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We propose an optical simulation of dissipation-induced correlations in one-dimensional (1D) interacting
bosonic systems, using a two-dimensional (2D) array of linear photonic waveguides and only classical light.
We show that for the case of two bosons in a 1D lattice, one can simulate on-site two-body dissipative
dynamics using a linear 2D waveguide array with lossy diagonal waveguides. The intensity distribution of
the propagating light directly maps out the wave function, allowing one to observe the dissipation-induced
correlations with simple measurements. Beyond the on-site model, we also show that a generalised model
containing nearest-neighbour dissipative interaction can be engineered and probed in the proposed set-up.

P
hotonic lattices, an array of optical waveguides, have recently emerged as a successful experimental platform
to emulate diverse physical phenomena. Most of the works in this field focus on single-particle phenomena,
where examples include optical Bloch oscillations of various kinds1–5, continuous-time random walks6,

Anderson localisation7–9, dynamic localisation10, and dynamic band collapse11. Simulations of relativistic equa-
tions and related effects12, such as photonic Zitterbewegung13, Klein tunneling14, and random mass Dirac model15

have also been performed, including the simulation of unphysical Majorana equation16. However, it has been
shown that phenomena involving more than one particle can also be simulated in waveguide arrays17,18. In
particular, one can simulate the physics of two interacting particles using two-dimensional (2D) square arrays
of linear waveguides along with classical light19,20, allowing even richer physics such as Bloch oscillations of
correlated particles21, fractional Bloch oscillations22, and Anderson localisation of two interacting bosons23 to be
observed in photonic lattices.

In all of the examples above, dissipation is either an adverse effect that destroys the relevant effect or one
that does not play a significant role. However, recent studies have shown that decoherence or dissipation can
actually be the main source of non-trivial quantum effects. In the case of optical systems, losses have been
deliberately introduced to realise parity-time symmetric systems24–27, whereas in an optomechanical system it
was shown that it is possible to generate the squeezed state by using dissipation28. In optical lattices, strong
inelastic collisions were used to inhibit particle losses and drive the system into a strongly correlated
regime29–31. There, the two-body inelastic collisions are induced by creating molecules using Feshbach res-
onance, whereas one-body losses are negligible due to the stability of the system and the absence of thermal
background of particles.

In this work, we show for the first time that an essential part of such dissipation-induced physics can be
simulated using a linear 2D waveguide structure, and moreover using only classical light. Our proposed wave-
guide simulator allows for highly-tunable effective two-body dissipation rate while having no effective single body
losses, making it an excellent candidate to simulate the non-trivial physics induced by strong two-body dissipa-
tion. We first introduce a connection between the photonic lattice system and two-body dissipative Bose-
Hubbard system, which holds in the two-particle sector. We then discuss how the proposed system allows
visualisation of the wave function and relevant observables, and use the fact to illustrate dissipation-induced
physics. Interestingly, we find that an effective Hamiltonian description is completely equivalent to the master
equation description in the proposed system. The versatility of the proposed set-up is highlighted by introducing a
generalised model that goes beyond the on-site dissipative Bose-Hubbard model, whose signatures are briefly
examined.
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Results
Proposed photonic lattice system. Our proposal relies on a mapping
between a 2D square waveguide array (Fig. 1) and one-dimensional
(1D) Bose Hubbard model (BH) in the two-particle sector19,20,22. The
light propagation in a symmetric square 2D waveguide array can be
described by the coupled-mode equations:

i_cn,m~bdn,mcn,m{k cn,mz1zcn,m{1zcnz1,mzcn{1,mð Þ ð1Þ

where cn,m(t) describe the amplitudes of the classical field at site (n,
m); b is a shift in the propagation constant of the diagonal
waveguides compared to that of the off-diagonal waveguides; k is
the evanescent coupling strength between neighbouring waveguides.
The propagation constants of the off-diagonal waveguides are set to
zero for convenience; small intrinsic waveguide losses will be ignored
in this work, as they merely rescale the total intensity along the
propagation distance. In general, b takes a complex value

b~br{i C, ð2Þ

where br is the phase constant and C is the attenuation constant.
Normally, losses are neglected in photonic lattice systems, but
recently it was shown that losses can be controllably induced by
modulating the waveguides in the transverse direction33 in a 1D
waveguide array, where the loss rate of up to C/k 5 10 has been
demonstrated. In our proposed set-up, C is introduced by transverse
modulation of the diagonal waveguides in the horizontal/vertical
plane as shown in Fig. 1.

To see the connection between this system and the BH system,
consider the following non-Hermitian Hamiltonian of the BH type:

ĤNHBH~{k
X

j

â{j âjz1zâ{jz1âj

� �
z

b

2

X
j

n̂j n̂j{1
� �

: ð3Þ

Writing the state as,

y tð Þj i~ 1ffiffiffi
2
p
X
n,m

cn,m tð Þâ{nâ{m 0j i, ð4Þ

the corresponding Schrödinger equation reduces to Eq. (1)22. Thus,
the light amplitude in the diagonal (off-diagonal) waveguide,

cn,n

ffiffiffi
2
p

cn,m

� �
, corresponds to the probability amplitude of finding

the two bosons at the same site n (at different sites n and m). For C 5
0, the 2D waveguide array therefore becomes a photonic emulator of
the two-particle BH model with hopping rate k and on-site nonli-
nearity br. For C ? 0, the model contains an effective two-body loss
term that mimics the inelastic two-body collision of cold atoms. Also

note that because of Eq. (4), the simulated Hilbert space of the
proposed waveguide set-up always stays in the two-body manifold
of the non-Hermitian BH model. Thus, by construction, unwanted
one-body losses are absent in our proposal. Light losses in an off-
diagonal waveguide, if induced, correspond to a long-range two-
body dissipative interaction. We will utilise this fact later to
generalise the on-site interaction model to the nearest-neighbour
interaction model.

A proper description of the simulated lossy BH system in Eq. (3)
requires the master equation formalism, where the above effective
Hamiltonian description is only valid for a short time evolution.
However, as we show later, the effective Hamiltonian is exactly
equivalent to the master equation description in our two-particle
problem.

Visualisation of the wavefunction and observables. One of the
most attractive features of photonic lattice simulators is their
ability to visualise a wave function under study. Equation (4)
provides a direct link between the classical field amplitudes of
the waveguide array and the wave function of two bosons,
which also enables preparation of an arbitrary initial state with
classical sources23. Here, the measured intensities jcn,nj2 (2jcm,nj2)
correspond to the probabilities to find the bosons at site n (at sites
m and n).

In this work, we use the average particle number and average
intensity correlations to describe dissipation-induced inhibition of
losses and correlations. These quantities only require intensity dis-
tributions and therefore are experimentally accessible. The average
particle number remaining is defined as Ntot tð Þ~

X
k

Nk tð Þ, where
Nk(t) is the normalised particle-density distribution

Nk tð Þ: 1
2

y tð Þ n̂kj jy tð Þh i~
X

n

ck,n tð Þj j2, ð5Þ

with n̂k the particle number operator at site k. The average intensity

correlations G 2ð Þ
avg tð Þ:

X
n

G 2ð Þ
n,n tð Þ

.
L, and its normalised version

g 2ð Þ
avg tð Þ:

X
n

g 2ð Þ
n,n tð Þ

.
L, are defined via

G 2ð Þ
n,m tð Þ~ â{nâ{

mâmân
� �

~2 cn,m tð Þj j2, ð6Þ

and

g 2ð Þ
n,m tð Þ~ G 2ð Þ

n,m tð Þ
n̂nh i n̂mh i , ð7Þ

where L is the total number of sites in the 1D lattice.

Effective Hamiltonian description. Here, we first provide the pro-
per master equation description for the dissipative (non-Hermitian)
BH system introduced above, which holds for any number of par-
ticles. We then prove an equivalence between the master equation
and the Schrödinger equation with non-Hermitian Hamiltonian (3)
for the two-particle case.

In the presence of losses, the quantum state no longer stays pure
and must be described by a density operator. The Liouville equation
can be written in the Lindblad form, which for the two-body loss case
yields30

_r~{
i
�h

HBH,r½ �zC

2

X
j

2â2
j râ{2

j {â{2
j â2

j r{râ{2
j â2

j

� �
, ð8Þ

with the usual BH Hamiltonian HBH (the lossless version of Eq. (3),
i.e., b 5 br). In the short time limit, the quantum ‘jump’ term, â2

j râ{2
j ,

can normally be ignored31,32, in which case the master equation
reduces to an effective Schrödinger equation with the non-
Hermitian Hamiltonian (3):

Figure 1 | Schematic diagram of the proposed 2D waveguide array to

simulate the 1D lattice system with on-site two-body losses, where

sinusoidal modulations at the diagonal waveguides are introduced to

induce controllable radiation losses, while the off-diagonal waveguides are

assumed to be uniform, i.e., lossless.
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However, in the case of two particles, an analysis using the master
equation is already equivalent to that using an effective Schrödinger
equation, since there is no channel into the single particle manifold
but only an incoherent channel to the vacuum. The latter changes the
overall probability to be in the two-particle manifold, but not the
two-particle state itself. Therefore r(t) 5 P2(t)jyTP(t)æÆyTP(t)j 1

P0(t)j0æÆ0j, where jyTPæ is the state in the two-particle manifold
whose dynamics is governed by ĤNHBH and P2(t) (P0(t)) is a prob-
ability to be in the two-particle (vacuum) manifold. Therefore, if one
is only interested in physics captured by the two-particle sector, the
master equation is exactly equivalent to the non-Hermitian evolution
under the Schrödinger equation.

Dissipation-induced strong correlations and inhibition of loss.
Unlike the usual single-particle dissipation, two-body dissipation
by itself can give rise to interesting physical effects. For example,
particles tend to stay away from each other to reduce dissipation
and in the process create strong correlations29. Here, we show
that these effects can be simulated and observed in the proposed
set-up. For this purpose, we first consider a localised initial state
y 0ð Þj i~â{0â{1 0j i propagating in the 15-site lattice (15 by 15 2D

waveguide lattice, i.e., L 5 15). The average same-site intensity
correlation function g 2ð Þ

avg tð Þ for the cases of purely dissipative and
purely unitary dynamics are shown in Fig. 2 (a) and (b). Upon
comparison, the effects of the dissipative dynamics is clear. In the
unitary case, the correlation function builds up continuously with
time, whereas in the dissipative case, it ultimately decreases with
increasing dissipation rate. Note that while the unitary interaction
does keep the correlation at bay, the effect is much weaker than the
dissipative interaction. We have checked that the required strength
of the unitary interactions to achieve similar final correlations to the
dissipative case is 10 times larger. Importantly, the induced (anti-
)correlations are accompanied by inhibition of losses as shown in
Fig. 2 (c), signifying that the observed (anti-)correlations did not
arise from the fact that particles have dissipated away. In fact, the
remaining fraction increases with dissipation rate, for instance, from
45% to 70% for from C/k 5 2 to C/k 5 10.

In the above example, we have used an initial state with g 2ð Þ
avg 0ð Þ~0

and a localised (inhomogeneous) distribution. To study the dissipa-

tion-induced effects on a homogeneous initial state that has nonzero
g 2ð Þ

avg 0ð Þ, we consider the superposition of a homogeneous two-site

occupied state TSj i~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
L L{1ð Þ

s X
ivj

â{i â{j 0j i and a single-site

occupied state SSj i~ 1ffiffiffiffiffi
2L
p

X
i
â{i â{i 0j i with weights aTS and 1 2

aTS respectively, i.e., y 0ð Þj i~ ffiffiffiffiffiffiffi
aTS
p

TSj iz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{aTS
p

SSj i. As an
example, results for the case of aTS 5 9/10 are displayed in Fig. 2
(d), (e), and (f) for the same values of b used in the case of the
local initial state. This nonlocal initial state has non-zero
g 2ð Þ

avg 0ð Þ~ 1{aTSð ÞL=2, leading to a rapid initial dissipation followed
by a slower decay that decreases with increasing C/k. The established
final correlation (antibunching) increases with the dissipation rate,
while it generally decreases with the unitary interaction strength br.
Because the initial correlation function takes a non-zero value, the
(anti-)correlation can be said to have been induced by the dissipative
dynamics.

The behaviour of the correlation function g 2ð Þ
avg t0ð Þ at a fixed time t0

as a function of C/k is similar for both the local and homogeneous
initial states as shown in Fig. 3. It decreases rapidly with C/k and
becomes almost 0 for C/k . 10, i.e., the larger the loss-to-coupling
ratio, higher the correlations in the final state.

Cross-correlations can also be observed using the aforemen-
tioned ability to visualise the wave function. We thus plot the
intensity distribution in the proposed 2D waveguide array in
Fig. 4 for the dissipative ((a) and (c)) and the unitary interaction
cases ((b) and (d)), respectively. The two left columns are for the
localised initial state whereas the two right columns are for the
homogeneous initial state. The absence of diagonal elements in
the dissipative case displays the tendency for bosons to stay apart
from each other. On the contrary, the diagonal waveguides are
clearly occupied for the unitary interaction case, giving rise to
the significant average correlation function as shown earlier. The
off-diagonal elements exhibit very similar distributions due to
the local nature of the interaction, although there is a slight
enhancement near anti-diagonal elements for the dissipative
case. Due to the nature of the mapping, the intensity distribution
directly images the unnormalised cross-correlation function
G 2ð Þ

n,m, providing a good experimental probe of the dissipative-
induced correlations.

Figure 2 | Intensity correlation g 2ð Þ
avg tð Þ as a function of time under dissipative (top row) and unitary dynamics (middle row) for the localised (left

column) and homogeneous (right column) initial state. Bottom row: normalised total number of bosons as a function of time. Note that stronger

dissipation yields stronger final photon antibunching. For the same values of | b | /k, the unitary nonlinear interaction strength br/k exhibits different

behaviours. For both types of initial states, stronger dissipation results in lower overall loss.

www.nature.com/scientificreports
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Beyond on-site dissipation. The 2D waveguide array allows one to
go beyond the dissipative BH model and simulate an extended
dissipative BH model, where the nearest-neighbour (NN) dissipa-
tion is included:

Ĥext~ĤNHBH{i C’
X

j

n̂jn̂jz1: ð10Þ

The NN dissipation C9 can be realised by the modulation of the NN
(m 5 n 6 1) diagonal waveguides in the proposed 2D waveguide
array. This type of long-range dissipative interaction is usually absent
in bosonic systems and the ability to implement such a term
demonstrates the strength of the proposed waveguide system. The
extra interaction term brings with it richer physics, a part of which is
discussed briefly here.

Figure 5 depicts the cross correlations developed in the time
evolution under the extended dissipative BH model. The left col-
umn shows the cross correlation functions of the previously
studied non-dissipative and the on-site dissipative cases for ini-
tially homogeneous state. Figure 5(c) shows the NN-dissipative
case, where only the correlation function between the NN sites
are suppressed, visualised by vanishing intensities in the wave-
guides directly above and below the diagonal waveguides.
Finally, when C and C9 are both non-zero, both the on-site and
NN correlations are suppressed. The latter two are new types of

correlated bosonic states created by the unique extended dissip-
ative BH model whose simulation is allowed naturally by the
proposed waveguide array set-up.

Discussion
In conclusion, we have shown that it is possible to use classical light
propagation in two dimensional arrays of optical waveguides to
simulate dissipation-induced strong correlation effects. The pro-
posed photonic lattice system has lossy waveguides along the diag-
onal, whose loss rates can be controlled by introducing transverse
modulation in the diagonal axis. We proved that the two-body lossy
system can be described by an effective Hamiltonian, instead of a
master equation, for any two-particle initial states. This implies that
the 2D photonic lattice system is a faithful simulator of the investi-
gated system. We showed that observables such as the intensity
correlation functions and normalised particle density distribution
can be measured experimentally, providing direct probes of the
simulated dissipation-induced phenomena. In particular, the ability
to visualise the wave function helps in observing the induced correla-
tions. Lastly, we have proposed and studied an extended dissipative
BH model where nearest-neighbour dissipative interaction is
included. Further investigations into this model and towards its rea-
lisation in other platforms provide an interesting avenue for future
research.

Figure 3 | Intensity correlation function g 2ð Þ
avg t0ð Þ at time kt0 5 1 as a function of C/k for a) the localised state and b) the homogeneous state.

Figure 4 | Time-evolution of the cross-correlation function for the local initial state with C/k 5 10 in (a) and with br/k 5 10 in (b), and for the
homogeneous initial state with C/k 5 10 in (c) and with br/k 5 10 in (d).
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Figure 5 | Normalised cross correlation function of the initial
homogeneous state at kt0 5 3 for various values of C/k and C9/k.
Depending on the type of dissipation, the tri-diagonal waveguides exhibit

various behaviours.
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