77 140 13.27 120
7 31.75 165 31.24 245 27.72 191 31.24 161 24.22 199
8 45.44 185 27.72 223 32.75 255 41.37 242 16.74 132
9 45.95 202 45.95 252 4493 255 4493 255 12.78 124
10 27.22 188 13.77 102 27.22 199 2522 196 13.77 134
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Subject
Point 1 2 3 4 5

Insole 2 Tek P Insole Tek Insole Tek Insole Tek Insole Tek
11 25.22 126 19.23 194 25.22 179 26.22 191 9.32 68
12 20.72 104 15.75 124 20.72 133 13.77 137 5.39 51
13 49.54 212 45.95 240 51.59 220 58.81 214 12.78 120
14 19.23 90 11.29 91 13.23 102 11.29 98 10.31 81
15 13.77 67 5.88 46 13.77 91 13.77 208 9.32 74
16 27.22 187 13.77 136 27.22 219 27.22 154 9.81 79
17 5.88 50 13.77 136 12.78 79 12.78 146 5.88 48
18 25.22 187 12.78 134 25.22 207 19.23 204 5.88 39
19 15.25 84 11.29 108 18.23 165 13.27 139 16.24 167
20 12.78 73 12.78 132 13.77 119 13.77 147 13.77 113
21 27.22 168 13.77 156 26.22 237 19.23 164 7.84 84
22 27.22 168 27.22 255 27.22 208 29.73 234 24.22 193
23 41.37 255 40.35 255 41.87 255 41.37 226 28.73 255
24 24.22 110 12.78 119 25.22 192 25.22 218 13.77 160
25 36.8 255 36.8 255 45.95 255 38.83 255 100.51 255
26 43.4 205 41.37 213 50.56 205 41.37 204 44.93 225
27 31.24 207 29.23 238 27.22 206 27.22 193 48.51 225
28 51.59 229 36.8 176 45.44 210 52.62 209 125.58 255

r 0.882 0.8705 0.8372 0.7535 0.7443

2 The unit of pressure insole is N; ® Tek: The Tekscan system, arbitrary unit.

The distribution of COP at standing posture measured using pressure insoles and the Tekscan
system is shown in Figure 6a,b, respectively. As can be seen from the figure, in the case of standing,
the X-coordinate of COP measured using insoles was within the range of 5.93-6.50 cm, and the
coefficient of variation was 0.019; the Y-coordinate was within the range of 21.07-23.06 cm, and the
coefficient of variation was 0.016. The X-coordinate of COP measured using the Tekscan system was
within the range of 5.85-6.46 cm and the coefficient of variation is 0.020; the Y-coordinate was within
the range of 20.82-23.08 cm and the coefficient of variation was 0.021. The coefficients of variation of
COP in the X- and Y-directions measured by the two systems were similar, demonstrating a reliable

consistency between the insoles and Tekscan.
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23.5
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230} ¢ s W
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Figure 6. (a) Distribution of COP measured using insoles; (b) Distribution of COP measured using the

Tekscan system.

Subsequently, the dynamic gait experiment could be carried out, and the relative gait parameters
were analyzed. As shown in Figure 7, the pressure had obvious fluctuation at the characteristic points
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of the left and right feet during five gait cycles of normal walking. A gait period was defined as the
time between two heel landing phases, and one gait cycle was divided into two stages: the stance
phase, which was the time between the heel landing and the tiptoe lifting, and the swing phase,
which was the time between the tiptoe lifting and the heel landing again. In Figure 7, t2 is the time of
heel landing, t3 is the moment of tiptoe lifting, t4 is the time of heel landing again, and a full gait cycle
was obtained from t2 to t4. At time point t2, the forces of points 25 and 28 reached the maximum value
because of the heel landing on the floor. At time point t3, the tiptoe was off the ground, thus the forces
of points 3 and 4 reached the minimum. Gait experiments have shown that the pressure insole can
also collect pressure data during dynamic processes. A summary of gait data is shown in Table 2.
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Figure 7. Pressure variation at characteristic points of left and right foot during five normal walking
gait cycles. (a) The pressure curve of left foot during walking; (b) the pressure curve of right foot
during walking.

Table 2. The gait data obtained using two pressure measurement systems.

Pressure Measurement System The Pressure Insole

Foot Stance Swing Gait Stance Swing Gait
Phase (s) Phase (s) Cycle (s) Phase (s) Phase (s) Cycle (s)

subject 1 L 1300 0.300 1600 1300 0.267 1567
R 1260 0.450 1710 1213 0.399 1612

subject 2 L 1300 0.350 1650 1344 0.249 1593
R 1460 0.350 1810 1501 0.281 1782

subject 3 L 1300 0.330 1630 1373 0.227 1600
R 1390 0.400 1790 1520 0.239 1759

subject 4 L 1290 0.310 1600 1370 0.270 1640
R 1500 0.420 1920 1550 0.337 1887

Four healthy subjects in normal walking have been tested using the insoles and Tekscan system,
and the time of the stance phase, swing phase, and gait cycle have been extracted for comparison.
There was no significant difference between these two systems. The maximum time difference in
stance phase duration was 0.130 s, and the minimum value was zero. The maximum time difference
in swing phase duration was 0.161 s and the minimum was 0.033 s. The difference in the gait period
was within the range of 0.098 s to 0.028 s. Furthermore, the cosine similarity of the stance duration,
swing duration, and gait cycle time of the left and the right foot between the two devices were 99.97%,
99.34%, 99.97%, 99.91%, 99.04%, and 99.98%, respectively. The results of these static and dynamic
experiments demonstrate that the pressure insoles can measure dynamic plantar pressure distribution
and it may be functional enough to be used for balance assessment. Therefore, the developed pressure
insoles have been employed in the following study.

The balance assessment has also been carried out using the apple picking game with the pressure
insoles and Kinect sensor, as displayed in Figure 3c. The plantar pressure data of 12 subjects were
extracted and the relative parameters were calculated using Equations (2)—(7). Figure 8 shows the COP
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trajectory of 12 subjects during the experiment. The balance ability of each subject could be assessed
using the degree of the COP displacement. On the premise of completing the experiment under
the condition of external disturbances, the degree of dispersion of the COP distribution can reflect a
person’s adjustment ability to maintain dynamic equilibrium. Some subjects completed the experiment
with non-significant COP displacement, indicating that they can reach equilibrium more quickly with
an excellent capability of self-adjustment balance. As shown in Figure 8, the Y-displacement of COP of
the 12 subjects were 7.64, 10.71, 6.57, 8.61, 9.66, 7.36, 6.53, 7.77, 4.70, 3.34, 8.53, and 8.48 cm, respectively.
Although there were significant differences in the COP displacement and dispersion of the COP
distribution of the 12 subjects, they all had equally good general balance ability and self-adjustment
ability. The results prove that the balance assessment system can obtain different COP displacements
of 12 subjects.

40 45 50 55 60 65 7.0 7.5 45 50 55 60 65 7.0 7.5 45 50 55 60 65 70 7.5 8.0
24 o 24
22 i 22
20 S 20
18 ¥ 18
18] Subject 1 Subject2 ~Zg2— Subject 3 L
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40 45 50 55 60 65 7.0 7.5 45 50 55 60 65 7.0 75 45 50 55 60 65 7.0 75

X

Figure 8. The COP trajectory of 12 subjects.

In the designed Kinect game, we mainly aimed to test the balance ability in the anterior direction.
The apples in the virtual scene were located within 1-2 m on the front side of the human body,
as show in Figure 1b. In a walking gait cycle, the trajectory of the COP moved from the heel to the
forefoot, and the maximum displacement of the anterior—posterior direction (Y-displacement) was
close to the foot length in theory and the X-displacement was the same as the foot width in theory.
In the experiment, the subjects stood on the ground and leant the body forward to pick the apples,
so there was no process from a heel-strike landing to a forefoot landing. Therefore, the maximum
Y-displacement of the COP in the experiment was equal to or smaller than that of normal walking.
The Y-COP displacement during the balance experiment was measured and normalized for the foot
length to obtain the Y-proportion [30,31]. We mainly investigate the Y displacement of each subject in
the following study to assess the anterior—posterior balance ability [26].

The calculation result of the balance experiment is shown in Table 3. The X-proportions of most
subjects were close to one and there was no significant difference in the X-displacement, while the
Y-displacement had an obvious difference between the subjects. The Y-proportion of the 12 volunteers
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were 0.126-0.404. The mean value of the Y-proportion of 12 subjects was 0.281. The standard deviation
was 0.076. Therefore, there was little difference in the balance ability of healthy people. They have
enough ability to control the body balance to ensure the completion of the test.

Table 3. The balance experiment data.

X-Displacement Y-Displacement The Shift Speed of X  The Shift Speed of Y

Subject X-Proportion Y-Proportion

(cm) (cm) (cm/s) (cm/s)
1 1427 7638 0.157 0.495 1223 0.288
2 2040 10.712 0.163 0.480 1359 0.404
3 1429 6574 0.110 0.406 0.947 0.243
4 2096 8606 0.127 0.379 1361 0.319
5 1527 9661 0.124 0.390 0.819 0.365
6 1450 7356 0.126 0.343 0.849 0.278
7 1433 6535 0.148 0.480 0.821 0.242
8 1489 7767 0.146 0.372 0.812 0.288
9 1402 4701 0.157 0.409 0.807 0.177
10 1055 3336 0.165 0.392 0.647 0.126
11 1738 8527 0.190 0.472 1.009 0.322
12 1506 8482 0.186 0.465 0.938 0.320

X-displacement: The X-displacement of the COP; Y-displacement: The Y-displacement of the COP; the shift speed
of X: The shift speed of X-displacement; the shift speed of Y: The shift speed of Y-displacement; X-Proportion:
The proportion is obtained by dividing the X-displacement with the foot width; Y-Proportion: The proportion is
obtained by dividing the Y-displacement with the foot length.

Subsequently, we performed the STS test, where each subject conducted the STS test three times,
and the mean value of the maximum COP displacement was taken for analysis. The results were
compared with that of the balance experiment to verify the effectiveness of the method proposed in our
study. Figure 9 shows the Y-proportion, and the maximum Y- and X-displacements of the 12 subjects
obtained by the two methods. In the STS test, the X-displacements of 12 subjects were almost constant
with no variation and all data points are displayed as the X1 curve in Figure 9a. Because the subjects
only moved backwards and forwards during standing up and sitting down, X-displacement changed
very little [32]. In the balance experiment, the X2 curve varied erratically. The X-displacements of most
subjects were around 2 cm, and larger X-displacements were produced in some cases, which arose
from the Kinect guided balance adjustments in the anterior-posterior and medial-lateral directions
during the experimental process.

18} (b)

Displacement (cm)

Proportion

5 7
Subject
Figure 9. The maximum displacements of COP and the Y-proportion obtained from two experimental
methods. (a) The X-displacement of 12 subjects, (b) The Y-displacement of 12 subjects. X1 and Y1 are

the data from the STS test and X2 and Y2 are the data from the balance experiment. (c) The Y-proportion
of 12 subjects.
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The curves Y1 and Y2 in Figure 9b show a positive correlation, which were calculated using
correlation analysis, and the Pearson and Spearman correlation coefficients reached 0.7516 and 0.8182
(0.5 to 0.8 indicates a positive correlation, 0.8 to 1.0 indicates a high positive correlation). Figure 9¢c
shows the Y-proportion of the 12 subjects. The Pearson and Spearman correlation coefficients between
Y-displacement and Y-proportion were 0.9619 and 0.9720. The smaller Y-proportion meant better
balance. The smaller COP oscillation was produced by a person with good balance to succeed in the
task of lifting up from the chair [33-35]. Therefore, the smaller the Y-displacement was changed in the
STS test, the smaller the Y-proportion changes will be obtained in the balance experiment. After the
verification by the STS test with a series of experiments, it showed that the proposed method could
complete a certain evaluation in the forward and backward directions.

Finally, we conducted experiments on four abnormal volunteers, each with a right leg sports
injury, to compare the experimental data of the abnormal side with the normal side and normal subjects,
and the results are shown in Figure 10. The Y-proportions of the abnormal side were larger than that of
the normal side and the normal subjects. The mean value of the Y-proportion of the abnormal side and
normal side were 0.505 and 0.321, respectively. The Y-proportions of the normal side had no significant
difference compared to normal subjects. The results demonstrate that there was a decided difference
of the balance ability between the normal side and the abnormal side of subjects.

—s—normal person
06} —e—normal side
—4— abnormal side
& 05}
S
o
o
© o04f
i
p
0.3F
02 1 1 1 1
1 2 3 A
Subject

Figure 10. The Y-proportion of four normal subjects with the normal side and the abnormal side of
four subjects with a right leg sports injury.

The design of the balance assessment experiment was based on the fact that the upper limb
movement would induce balance disturbance in the two-legged standing situation. The 12 volunteers
had no limb disease, the two-legged state was relatively balanced, and the two-footed pressure
center trajectory and other parameters were basically the same. Therefore, we only studied the
experimental data of one foot to evaluate the balance of healthy subjects. Finally, we performed
a balance experiment on the abnormal subjects. The foot pressure data on the normal side and
the abnormal side were analyzed and compared for significantly different dates to demonstrate the
effectiveness of the proposed method.

We mainly analyzed the postural stability of the subject in the anterior—posterior direction.
When the human body adjusts the posture balance, there will be anterior—posterior and medial-lateral
adjustment. When the same motion experiment is performed, the subject has a larger X-Y displacement.
A positive correlation was obtained through the correlation analysis of the balance experiment and STS
test results. The experimental results of abnormal people also showed significant differences between
the normal side and the abnormal side. Therefore, the proposed system and evaluation method proved
that they could reflect the balance ability to a certain extent.

On the other hand, although this work mainly analyzed the Y-displacement, the X-displacement
can also reflect the balance ability. In the anterior—posterior direction, the balance can be maintained
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through moving forward or backward when it is impossible to keep a static balance. The medial and
lateral direction imbalance is more difficult to return to equilibrium by moving left or right and so
many older people have lateral falls, leading to an increase in the risk of hip fractures. Thus, the study
of medial and lateral direction imbalance is also of great significance. The human body adjusts the
balance in different directions, so it cannot be judged by the single direction. The change of the single
direction can only reflect the balance ability to a certain extent. Therefore, it will be a study of the
ability to balance in multiple directions in the future.

4. Conclusions

In this study, the quantification of dynamic balance ability has been proposed and tested on 12
healthy subjects and 4 abnormal subjects with one side leg sports injury using the Kinect sensor and
pressure insoles. The balance experiment of the measured subject was realized by analyzing the COP
displacement under the situation of the Kinect guided game. The results were closely correlated with
the STS experimental results. Our experiment results demonstrated that the proposed method based
on the Kinect sensor and pressure insoles could perform the balance assessment well, and it displayed
a valuable result of the strength of dynamic balance. Moreover, the novel evaluation process has higher
repeatability and can be widely applied in the future.
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