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Abstract: The application of single chain mean-field theory (SCMFT) on semiflexible chain brushes
is reviewed. The worm-like chain (WLC) model is the best mode of semiflexible chain that can
continuously recover to the rigid rod model and Gaussian chain (GC) model in rigid and flexible
limits, respectively. Compared with the commonly used GC model, SCMFT is more applicable to
the WLC model because the algorithmic complexity of the WLC model is much higher than that of
the GC model in self-consistent field theory (SCFT). On the contrary, the algorithmic complexity of
both models in SCMFT are comparable. In SCMFT, the ensemble average of quantities is obtained
by sampling the conformations of a single chain or multi-chains in the external auxiliary field
instead of solving the modified diffuse equation (MDE) in SCFT. The precision of this calculation
is controlled by the number of bonds Nm used to discretize the chain contour length L and the
number of conformations M used in the ensemble average. The latter factor can be well controlled
by metropolis Monte Carlo simulation. This approach can be easily generalized to solve problems
with complex boundary conditions or in high-dimensional systems, which were once nightmares
when solving MDEs in SCFT. Moreover, the calculations in SCMFT mainly relate to the assemble
averages of chain conformations, for which a portion of conformations can be performed parallel on
different computing cores using a message-passing interface (MPI).

Keywords: computational methods; polymers; SCMFT; MPI

1. Introduction

Advances in studies of natural and artificial polymer systems in both bioscience
and material science continually raise new challenges for theories in polymer physics.
In bioscience, biomacromolecules and some subcellular structures in organisms, such as
RNA, DNA, proteins, actin filaments, and microtubules, have semiflexible linear structures
that endow their physiological functions [1,2]. In material science, functional polymers
such as liquid crystal polymers and conjugated polymers are typical semiflexible polymer
chains that play an important role in the development of next-generation display devices
and photovoltaic cells [3]. Moreover, the development of microelectronic technology has
encountered bottlenecks due to the resolution limit in classic lithography machines. A
new generation of photolithography technology using block copolymer self-assembled
nanostructures requires low-molecular-weight polymers [4]. As the molecular weight of
polymers is sufficiently low, namely, the ratio of length of the chain backbone to the Kuhn
length is decreased, the flexibility of the chain is decreased. Generally, all of these systems
have the common characteristics of a self-assembled structure formed by the semiflexible
chains, exhibiting an anisotropic and length-scale dependence structure and a response
behavior under the action of an external field.

Research on the conformation statistics semiflexible polymer model and the devel-
opment of methods for both theory and simulation are still the most pressing frontier [5].
The best chain model that can describe the characteristics of chain flexibility, the degree
of freedom of orientation, and the multi-scale is the worm-like chain (WLC) model. It
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can describe the statistical properties from the microscopic persistence length lp to the
mesoscopic length of the backbone contour length of a chain L. Therefore, it is suitable
for research on the multi-scale problem. In contrast, the commonly used Gaussian chain
(GC) model is only applicable around the scale of the radius of gyration Rg. If one ignores
the short wavelength modes, formulation of the modified diffuse equation (MDE) of WLC
recovers that of the GC model [6]. In addition, the WLC model depends on the degree of
freedom of the bonds’ orientation. Therefore, it can describe a system with orintational
order, e.g., the liquid crystal. Furthermore, the WLC model can be used to study the chain
flexibility effects, i.e., from the limit of a completely rigid polymer, L/a→ 0, to the limit of
fully flexible Gaussian chain L/a→ ∞.

In self-consistent field theory (SCFT), the statistical properties of the WLC model are
described by the end integral propagator q(r, u, s) (distribution function), which satisfies
the modified diffusion equation (MDE):

∂

∂s
q(r, u, s) =

[
1

2lp
∇2

u − u · ∇r −ω(r, u)
]

q(r, u, s) (1)

with the initial condition of q(r, u, 0) = 1. This is a partial differential equation (PDE)
in the space of a three-dimensional positional coordinate r, a two-dimensional angular
coordinate u, and a one-dimensional coordinate of the contour coordinate s along the
backbone of the chain. Additionally, the coupling of multi-degrees of freedom and the
coupling of the multi-scale of a chain increase the solving difficulty. The solving difficulty
restricts the development of theoretical studies on semiflexible polymer systems. Since
the 1970s, researchers have made unremitting efforts. Yamakawa et al. used graphs to
represent moments in the Fourier–Laplace space and solved the propagator by redefining
the summation rules [7]. Spakowitz and Wang et al. attributed yamakawa’s graph method
to a one-dimensional random walk problem and expressed the propagator with a simple
form of continued fraction [8]. Stepanow obtained a matrix expression equivalent to the
continuous fraction by solving the propagator from the Dyson equation [9]. Chen and
Liu et al. solved Equation (1) under a weak inhomogeneous approximation and gave
a Landau-type expression of free energy [10,11]. Morse and Fredrickson et al. adopted
the ground state approximation and used a finite difference scheme for positional and
orientational spaces. This work showed a chain orientation distribution on the interface
that could not be described by the GC model [12]. Tang and Yang et al. gave an efficient
difference method in orientational space based on the finite element algorithm [13]. In view
of using the Gaussian chain model for success, Fredrickson et al. suggested using the
pseudopotential spectrum method to solve Equation (1) [14]. Jiang et al. applied this
method to study the interface between the isotropic phase and the nematic liquid crystal
phase [15]. Recently, Tang and Yang studied the two-dimensional self-assembly structure
of semiflexible diblock copolymers using the pseudopotential spectrum method [16]. Jiang
and Chen solved an MDE of the WLC model in a three-dimensional positional space [17]
and studied the influence of flexibility on the phase behavior of WLC diblock copolymers.

Although the theoretical methods of semiflexible polymers developed rapidly in
recent years, only low-dimensional ordered structures with higher symmetry were studied
to avoid the difficulty with multi-degrees of freedom [18]. Moreover, it is hard for the
existing theoretical methods to solve the confinement effects on semiflexible polymers,
especially in the vicinity of curved surfaces. First, symmetry of the confinement system is
low, and as a consequence, it cannot avoid a time-consuming solution in high-dimensional
MDE. Secondly, giving the boundary condition satisfied by the propagator q due to the
confinement surface is not trivial. This boundary condition relates to the curvature of the
surface and to the relative orientation of the polymer and the surface [19,20]. Finally, the
propagator q of the WLC model is highly correlation with the contour variable, s, due
to chain flexibility. As the chain becomes rigid, the rigidity of Equation (1) also becomes
stronger at the same time from the point view of numerical mathematics. The solution
requires a more reliable scheme to ensure the stability and accuracy of the algorithm [15].
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The difficulties mentioned above are the fundamental reasons why the thermodynamic
properties of semiflexible polymer systems near the surface have not been systematically
studied. An efficient theoretical method is demanded for the studied of a semiflexible
polymer system. Recently, we used single chain mean-field theory (SCMFT) in the study
of semiflexible polymer surface and interface problems [6]. The SCMFT was discussed by
early works, such as Ben-Shaul et al. and Carignano et al., who proposed the concept of
stochastic sampling of chain conformations in self consistent field theory schemes [21,22],
Müller et al. proposed the concept of partial enumeration schemes [23,24], and Bonet
Avalos et al. and Zaid et al. explicitly proposed the concept of single chain mean-field
theory [25,26]. In this theory, the Monte Carlo method is used instead of the numerical
solution of Equation (1) to obtain the ensemble average in the auxiliary field. SCMFT is
superior in solving semiflexible polymer brushes.

2. Single Chain in Mean-Field Theory

It is worth noting that the orientational and positional degrees of freedom of the WLC
monomer are not independent from each other. According to the definition of the WLC
model, the configuration of the chain is a smooth inextensible spacial curve. This condition
is ensured by introducing the following constraint into the configuration integral in the
partition function:

δ

[
u(s)− dr(s)

ds

]
(2)

where δ[|u(s)| − 1]. Alternatively, this constraint can also be expressed as a global constraint
δ[
∫

u(s)ds/L− 1].
Therefore, the orientational and positional freedom are correlated with each other.

Either the position {r(s)} of the monomer or orientation {u(s)} of the bond alone can
comprehensively describe the conformation of the polymer. According to this consideration,
the propagator q used in SCFT depending on both {r(s)} and {u(s)} is an excessive
description. In fact, the major difficulty in solving Equation (1) is the coupling between
orientation and position degrees of freedom. Alternatively, solving the integral equation
does not have this difficulty. Generally, from the perspective of applied mathematics, the
PDE can always be attributed to a diffusion problem under a given constraint and can
be expressed by a path integral form. For example, the Schrödinger equation satisfied by
the wave function can be replaced by a Feynman path integration in quantum mechanics.
According to this consideration, the ensemble average of any quantity can be computed by
the path integral instead of solving the equation of propagator. The diffusion path in the
mean field can be sampled using the Monte Carlo method. Here, we formulate the method
briefly using the polymer brush as an example.

Consider n semiflexible chains with a total backbone contour length L, persistence
length lp, and excluded diameter d, which are grafted on a planar impenetrable surface.
The configuration of the chain is described by a spacial cure R(s), where s ∈ [0, L] is the
contour variable. By defining the effective Kuhn length a ≡ 2lp, we can introduce an
effective polymerization N = L/a. The Hamiltonian of a conformation is

βH0[u(s)] =
lp

2

∫ L

0
ds
∣∣∣∣du(s)

ds

∣∣∣∣2. (3)

By re-scaling the contour variable with s = s/L, we have

βH0[u(s)] =
lp

2L

∫ 1

0
ds
∣∣∣∣∂u(s)

∂s

∣∣∣∣2 =
1

4N

∫ 1

0
ds
∣∣∣∣∂u(s)

∂s

∣∣∣∣2. (4)

The distribution function of a single conformation is

P0[R(s), u(s)] = exp{−βH0[u(s)]}∏
s

{
δ[|u(s)| − 1]δ

(
u− ∂R(s)

∂s

)}
δ[R(0)− Rd]. (5)
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The first two δ functions implicate that the position of segments, R(s), and the tangent
vector, u(s), are not independent from each other due to the constraint of inextensibility,
which leads to an extra difficulty in solving this mode with MDE or Dyson equations,
compared with the Gaussian chain mode. The last δ function means that one end of the
polymer is grafted on a surface at position Rd.

The microscopic contour-averaged density operators are defined as

ρ̂(r, u) = N
n

∑
i=1

∫ 1

0
dsδ[r− Ri(s)]δ[u− ui(s)]. (6)

Typically, the excluded volume interaction between two bonds with orientations of u
andu′ has the following Onsager’s form:

βV(r, r′, u, u′) = 2da2δ(r− r′)|u× u′|; (7)

The interaction between the monomer and the grafting surface is described by the
following potential:

βHI(r) =
{

0 z > 0
∞ z ≤ 0

, (8)

which means the surface is impenetrable. The partition function can be written as a function
with respect to the auxiliary field ω:

Z =
∫
D{ω} exp{−βF [ω]} (9)

where a Hubbard–Stratonovich transformation is used in the derivation; the effective
Hamiltonian is defined as

βF [ω] ≡ 1
2

∫
drdudu′

ω(r, u)ω(r, u′)
2da2|u× u′| − n ln Q[iω], (10)

and

Q[iω] ≡
∫
D{R(s), u(s)}∏

s

{
δ[|u(s)| − 1]δ

[
u− ∂R(s)

∂s

]}
δ[R(0)− Rd]

× exp
{
−βH[u(s)]− i

∫
dsω[r(s), u(s)]− β

∫
drduHI(r)ρ̂(r, u)

}
, (11)

is the single chain partition function. Considering the mean-field approximation δF/δiω =
0, self-consistent field equations can be obtained:

iω(r, u′) = 2da2
∫

du′|u× u′|ρ(r, u′), (12)

where

ρ(r, u) ≡ 〈ρ̂(r, u)〉 = Aσ

Q
δQ
δiω

(13)

=
Aσ

Q

∫
D{R(s), u(s)}∏

s

{
δ[|u(s)| − 1]δ

[
u− ∂R(s)

∂s

]}
×N

∫ 1

0
dsδ[r− R(s)]δ[u− u(s)] exp

{
−βH[u(s)]− iN

∫ 1

0
dsω[r(s), u(s)]

}
(14)

where σ is the grafting density and A is the area of the grafting surface.
In SCFT, this ensemble average is computed using the propagator q, which is difficult

to obtain. To overcome this problem, the ensemble average is computed directly by the
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path integral. Plenty of conformations of the chain in the auxiliary field are sampled by
Monte Carlo simulation. In the simulation, the WLC chain is discretized as a path with
Nm discrete steps. The ith bonds of the jth conformation is characterized by the position
rj

i(xj
i , yj

i , zj
i) and by orientation uj

i(θ
j
i , ϕ

j
i). By considering s/L → s and L = 2lpN, the

Hamiltonian becomes

βH0 = ε
Nm−1

∑
i=1
|ui+1 − ui|2, (15)

where ε = Nm/4N characterizes the flexibility of the chain. As Nm → ∞, the continuous
WLC recovers. M most probable paths in auxiliary field ω(r, u) are sampled by the
metropolis method with an acceptance criterion of P = min{1, exp(−β∆E)} for ensemble
averages where

β∆E = ε
Nm−1

∑
i=1

(
|uj+1

i+1 − uj+1
i |

2 − |uj
i+1 − uj

i |
2
)
+

N
Nm

Nm

∑
i

{
ω[Rj+1

i , uj+1
i ]−ω[Rj

i , uj
i ]
}

(16)

is the energy change of the (j+ 1)th trial move. Then, the ensemble average of any operator〈
Â[ui]

〉
depending on the chain conformations can be calculated. For example, the density

distribution profile can be calculated by

ρ(r, u) =
σA
M

M

∑
j=1

N
Nm

Nm

∑
i=1

δ(r− rj
i)δ(u− uj

i). (17)

In order to generate the independent conformations efficiently, the pivot Monte Carlo
trial move is considered in SCMFT. The partial chain between the random chosen monomer
and the free end is rotated at a random angle around a random chosen axis, according to

r′ = n(n · r) + [r− n(n · r)] cos θ + (n× r) sin θ, (18)

where r and r′ are the vectors before and after rotation, respectively; θ is the rotating angle;
and n is the random chosen axis.

3. Advantages of WLC SCMFT

The major difference between SCMFT and SCFT is the method used to compute
the ensemble average. In SCFMT, the chain conformations are sampled to compute the
ensemble average, while in SCFT, the distribution function, q, is used. Typically, the mean-
field theory computation is used to study the inhomogeneous polymer system, which can
be considered the effect of the constraint, for example, the boundary conditions or the
conformation constraints on the chain. In SCMFT, the constraints can be directly applied
on the Monte Carlo trial moves during the sampling process. However, in SCFT, the
constraints are imposed on the distribution function as the boundary condition or the
initial condition, which leads to discontinuity in the PDE. The polymer brush is a typical
example of the polymer interfacial system. In this system, the chain ends are grafted on
the surfaces. This constraint imposes a δ function as the initial condition in the MDE,
which brings about the discontinuity. In order to deal with this problem, generally, an

broadening, limσ→0
1

(
√

2σ)3 exp
(
− |R−Rd|2

2σ2

)
= δ(R− Rd) is considered, which introduces

an artificial length scale, σ. WLC is a multi-scale model, and any extra length would affect
its statistical behavior [27]. As a consequence, much more discrete grids are needed in the
positional space. The ensemble average in SCMFT is based on the path integral where the
integral equations are involved. The grafting point constraint is equivalent to introducing
a δ function in an integral, which equals to 1. In practice, one only needs to fix the position
of one chain end on the grafting point during Monte Carlo sampling. Therefore, SCMFT is
superior in describing the constraints.
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SCMFT is very efficiency for the WLC system with low symmetry. In SCFT, the
WLC is considered a diffusion in five-dimensional space (the {r, u} space). This high-
degree-of-freedom problem is hard to be solved from the viewpoint of a numerical scheme
development. Therefore, almost all of the published work on WLCs deal with the system
with some symmetry [18]. A dimensionality reduction can be made according to the sym-
metry. In SCMFT, only the degrees of freedom of the monomer position r(s) are considered
and the orientations of the bonds can be computed according to Equation (2). Then, the
computation is a diffusion in the positional space and the Monte Carlo sampling is always
performed in the three-dimensional space, which is more efficient than that of SCFT. If the
system with some symmetry is considered, the conformations R(s) in three-dimensional
space are projected onto inhomogeneous directions to compute the ensemble average of
field ρ and ω.

Usually, to accelerate the computation of SCFT, a parallel algorithm is used. However,
the performance is limited by the algorithm solving the MDE. Generally, the self-consistent
iteration process cannot be vectorized. In SCFT, the parallel algorithm is only used to
accelerate fast Fourier transition (FFT) when solving an MDE using the pseudo spectra
method [14]. In this method, the simulation box is sliced into slabs along one direction.
The FFT computations within these slabs are distributed to different computing cores. The
parallel scale is limited by the number of slabs. In practice, the number of computing
cores is much less than that of the discretized grids in this direction. To enlarge the scale
of the parallel algorithm, the simulation box can be further sliced in two directions or in
all three directions. Nevertheless, the parallel scale is limited. Moreover, the efficiency
of parallel computing is determined by the frequency and scale of the communication
between different cores. In the parallel algorithm of SCFT, the computations on different
cores are highly correlated. The communication is needed every evolution step along s
when solving an MDE.

SCMFT is suitable for acceleration using the parallel algorithm. The major task in
computing the ensemble average in SCMFT is to generate a sufficiently large number of
uncorrelated conformations in the same auxiliary field. This large-scale sampling process
can be divided into a large number of independent sub-ensembles, and the sampling
in these sub-ensembles can be assigned to different cores for parallel computing, which
can reach thousands. In fact, the parallel algorithm of SCMFT corresponds to slicing in
the time dimension. For an equilibrium system, more time slicing is better. In practice,
this algorithm is performed using a message-passing interface (MPI). Certainly, it can
also be performed on a GPU platform. These sub-ensembles are completely independent
for a given auxiliary field. Communication only takes place when the auxiliary field is
updated according to the iteration algorithm, which is scarce compared with the parallel
algorithm of SCFT. Therefore, SCMFT has high parallel efficiency naturally due to the
conformation-based ensemble average.

From the viewpoint of saving memory during the computation, in SCMFT, only the
conformation of the chain is frequently operated. It is an array storing the position of the
monomers along the chain that contains 3Nm floating numbers. Here, Nm is the numbers of
discretized points of contour variable s. However, SCFT is a memory-consuming method.
In SCFT, the propagator is the frequently operated object. It requires a quite large array
to store the probability of all the grids in the {r, u} space for all contour variables s. It
contains Nm × N3

x × Nθ × Nϕ floating numbers, where Nx is the grids discretized in one
direction of positional space, and Nθ and Nϕ are the grids discretized in the orientational
space. The low memory demand leads to the high efficiency within a single computing
core and the high efficiency of communication between the parallel computing cores.

One more advantage of SCMFT is that it is suitable for demonstrating the relation
between the structure and the conformations. Generally, the structure of the system is
determined by the conformations of the chains, and in SCMFT, the conformations of the
chain are explicit. According to these requirements, the typical conformations of the chains
in a given constraint can be sampled. Then, the conformations can be used to interpret
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the structure intuitively. However, the SCFT cannot provide a direct description of the
conformations. To investigate the conformation state, it needs the complex definitions of
the multi-point correlation function, which involves computation. For example, to discuss
the conformation of the chains adsorbed on the nanoparticles, the tail, loop, and bridge
conformations are computed by decomposition into adsorbed and free propagators [28,29].
Alternatively, one also can use Monte Carlo simulation to sample the typical conformations
in the auxiliary field computed from SCFT to make up the shortcoming of the SCFT.

4. Application on Polymer Brushes

Polymer brushes are the typical technology for surface modification. In these sys-
tem, the chains are grafted on the substrate, which introduces a constraint on the degree
of freedom of the polymer end. These constraints lead to discontinuity in the theory,
which is hard to solve in SCFT. WLC-SCMFT is useful for the study of polymer brushes.
Here, five examples of the WLC brushes grafted on both planar and curved surfaces
are demonstrated.

4.1. Nematic Brush

Firstly, the polymer brush on a planar surface was considered. Here, the WLC was
discretized into Nm = 100 monomers, and the flexibility L/a = 30 was adopted, which is
the same as used in the SCFT work [30]. In this example, the chain was flexible and their
conformations were determined by the effective grafting density 2daσ. In the low grafting
condition, the prediction from the GC model recovered with a narrow depletion zone, a
parabolic profile, and an exponential tail. In the high grafting condition, the high stretched
limit recovered with a step function-like profile. The results of SCMFT (lines) and SCFT
(scatters from Reference [30]) are compared in Figure 1. This is a lateral homogeneous
system with the density distribution only depending on z in the positional space. Therefore,
a single chain was simulated in the SCMFT computation. Typically, 107 conformations are
sampled for an ensemble average. It can be observed that the results from SCFT and SCMFT
are consistent with each other, especially for the dense grafting condition, e.g., 2daσ = 35.0.
There are deviations for the bush with a low grafting density at 2daσ = 0.25. For the dense
grafting condition, the chains in the brush were highly stretched and the density profile
was similar to the step function around z/L ≈ 1, which needs to dramatically increase
the grids in the positional and orientational spaces to obtain the computing accuracy of
propagators in SCFT. On the contrary, in SCMFT, the explicit stochastic quantities are the
chain conformations subject to the auxiliary field, which can be well sampled by the Monte
Carlo simulation. The difficulty in using SCMFT is from the condition with a low grafting
density, where the chains take coil conformations. According to the center limited theorem,
when Nm → ∞, the random walk behavior recovers. To obtain the results of SCFT for the
low grafting condition, a large Nm is needed in SCMFT. In practice, Nm ∼ 103 is sufficient.

For the high grafting brush or the rigid chain limit, conformation of the grafting chains
becomes anisotropic and forms a nematic order. The responsive behaviors of the nematic
brush are quite different from that of the isotropic brush and depend on the chain flexibility.
Using SCMFT, the responsive behaviors of a nematic brush to uniaxial compression can
be studied [6]. Under the compression, lateral symmetry breaking takes place for the
semiflexible chain condition. In this condition, the nematic order is retained but the
nematic axis tilts to an angle relative to the compression direction. The order parameter of
the breaking of rotational symmetry can be defined as ψ =

〈
2
∫ 1

0 ds cos2 ϕ(s)− 1
〉

, where
ϕ is the preference tilting angle in the horizontal plane. This behavior is similar to the
smectic A to smectic C transition. As shown in Figure 1b, the order parameter ψ shows a
hysteresis loop with respect to the compression and relaxation process, which means this
tilting transition is a first-order transition.



Materials 2021, 14, 778 8 of 14

Figure 1. (a) The single chain mean-field theory (SCMFT) results (lines) were compared with the
results from self-consistent field theory (SCFT) (scatters), which were from the reference. These
results were computed with the same chain flexibility L/a = 30 but different grafting densities
2daσ = 0.25 (red), 2.0 (green) and 35.0 (blue). (b) The inset shows the scheme diagram of compression
of the nematic brushes. A tilting transition takes places when the nematic brushes are subjected to
the external compression. A hysteresis loop of the tilting transition during the compression and
relaxation process indicates that this is a first-order transition. Reprinted with permission from
ref. [6]. Copyright 2015 AIP Publishing.

4.2. Azo-Polymer Brush

Introducing new length scales or new degrees of freedom modified by the molecular
structure is a basic way to design new properties and structures of a polymer system.
The azobenzene compound is a molecule that has two isomers, i.e., the trans- and the
cis-conformations. The trans-state is the thermally stable conformation. Upon ultraviolet
(UV) light irradiation, the azobenzene transititions to the cis-state. Adding an azo bond
on the polymer brush introduces the light-controlled degree of freedom that brings new
responsive mechanisms of the brush. This ability to reversibly photoswitch between
isomers enables azobenzene to drive the tail of the grafted chains. This can be used to
design novel structures with fancy properties [31]. In theory, the difficulty is in describing
the azo polymer from the angle constraint of the azo bond δ(γazo − α), where α = π or
π/3 represents the bond angle of the trans or cis isomers, respectively. As the constraint of
the grafting point in positional space, this bond angle constraint introduces discontinuity
into the orientational space, which is difficult to deal with in SCFT. As a consequence, the
theoretical work on azo polymer using SCFT has not been reported.

Taking the advantages of SCMFT, the properties of the azo polymer brushes can be
well described. As an example, a light-responsive spherical nanoparticle grafted with
azo polymer brushes was studied theoretically. As the result of the UV light induced
trans-cis isomer switching of the azo group, such a core-shell nanoparticle was subjected
to contraction in terms of its overall size upon UV light irradiation [32], as shown in
Figure 2a. The assembly of these smart nanoparticles set a playground to study phase
transitions, including sol-gel [33] and glass transition [34], because the volume fraction
of particles, which triggers these phase transitions, can be conveniently manipulated by
light. Immersing these nanoparticles in a liquid crystal solution, photoswitching of the
azo polymer configuration can orient the surrounding liquid crystal molecules, leading
to different types of topological defects around the nanoparticle [35]. The performance of
this mechanism can be characterized by the brush height ratio between before and after
UV irradiation, P1. It is determined by the competition of length scales of the tail and the
whole chain and can be optimized using the relative position of an azo bond along the
chain f . The partial chain with s < f and s > f are called the tail and spacer, respectively.
A large f , i.e., a long spacer, ensures that the orientation of the tail cannot be affected by the
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substrate. A small f , i.e., a long tail, means a large chain can be operated. Moreover, both
intrinsic properties of polymer brushes, grafting density and chain flexibility, affect the
performance. A brush without UV requires high grafted density and flexibility of the chain
to extend the chains. Upon UV irradiation, the brush must be sufficiently loose to hide the
brush tail and the chain must be sufficiently rigid such that the tail can be controlled by the
azo bond. Figure 2b demonstrates the dependence of P1 on both f and grafting density
νσ/a of the semiflexible chain condition as an example. There is an optimized f for any
given grafting density.

Figure 2. (a) Scheme diagram of the azo polymer-coated spherical nanoparticle. (b) The light-
operating performance of the size shrinking of the nanoparticle depending on chain grafting density
and f of the semiflexible chain condition. Reprinted with permission from ref. [32]. Copyright 2017
AIP Publishing.

4.3. End Reactive Polymer Brushes

End reactive polymer brushes can be used to construct the structurally dynamic mate-
rial, which is a potential technology for self-healing materials [36]. Optimizing reactivity
and thereby improving the self-healing ability at the most fundamental level poses an
urgent issue for the application of such materials. The minimal model of this system is
to compute an effective interaction between two nanoparticles coated with end reactive
polymer brushes, as shown in Figure 3a. For brush systems without lateral homogeneity,
the auxiliary field on the chains are different from each other. In this condition, the chains
should be treated explicitly on the surface. It is formidable task to solve the present system
in the formation of SCFT owing to the difficulty of treating the boundary condition on
the surface of nanoparticles and of developing high-performance numerical algorithms
adapted to all lp. Alternatively, in SCMFT, the ensemble average of any operator can be
obtained by the Monte Carlo simulation of the nanoparticles grafted with n ideal chains in
the mean field. To treat the grafted points explicitly, the surface of a sphere is discretized
with polygon. The apexes of the polygon are chosen as the grafting points. SCFMT was
used to reveal how chain stiffness regulates the reactivity of dynamic polymers grafted on
nanoparticles [37]. The reacting rate can be determined from the product of average end-
segment probabilities for chains from two opposing nanoparticles, P2 =

∫
drφend,Iφend,II,

which characterizes the degree of overlap between the chain-end distribution of the two
opposing nanoparticles. Here, φend,I and φend,II represent the end distribution of polymer
brush from I and I I nanoparticles, respectively. Figure 3b shows the the contour map of
the reaction parameter ψ in the plane of D and lp. The results allow us to identify that
semiflexible dynamic polymers possess optimal reactivity and self-healing ability. This
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can be explained from the point of view of the first-passage time of two trajectories from
opposite nanoparticles with the same contour length. Generally, WLC conformations are
identical to the trajectories of persistence walk. It has a high efficiency at the reactive end
for a search in the space. At the flexible limit, it becomes a random walk, and at the rigid
limit, it corresponds to a direct walk. There is a minimum first-passage time for persistence
walk for persistence length is comparable with the chain length. However, random walk
and direct walk have quite long first-passage times. Figure 3b shows the the typical overlap
of chain ends from two opposing nanoparticles for the semiflexible chain condition. The
region of possible reactions taking place is distributed into a large area.

Figure 3. (a) Scheme diagram of the interaction between two spherical particles coated with a reactive
end polymer. (b) The reaction parameter P2 as the function of D and lp. (c) The overlapping region
of polymer ends from two particles in the semiflexible chain condition. Reprinted with permission
from ref. [37]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

4.4. Optical Reactive Adhesion

By virtue of the light-driven mechanism of an azo polymer, an optical reactive ad-
hesion smart surface can be designed as shown in Figure 4a. The spherical nanoparticle
is grafted by polymer, which is considered the adsorbate. The end groups of polymer
are ligands. The smart surface modified by a hybrid grafted layer is considered the ad-
sorbent, which consists of homopolymers and active polymers with receptors as the end
groups. An azo bond is introduced into the active polymer chain of the hybrid polymer
brush. Without UV illustration, the receptors are distributed around the outer part of the
brush layer and can easily interact with the ligands, which allows the nanoparticle to be
adsorbed at the surface. Oppositely, upon UV, the reactive polymers are folded such that
the receptors are hidden into the hybrid layer. As a result, an effective interaction between
the nanoparticle and the smart surface is decreased, and thus, the nanoparticle is erased
from the surface [38]. The performance and mechanism of this azo-polymer-based smart
surface were investigated using SCMFT [39]. The adhesion/erasion transition of the system
shows that the performance of the smart surface can be characterized by the interaction
potential difference between the effective nanoparticle–surface interactions in the UV-on
and UV-off states shown in Figure 4b. A critical factor that affects the performance of the
smart surface is again the position of the azo-bond along the backbone, f , which directly
determines the relative length of the tail and the spacer. Upon UV-on, the zo-bond takes the
cis-isomer, which makes the tail fold back. However, to erase the nanoparticle efficiently
in the UV-on state, the receptors should be embedded as deeply as possible. The effect of
f on the distribution of the receptor groups in this condition is shown in Figure 4c. The
peak of the distribution function first approaches the substrate as f decreases and then
move away from the substrate for f < 0.5. Indeed, the curves of f < 0.6 in Figure 4a have
typical bimodal characteristics, and thus, each of these distribution curves can be regarded
as the superposition of two subtle modes, which is crucial for optimizing the position of
the azo-bond along the azo-polymer f .
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Figure 4. (a) Scheme diagram of an optical reactive adhesion smart surface for the adhesion state
(above) and erasion state with UV illustration (below). (b) Effective interaction between the nanopar-
ticle and the surface with the UV-on and -off states. (c) Distribution of receptors on the azo-polymer
along the z-axis with different f . Reprinted with permission from ref. [39]. Copyright 2019 American
Chemical Society.

4.5. Sliding Polymer Brushes

A sliding polymer brush is constructed by adding sliding anchors to the polymer
chains, through which the polymer chains can slide with self-regulating lengths. The two
ends of the polymer chains are modified by ligands to prevent polymer escape from the
anchoring point [40]. The sliding degree of freedom regulates the polymer configuration of
the brush and increases the available reaction range, which markedly changes the kinetics
and effective interaction potential of the specific binding pairs. This brush introduces
a new degree of freedom to the polymer chain, i.e., the repetitive move of the chain
through the sliding anchor. It is hard to solve the propagator of the chain in SCFT with
the constraint of a sliding anchor. Moreover, the translational degree of freedom of the
nanoparticle and the interaction between chain ends and the anisotropic nanoparticle are
difficult to formulate in an SCFT model. In SCMFT, these difficulties can be overcome by
introducing the corresponding Monte Carlo trial move during sampling. The adhesion of
an anisotropic nanoparticle on the sliding brushes was studied using SCMFT [41]. A novel
bistable adhesion behavior composed by an energy dominated state (state I) and an entropy
dominated state (state II) was found as shown in Figure 5a. This behavior was from the
cooperation between the repetitive motion of the sliding polymer and rotational degree
of freedom of the spherocylinder. The role of the orientational entropy was quantified
by analyzing the distribution of the tilting angle of the spherocylinder, which is shown
in Figure 5b. For state I, the orientation angle is around π/2, which indicates that the
orientational motion of the particle are largely constrained and lies on the substrate. For
state II, the orientation direction is distributed in a wide range of [0, π/2]. Therefore, state
II is an orientational entropy dominated state. This system can be used to create a smart
surface with a wide sensitive range for bacteria adhesion and a biosensor for experiments
and provide a possible explanation for the bistable adhesion behavior of the bacteria on
the surface, mediated by type IV pili.
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Figure 5. (a) Effective adsorption potential of the anisotropic particle and the surface, which shows
bistable features: the inset shows a scheme diagram of the system. (b) The distribution of the
orientational angle and the z axis depending on the positions of anisotropic particle. Reprinted with
permission from ref. [41]. Copyright 2019 The Royal Society of Chemistry.

5. Summary

In this paper, we reviewed SCMFT for the WLC model, which is based on the path
integral description of the ensemble average. In this theory, the ensemble averages of phys-
ical quantities can be computed directly by sampling the conformations of the chains. This
method is easy to code and is suitable for acceleration using the parallel algorithm. Because
it does not involve solving a PDE, it is not necessary to face the difficulty of boundary
condition processing and the accuracy and stability of a numerical scheme. Additionally,
this method can be generated for systems with all types of polymer models without extra
difficulties. Compared with SCFT, the highly stretched condition or rigid chain limit is
easy to deal with in SCMFT. However, it is a little difficult to deal with coil conformations,
which can be worked out by enlarging the discretized points along the backbone of the
chain. Furthermore, the difficulty of WLC is mainly from coupling the degrees of freedom
in the orientational and positional spaces. This leads to the high dimensional nature of
the MDE in SCFT. However, this coupling indicates that the orientational and positional
degrees of freedom are not independent. Therefore, this theory is complicated due to the
use of propagators to describe the statistical properties in SCFT. On the contrary, in SCMFT,
this problem can be solved naturally from a point view of the conformations. The polymer
chains are simulated only in three-dimensional positional space, and the orientations of
the bond can be calculated accordingly. This method works well for systems with low
symmetry, which involves high dimensional computations and requires large scale memory
to store the propagators and the auxiliary field in SCFT. In contrast, in SCMFT, only the
three-dimensional conformation is needed for operation and computation.

SCMFT is the best methodology for the study of semiflexible polymers near curved
surfaces, a topic of general interest in natural and artificial polymer systems. It provides
a clear and comprehensive theoretical picture from both the field and the conformations
for a structure with responsive behaviors in the materials. It will be a promising way to
optimize the design of the functional polymer optoelectronic devices.
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SCFT Self-consistent field theory
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