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Abstract

Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large
genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically
low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch
frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA
bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that
despite the phage’s rampant mobility between coinfections, the prophage’s genome displays features of constraint related
to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate,
independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in
composition with genes of similar function grouping together, the modules are generally not interchangeable with other
unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly
consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are
diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO
are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that
while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the
intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory
has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in
phages of obligate intracellular bacteria.
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Introduction

Bacteriophages, viruses that infect bacteria, play a major role in

bacterial genome evolution and ecology through their global

abundance [1] and their ability to laterally transfer their genomes

between bacteria [2,3,4]. The most common bacterial viruses, the

double-stranded (ds)DNA tailed phages, outnumber prokaryotic

cells by 10-fold in environmental samples [5] and are responsible

for the majority of intraspecific genome diversification in bacteria

[6,7,8]. This diversification is due in part to bacteriophages

triggering genomic rearrangement in their host bacteria and

transmitting new genetic material both within and sometimes

between different bacterial species. A striking example of

bacteriophage diversity is found in Mycobacterium smegmatis, where

eighty different dsDNA tailed phages from 21 different viral

clusters are present [9,10,11,12]. Bacteriophages are also known to

alter bacterial cell biology by facilitating the transfer of virulence

factors such as superantigens, extracellular toxins, effector proteins

that modulate host-cell invasion, and host-cell adhesion factors

[13].

The Modular Theory of dsDNA phages, as originally proposed

by Botstein (1980), asserts that phage genomes consist of conserved

clusters of functionally-related genes (i.e. modules) that can be

interchanged by horizontal transfer among a large common phage

gene pool [14,15]. These phage modules are composed of

contiguous sets of genes involved in a similar function, such as

head assembly, tail formation, or regulation of the lysis and

lysogeny cycles. While the genome of the phage is the total

composite of the phage’s DNA, the Modular Theory asserts that

phage evolution primarily acts at the level of gene modules due to

promiscuous module exchange between unrelated phages, where

essentially one module is replaced with another that has the same

general biological function. Comparative approaches suggest

modularity and mosaicism are major evolutionary hallmarks of

dsDNA phages. However, generalizing the principles to all dsDNA

phages will require an expanded analysis of phage genomics in

diverse ecological ranges [16]. In this regard, obligate intracellular

bacteria, which live and replicate within the cytosol of host cells,

are an ideal test of the Modular Theory since the intracellular

niche may pose ecological restraints on exposure to novel phage

gene pools.

The genome sequences of obligate intracellular bacteria have

brought a renewed interest in mobile element evolution in bacteria

prone to genome reduction [17,18,19,20,21,22,23,24,25,26,27,

28,29,30]. Comparative analyses of multiple genomes of obligate

intracellular species demonstrate that although these bacteria have

tiny genomes, their ecological range correlates with mobile

element abundance. Specifically, species that host-switch tend to
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harbor significantly more mobile elements than those species that

transmit vertically through the maternal line [31,32]. Of the

mobile elements studied in obligate intracellular bacteria,

temperate bacteriophages are noteworthy for their ability to

spread intercellularly [28,33,34,35] and diversify the host bacterial

genome [36].

At least three arguments suggest phages from host-restricted

bacteria may not evolve by the Modular Theory. First, point

mutations can be the major cause of phage diversification [37]

across a core genome that is recalcitrant to lateral gene transfer.

Second, some phage types, such as the T4-like phages, show a

mixed genomic structure involving both modular exchanges and a

conserved core genome [38]. Third, and perhaps most importantly,

constraints on phage evolution in a restricted intracellular niche

could suppress recombination with novel gene pools and lead to a

preponderance of single nucleotide mutations and deletions.

Here we test for the first time whether the Modular Theory

governs the genome evolution of double-stranded DNA phages in an

obligate intracellular genus (Wolbachia). The WO bacteriophages are

an ideal system to discern the evolutionary forces that are shaping

phage genome and protein evolution in obligate intracellular

bacteria. Wolbachia are predicted to infect two out of three arthropod

species globally [39,40,41] in addition to 90% of filarial nematode

species [42]. Extrapolation of the infection frequency using estimates

of the number of arthropod species makes this bacterium one of the

most infectious microbes on the planet. Wolbachia are transmitted

both vertically within species and horizontally between species,

which promotes a higher exposure rate to novel gene pools. For this

study, we selected sequences from three complete Wolbachia genomes

(wMel, wPip, and wRi) containing WO prophages [29,30,43] and

complete prophage sequences from two additional Wolbachia

(wCauB and wVitA) [28,44]. These five Wolbachia induce cytoplas-

mic incompatibility, a reproductive modification that typically results

in embryonic lethality between crosses of infected males and

uninfected females. Each fully sequenced Wolbachia genome contains

two to five prophage WO haplotypes, demonstrating that phage

diversity is common within Wolbachia genomes. Molecular surveys

have placed bacteriophage WO in 89% of Wolbachia from the A and

B phylogenetic supergroups that infect arthropods [45,46]. Thus, the

abundance of phage WO and its ability to rampantly transfer

between Wolbachia coinfections [28,33,35,45] in one of the most

prevalent bacterial infections in animals demonstrates its potential

impact on bacterial symbiont diversity and host-symbiont interac-

tions.

To determine the molecular evolutionary forces shaping

prophage WO genomes, we addressed four interconnected

questions. (i) First, does the Modular Theory explain the genetic

changes in WO genomes or do point mutations provide most of

the genetic diversity? (ii) Second, does the obligate intracellular

niche constrain the acquisition of new genes and/or modules in

WO prophages? (iii) Third, is the WO integration site and

mechanism conserved in Wolbachia? We explore WO integration

by comparing the recombinases encoded in each WO type and the

areas of the host Wolbachia genome surrounding the integrated

prophages. (iv) Finally, what is the relative strength of selection and

recombination on prophage WO protein evolution across the

functional modules of the genome?

Results

I. Does the Modular Theory explain the evolution of
prophage WO genomes?

Comparative sequence analyses of 16 prophage WO genomes

from Wolbachia strains that induce cytoplasmic incompatibility

(Table 1) specify the largest WO prophages, WOCauB2 and

WOCauB3, as 43.2 kb (46 genes) and 45.2 kb (47 genes),

respectively. We define each prophage as a contiguous set of

phage-related genes and each haplotype as a genetic variant of the

prophage WO family. There are six haplotypes that are capable of

forming virions, including WOCauB2 and WOCauB3 [47],

WOVitA1 [28,48], and at least one haplotype each from Wolbachia

infecting Culex pipiens [49], Drosophila simulans, and D. melanogaster

[50]. For the analyses below, the prophage region cutoffs for each

haplotype are estimated according to the terminal genes of the

WOCauB2 and WOCauB3 reference genomes. The first and

main observation from these comparisons (Figure 1) is that the

WO haplotypes do not exemplify one of the two patterns

consistent with the Modular Theory [14]. While the genomes

are modular in nature, there is no evidence of promiscuous

exchange of functional modules between unrelated phages. The

closest sequence relatives of all gene modules in WO are from

other WO haplotypes based on nucleotide and protein BLAST

searches. Thus, the recent, genetic changes of prophage WO

within the niche of Wolbachia principally arose from descent with

modification. However, the ancestral gene modules of WO were

previously annotated to be from diverse phages [44],

Second, each Wolbachia strain has at least one complete

prophage with head, baseplate, virulence, and tail modules in

addition to one or more partial prophages (Figure 1). We classify

partial prophages as genomes that lack one of these modules; they

are unlikely to be active by themselves as they are generally

missing tail genes that are required for adsorption and infection.

However, an intact copy of each known structural gene in a

Wolbachia genome could allow for bacteriophage protein ‘‘com-

mandeering’’ where the prophages that lack the tail module could

use proteins encoded by the other functional haplotype within the

genome to complete their assembly and movement. Alternatively,

these partial prophages may form virions that are tailless or they

do not form virions at all.

The presence of partial prophage sequences can be explained

by three possible scenarios: (i) recurrent infections by new WO

types followed by degeneration, (ii) duplications of the resident

WO haplotype(s) by errors in replication or recombination,

followed by degeneration of one of the copies, or (iii) a

combination of the two scenarios. To distinguish these alternatives,

we compared the average nucleotide identity of seven WO

prophage genes within each Wolbachia to that between different

Wolbachia (Table S1). If the haplotypes arose by duplication within

a Wolbachia genome, then we expect to observe higher prophage

sequence homology within a Wolbachia genome than between

them. Six of the genes selected for this analysis are homologs of

WOCauB2 genes gp17, gp18, gp19, gp21, gp22, and gp23; they

occur in all of the prophages. The seventh gene is a homolog of

WOCauB2 gp15 that is absent only in WOPip4. The average

nucleotide identity of these prophage genes within a Wolbachia

genome ranged from 53.4% in wCauB (gp23) to 99.1% in wPip

(gp15) (Table S1). The genes analyzed from most WO phages

never had the highest level of nucleotide identity with another

prophage in the same Wolbachia genome. For example, WOMelB

and WORiA-1 and WORiA-2 (identical copies, hereafter referred

to as WORiA) are more closely related to each other (99.9%

identical) than to the other prophages within their Wolbachia

genomes (75.6% in wMel and 80% in wRi). One exception is

strain wPip from Culex pipiens, where prophage WO genes are more

likely to have their closest homolog in the same genome. The

genes in WOPip1, WOPip2, and WOPip3 are most closely related

to each other, with an average of 93.5% similarity, when

compared to other WO prophages (MWU, two-tailed,
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p,0.001). For five of the seven genes and four out of six genes,

respectively, WOPip5 and WOPip4 are most closely related to

another wPip prophage. Therefore, with the exception of wPip

that appears prone to within-genome WO duplications, indepen-

dent acquisition of new WO haplotypes explains the variation

within a single Wolbachia genome.

A third observation of prophage WO genomes is that while the

genes are syntenous within modules, the position of the modules

within the prophages is highly variable. For instance, Figure 1

shows that in WOCauB2, WOCauB3, and WORiB, the head,

baseplate, and tail genes are oriented in the same direction.

However, in WOPip4, WOPip5, and WOVitA1, the head and

baseplate modules are inverted compared to the tail module. In

WOMelB, the head and tail module (denoted WOMelB1) are

contiguous but inverted from each other, while the presumed

baseplate module and the recombinase (WOMelB2) that belong to

this prophage are located 34.7 kb downstream. These two

fragments of the prophage were putatively conjoined at one point

because they are proximate to each other. The insertion between

them is derived from a lateral transfer event with a Rickettsia

plasmid [36], and the two prophage fragments complement each

other exactly to make an intact prophage. Interestingly, despite the

orientation of the other modules in the genome, the recombinase

gene is always positioned so that the 39 end is adjacent to the

flanking region of the prophage (Figure 1), which typically contains

an ankyrin repeat family protein.

WO is temperate and should therefore have identifiable

endolysin genes. Surprisingly, the prophages do not contain a

conserved endolysin, despite electron micrograph evidence that

phage WO can lyse Wolbachia [35,48]. No holins and only two

lysozymes (in WOVitA4 and WORiC) were identified in the WO

prophages. Therefore, the proteins encoding the lysin by which

WO exits the bacterial cell may be novel. The patatin-like

phospholipase encoded on the terminal portion of the tail module

could be involved in cell exit or entry of the bacteriophage.

Likewise, other than the integrase, proteins that comprise a typical

lysogeny module, such as transcriptional regulators, are uniden-

tified.

A RepA-family helicase, a primase, and a sigma-70 subunit that

may direct the bacterial RNA polymerase to these genes for

initiation of DNA strand synthesis are present in the predicted

replication module. At least one of the genes is encoded in ten of

the sixteen WO prophages, but only six WO genomes encode all

three genes. Two other genes with a predicted function, a Holliday

junction resolvasome/endonuclease and a DNA methylase, are

present that could be involved in DNA replication and packaging.

Table 1. Prophage strains used in this study.

Prophage Host insect
Common
Name

Wp
group

Wp
strain Rp ORFs Head/Bp Vir./Tail Rec. Rep. Unchar. Ref

WOCauB2 Cadra cautella moth B wCauB CI B2gp1-gp47 gp11-gp27 gp28-gp47 gp1-gp3 gp4-gp10 NA [44]

WOCauB3 B2gp1-gp46 gp12-gp28 gp29-gp46 gp1-gp3 gp4-gp11 NA

WOPip1 Culex pipiens mosquito B wPip CI WPa_0242-0272 WPa_0242-0261 NA NA WPa_0262-
0270

WPa_0271-
0272

[29]

WOPip2 WPa_0297-0322 WPa_0301-0318 NA NA WPa_0319-
0322

NA

WOPip3 WPa_0323-0342 WPa_0323-0336 NA WPa_0337-0342 NA NA

WOPip4 WPa_0411-0455 WPa_0415-0430 WPa_0438-
0455

WPa_0411-0414 WPa_0433-
0437

WPa_0431-
0432

WOPip5 WPa_1294-1340 WPa_1294-1311 WPa_1321-
1340

NA WPa_1312-
1318

WPa_1319-
1320

WOMelA Drosophila
melanogaster

fruit fly A wMel CI WD_0261-0288 WD_0261-0284 NA WD0285-0288 NA NA [30]

WOMelB1 WD_0565-0610 WD_0593-0605 WD_0581-
0565

NA WD_0582-
0592

WD_0606-
0610

WOMelB2 WD_0634-0644 WD_0638-0644 NA WD_0634-0637 NA NA

WORiA-1 Drosophila
simulans Ri.

fruit fly A wRi CI wRi_005400-
005720

wRi_005460-
005650

NA wRi_005400-
005450

NA wRi_005660-
005720

[43]

WORiA-2 wRi_010060-
010380

wRi_010120-
010310

NA wRi_010060-
010110

NA wRi_010320-
010380

WORiB wRi_006880-
007250

wRi_p07230-
007070

wRi_007060-
006880

wRi_p07240-
007250

NA NA

WORiC wRi_012450-
012670

wRi_012670-
012470

NA wRi_012450-
012460

NA NA

WOVitA1 Nasonia
vitripennis

jewel
wasp

A wVitA CI VA1gp1-gp51 VA1gp5-gp23 VA1gp35-
gp51

VA1gp1-gp4 VA1gp27-
gp34

VA1gp24-
gp26

[28]

WOVitA2 VA2gp1-gp39 VA2gp9-gp31 NA VA2gp1-gp3 VA2gp4-gp8 VA2gp32-gp39

WOVitA4 VA4gp1-gp31 VA4gp5-gp27 NA VA4gp1-gp4 NA VA4gp28-gp31

Wp-Wolbachia pipientis; Rp- reproductive parasitism; CI – cytoplasmic incompatibility; NA – not applicable; Bp – Baseplate; Vir. – Virulence; Rec. – Recombinase; Rep.
– Replication; Unchar. – Uncharacterized. WOVitA3 was not analyzed because the initial identification via PCR product published in [45] was found to be a chimera. For
the purposes of this study, WOMelB1 and WOMelB2 are combined into one haplotype, WOMelB; see text for justification. Similarly, WORiA-1 and WOiRA-2 are analyzed
as one haplotype, WORiA, since they are identical copies.
doi:10.1371/journal.pone.0024984.t001
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These two genes are adjacent to each other and lie between the

replication and head modules in the ten prophages for which they

are both present. The endonuclease could assist DNA packaging

of mature phage heads by cleaving branched DNA structures of

replicated phage DNA. The methylases may modify the packaged

phage DNA such that it becomes resistant to bacterial restriction

systems. The endonuclease is present in three additional

prophages in which the methylase is absent. Interestingly, the

endonuclease and methylase genes are oriented so that they

appear to be part of the head/baseplate modules and not the

replication module. The endonuclease is likely to degrade either

bacterial DNA to inhibit the host during WO’s lytic cycle or

superinfecting phage DNA. In three prophages (WOMelB,

WORiA-1, and WORiA-2), a second repA gene is present and

adjacent to a SNF2-family helicase. In WOPip2, the SNF2

helicase is part of the replication module that also contains a single

repA and the sigma-70 subunit.

II. Does the obligate intracellular niche constrain the
acquisition of new genes in WO phages?

Figures 1 and 2 show that WO is comprised of core genes that

are present in nearly all WO types and dispensable genes that are

only present in some prophage WO types. When comparing gene

content between the prophages with and without tail genes, there

is a demarcation in whether certain functional modules are

preserved. Across all genomes, the baseplate and head modules

span 15 genes and may comprise a single module based on gene

orientation and the close proximity of reading frames. These

modules are also present in nearly all WO genomes (Figure 2).

Furthermore, an integrase gene is present in 14/16 WO genomes,

but this gene is highly variable and groups into three major

phylogenetic clusters (Figure S1). For example, the family of

integrase found in WOCauB2 is only present in four other WO

genomes. In contrast, the dispensable gene clusters chiefly include

the replication and tail/virulence gene modules. However, when

just considering the prophages with tail genes, the tail genes and

putative virulence genes VrlA, VrlC, and patatin are present in

100% of these WO prophages (Figure 2), suggesting that these

genes play a functional role in tailed WO or Wolbachia biology.

Indeed, patatins were originally annotated as storage proteins in

potatoes, but they also have the lipolytic activity of phospholipase,

catalyzing the cleavage of fatty acids from membrane lipids. Such

enzymatic activity would be especially useful for phage WO when

entering or exiting a membrane-bound intracellular bacteria.

Notably, there are a few WO prophages that contain genes that

are not present in the reference genome of WOCauB2. These

‘unique genes’ are summarized in Table S2 and encode conserved

hypothetical proteins, an M1 lysozyme, an addiction module toxin,

Figure 1. Prophage WO genomes are modular. A schematic of gene synteny across the prophage WO genomes is depicted. Complete WO
prophage sequences are available with the exception of wPip2 and wPip3, as the wPip genome sequence was artificially connected between genes
within these two prophages [29]. These two prophages are treated as separate and complete. The two prophages from wCauB have been shown to
be excisable by the mapping of their att sites [44] in conjunction with visualizing phage particles [44,47]. Inverse PCR and sequencing analysis
showed that WOCauB2 is conjoined between the integrase B2gp1 and the ankyrin repeat protein B2gp47, and WOCauB3 is conjoined between the
integrase B3gp1 and the putative SpvB family toxin B3gp45 and hypothetical protein encoding B3gp46 genes [44]. WO haplotypes from wMel [46],
wPip [49], and wVitA [48] are presumed excisable due to observations of lytic phage particles in each system. Genes are colored based on functional
type and homology. Bright pink: integrase/recombinase; Red: Ankyrin-repeat protein; Turquoise: Replication module; Purple: Head module; Blue:
Baseplate module; Orange: Putative virulence factors; Green: Tail module; Yellow: Transposases; Light pink: Holliday junction resolvasome/
endonuclease; Grey: DNA methylase, Light teal: SNF2 helicase, Dark teal: lysozyme. The numbers above genes refer to the locus tag of that gene in
the published genome.
doi:10.1371/journal.pone.0024984.g001
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an RNA-directed DNA polymerase, a helicase of the SNF2 family,

and a DNA methylase. The presence of an addition module toxin

but not an antitoxin gene to rescue it is unexpected. Toxin-antitoxin

loci are common in mobile elements of free-living bacteria and

employed as post-segregational killers to spread the mobile genetic

elements they are associated with. The observation of a toxin gene

in prophage WO without an antitoxin complement may indicate

that this toxin has evolved a new function in the intracellular niche,

such as killing the host Wolbachia cell during lysis. The presence of a

DNA methylase in WO is also interesting, as it is present in a high

fraction of WO haplotypes (9/16). Methylases are common on

bacteriophages and may modify the DNA such that it becomes

resistant to bacterial restriction systems.

Additionally, a few genes only occur once within the 16 WO

genomes, making them unique to that particular prophage haplotype

(Figure 3A, Table S3). These genes can comprise up to 13% of a

prophage genome and are distributed broadly across 12/16

prophages with the exception of WOMelA, WOPip2, WOMelB2,

and WOCauB2. Unique prophage genes can be classified into two

groups – those that differentiate WO genomes but that also occur in

other locations in the Wolbachia genome, including conserved

hypothetical genes and a prophage uncharacterized gene (Table

S3), and those genes that are found solely within the WO genome,

including insecticidal toxin gene SpvB of WOCauB3, a bleomycin

resistance gene found in WOPip4, ankyrin repeat protein-encoding

genes, and conserved hypothetical protein-encoding genes.

As the prophage functional modules are comprised of operons

that could be disrupted or enhanced by the acquisition of new

gene content, we assessed if unique genes to a WO genome

occurred in specific modules of the genome or randomly across the

prophage genome. Novel genes are distributed in all prophage

modules, with the highest percentage of novel genes found in the

head/baseplate region (39.3%) and the virulence/tail region

(25%). The remaining 10.7%, 7.1%, and 17.9% of unique genes

are found in the replication, recombinase, and uncharacterized

modules, respectively. The uncharacterized areas are found either

between the head/baseplate module and the tail module

(WOVitA1 and WOPip5) or the terminal region of the prophage

upstream from the head genes (WOVitA4, WORiA, WOPip1,

WOPip2, WOPip4, WOMelA, and WOMelB1). However, after

normalizing the data to the gene number of these different regions

(Figure 3B), as larger regions with more genes could contain more

unique DNA, the fractions of unique genes per module were 3.9%

(11 unique genes/285 total genes) for the head/baseplate module,

4.2% (2/48) for the recombinase region, 5.5% (7/127) for the

virulence/tail module, 4.8% (3/63) for the replication module, and

15.2% (5/33) for the regions not assigned to a specific module. In

summary, prophage WO is capable of acquiring a limited number

of novel genes throughout the prophage WO genome, especially in

the uncharacterized regions that may be under relaxed selection

relative to the structural or lifecycle modules.

WO genomes are also clearly prone to degradation due to

transposon insertions from multiple different families and gene

mutations that lead to non-functional proteins (Figure S2A). One

genome lacking a tail module, WORiC, and one genome for which

the core modules are separated by a large genomic segment,

WOMelB1, contain the highest fractions of pseudogenes (13.6%

and 8.9%, respectively), including mutations to genes required to

generate an active phage particle. The other five prophage genomes

for which pseudogenes are present contain a lower percentage (2.1–

.7.1%) of pseudogenes. After the data is normalized to account for

the number of total genes in each module, transposons are also most

frequent in the uncharacterized modular region (2/33 or 6.06%).

Interestingly, there is little difference between degradation in

prophages with and without tail genes, as 44% of pseudogenes are

found in prophages with tail genes and 56% are found in prophages

without tail genes (Fisher’s exact test, two tailed, p = 0.7395).

III. Is the WO integration site and mechanism conserved
in Wolbachia?

To determine if the WO recombinases are homologous in

Wolbachia, and thus mediate integration in a similar fashion, a

Figure 2. The core genome of prophage WO consists only of head and baseplate genes. The percentage of prophage WO genomes
(N = 16) containing genes present in the active phage genome, WOCauB2, is depicted. Percentages were calculated for both all WO genomes (black)
and only WO genomes with tail genes (grey). A gene map of WOCauB2 is shown above the plot with colors corresponding to the labels in Figure 1.
doi:10.1371/journal.pone.0024984.g002
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protein alignment of the 14 site-specific recombinases was

constructed. Three major families of integrases are represented

in the WO prophages (Figure S1). First, the integrases encoded on

a Nasonia vitripennis wVitA non-phage genome segment and

WORiB are members of a family of phage-related tyrosine

recombinases (93.9% amino acid identity) with the closest

homolog found in Ehrlichia canis. Second, the integrases of

WOPip2, WOPip3, WOPip4, WOVitA4, WOMelA and WO-

MelB are not closely related to the above integrases and belong to

the serine recombinase family, and thus function using a different

mechanism than the tyrosine recombinases [51]. These WO

integrases share 84.4% amino acid identity. Finally, there are two

more subgroups of recombinases including those in WOCauB2,

WOCauB3, WOVitA2 and a WO remnant from wRi (96.4%

amino acid identity) and those in WOVitA1 and WORiC (83.3%

amino acid identity). These two groups of integrases also belong to

the serine recombinase family. The high level of genetic and

functional diversity in the recombinase genes supports the lack of a

common integration site for all WO haplotypes and could be an

indication of mosaic evolution that appears to not extend to other

prophage WO modules.

In order to confirm that members of prophage WO do not

target conserved gene sequences for integration, the genes flanking

prophage WO were compared. While there is no conserved gene

set in all WO flanking regions, there are similarities between some

WO types (Figure 4). Four prophages spanning three haplotypes

(WOMelB, WORiA1, WORiA2, WOVitA2) have termini that are

adjacent to a group of eleven genes also found in a plasmid from a

Rickettsia symbiont of Ixodes scapularis ticks [52]. The average

pairwise nucleotide identity between these four prophages in this

region is 85.3%. In all but WOVitA2, the gene preceding this

cluster is an SNF2-family helicase that, in eukaryotes, can regulate

transcription, maintain chromosome stability during mitosis, and

process DNA damage [53]. The presence of these genes within a

prophage region was first reported by Ishmael et al. [36], who also

demonstrated by microarray analysis that three closely-related

Wolbachia infections from fruit flies (wAu, wSim, and wSan)

contained the same genetic region. The more divergent Wolbachia

infections of wPip and wBm do not have this region. A BLASTx

search determined that this region is found in the genomic shotgun

sequences of wWil and wAna of Drosophila.

Immediately downstream from this conserved gene cluster in

WOMelB and WORiA is a second set of conserved genes. These

genes are also found adjacent to the phage terminal patatin gene in

the phages WOPip1 and WOVitA1 (Figure 4), indicating a

possible deletion of the Rickettsia homologs after prophage

integration. These genes are oriented in the same direction,

indicating that they may be cotranscribed, and include transcrip-

tional regulators, the DNA repair protein RadC, and a conserved

hypothetical protein. In WOVitA1 and WOPip1, this region

extends to the DNA mismatch repair gene mutL. Interestingly, the

region downstream of these genes in WOVitA1 (consisting of

ankyrin repeat genes, the heat shock protein hspC2, and a

hypothetical protein) is adjacent to the patatin in WORiB. This

gene group is oriented in the same direction relative to each other,

but opposite to the RadC gene cluster.

Figure 3. Unique genes in WO genomes are rare and scattered across functional modules. (A) The percentage of genes specific to a single
prophage WO haplotype was calculated. (B) The percentage of unique genes present in each functional region across all WO prophages and standard
error was identified by calculating the number of unique genes divided by the number of genes in the module.
doi:10.1371/journal.pone.0024984.g003
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Eleven of the 16 prophages have the DNA repair protein RadC

in the host Wolbachia regions that flank prophage WO, but never in

the genome segment adjacent to the recombinase. The remaining

WO phages have unknown flanking regions on the non-

recombinase end (WOCauB2, WOPip2, WOPip3, and WO-

VitA4) or are not flanked by conserved gene segments (WORiC).

While the majority of the prophages containing a radC homolog in

the Wolbachia flanking regions do not have a large syntenous

region, WOMelA, WOCauB3, WOPip4, and WOPip5 all contain

a set of genes of similar function, including radC, transcriptional

regulators, and hypothetical genes.

IV. What is the relative strength of selection and
recombination on phage WO protein evolution across
the functional modules of the genome?

A complete view of prophage evolution in obligate intracellular

bacteria involves a balance among the forces of genetic drift,

adaptive evolution, functional constraints, and recombination.

Analyses of molecular evolution, when applied to loci across the

prophage modules, provide insight on how the modules may be

differentially evolving. One important caution, however, is that

temperate bacteriophages in general are highly recombinogenic

[15]. There is abundant evidence of recombination within the

minor capsid protein of WO [33,45] and this raises a concern that

different regions of the locus or genome may have experienced

different evolutionary histories due to recombination; therefore the

inference of selection using maximum likelihood phylogenetic

approaches (i.e., PAML) is inappropriate. We analyzed variation

in selection (v= dN/dS) across the WO modules using the

omegaMap software package [54]. This method employs a

Bayesian approach to parameter estimation that is independent

of phylogeny, and therefore, is less likely to falsely identify sites

subject to diversifying selection in sequences that display clear

evidence of recombination [55,56].

To address how selection is affecting phage protein evolution,

we applied the program omegaMap to test for variation in the

nature and strength of selection (v) across specific phage loci and

whether this variation corresponds to specific phage functions.

Strikingly, we found throughout the entire phage genome that the

average v value per gene was ,1, indicating that WO prophage

genes are overall under strong, purifying selection (Table 2).

Individual residues rarely experience significant, positive selection.

The only exception in the dataset is gp45, which is predicted to

encode phospholipases of the patatin family that may facilitate

phage entry or exit into or out of the Wolbachia cell by digesting

lipids. Its four 39 terminal nucleotides are under significant,

positive selection (mean v= 6.61–6.69; posterior probability of

positive selection .0.95).

To statistically detect recombination within WO loci, we used

the program LDhat [57], which analyzes sequence alignments and

estimates the significance of intragenic recombination and the

population rate of recombination (2Ner). It has been widely applied

in several systems [57], including Helicobacter pylori, HIV, human

mtDNA, and Wolbachia [45,58]. Four estimates were calculated

(Table 2) across genes that occurred in all prophages, or prophages

that are separated into those with and without tail genes: (i) the

population mutation rate (hw), (ii) the correlation coefficients of

linkage disequilibrium (LD) with distance, (iii) the significance of

the correlation using three different permutation tests, and (iv) the

population recombination rate (2Ner) per locus under a coalescent

framework. Genes used in the analysis are listed in Table S4 and

Table S5 and were chosen based on the criteria that these genes

lacked stop codon mutations. Sampling of the prophage taxa was

restricted to the fully coding prophages with tail genes,

WOCauB2, WOCauB3, WORiB, WOPip5, WOVitA1, and

WOMelB, and the prophages without tail genes, WOPip1,

WOPip2, WOPip3, WORiA, and, WOVitA4.

To determine if specific genes/modules are more likely to

recombine than others, it is helpful to control for variation in

population sizes (Ne) that can affect the estimates of recombination

rate. The ratio 2Ner/hW (per site) reduces to 2Ner/2Nem and then to

r/m, yielding the likelihood of a base pair experiencing a

recombination event relative to mutation in a given gene. The

r/m ratio for head and baseplate genes is notably different between

the prophages with and without tail genes, where there is a

significant eight-fold difference between the recombination rates

(0.056, tailed vs 0.007, nontailed; MWU, two tailed p = 0.007)

(Table 2). All seven genes analyzed from the head/baseplate

modules for both the prophages with and without tail genes show

evidence of recombination (at least 2/3 permutation tests with a

p,0.05, Table 2). Seven of the nine genes in the virulence/tail

module are positive for recombination; only the tailU (gp40) and

late control D (gp42) genes do not show recombination (Table 2).

Among the prophages with tail genes, three genes in particular

account for the higher rates of recombination relative to mutation

in comparison to the prophages without tail genes: major capsid

gene gp19 (0.167), putative virulence VrlC homolog gp30 (0.097),

and conserved hypothetical gp31 (0.132) (Table 2). When just

Figure 4. WO flanking regions contain conserved gene sets. The prophages WOVitA2, WOMelB, and WORiA are flanked on one end by a
segment of genes that is conserved on a Rickettsial plasmid [36] (blue). In WOMelB and WORiA, a second conserved gene set (green), comprised of
transcriptional regulators and the DNA repair gene radC, is found downstream of the Rickettsia gene homologs. This region is the prophage-flanking
region in WOPip1 and WOVitA1. A third conserved gene segment (red) of ankyrin repeat proteins, a heat shock protein, and a conserved hypothetical
protein, is found in WOVitA1 and flanking the prophage terminal gene in WORiB. Light gray: RepA; Dark gray: SNF2-family helicase; Black: patatin.
doi:10.1371/journal.pone.0024984.g004
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comparing the rate of recombination between modules within the

prophages with tail genes, the tail module had the lowest rate of

recombination (0.016), which is 3.6-fold lower than the head/

baseplate module (0.056; MWU, two tailed, p = 0.01) and 3.4-fold

lower than the virulence module (0.058; MWU, two tailed,

p = 0.031).

We also determined the average genetic distance, which is the

average proportion of amino acid substitutions between a pair of

proteins within a gene family, between homologs of genes across

prophage WO (Figure 5). Proteins from the head region are the

most evolutionarily conserved (average 0.1498) and have a

significantly reduced genetic distance relative to the baseplate

region (average 0.3218, MWU, two-tailed, p = 0.004) but not to

the tail region (average 0.2484, MWU, two-tailed, p = 0.31).

Elevated rates of change in the baseplate and some tail protein

sequences is further evident by their similar genetic distances to the

hypervariable Wolbachia surface protein wsp.

Discussion

A null hypothesis for the evolution of dsDNA phages, known as

the Modular Theory, is that phage genomes consist of clusters of

functionally-related genes that can be interchanged by horizontal

exchange within a large common gene pool [14,15]. This theory of

modular and mosaic evolution is well established in phage from

free-living bacteria. However, access should not be uniform in the

niche of an intracellular bacterium because the host cell is

presumably a significant barrier to exchange with the global

population of phages. In this regard, obligate intracellular bacteria

are an ideal test of the Modular Theory as the intracellular niche

may pose ecological restraints on exposure to novel phage gene

pools.

In order to determine if Modular Theory applies to dsDNA

phages in the obligate intracellular niche, we analyzed the

prophage gene pool from Wolbachia. We show that WO prophages

do not have a recent history of modular exchange and instead

evolve through point mutations, deletion, recombination, and

purifying selection. This non-mosaic evolution is also partly seen in

the structural genes of the P2 family of phages that infect E. coli

[59]. However, unlike P2 where evolution coincides with that of its

host, phage WO evolution is incongruent from its host Wolbachia

[45], a feature likely due to the rampant phage transfer between

Wolbachia coinfections [28,33,34,45].

While phage WO lacks mosaicism, it is modular in structure.

The head and baseplate gene modules are found in every copy of

WO, and the replication, virulence and tail modules are present in

at least one WO type per Wolbachia genome. Given this pattern of

one complete and at least one partial phage per Wolbachia genome,

it is unsurprising that WO degradation is tolerated and pervasive.

Table 2. Recombination and Selection in WO genes.

Gene Length n hw r2, d |D9|, d Plk Pr2 P|D9| 2Ner/Locus (-InL) 2Ner/site/hw Mean v

Untailed

gp15 222 6 0.105 20.170 na 0.86 0.001 0.002 0(213173.81) 0.000 0.111

gp17 957 6 0.119 20.052 na 0 0.001 0 0(2304995.29) 0.000 0.179

gp18 366 6 0.111 0.177 na 0.004 0 0.051 0(240621.8) 0.000 0.303

gp19 1002 6 0.069 20.033 20.028 0.372 0.014 0.012 0(2118253.22) 0.000 0.052

gp21 387 6 0.145 20.129 20.069 0 0 0 1.0(270346.48) 0.018 0.277

gp22 462 6 0.154 20.031 0.015 0.001 0.015 0.843 1.0(295555.08) 0.014 0.206

gp23 438 6 0.119 20.115 20.085 0 0 0 1.0(268581.6) 0.019 0.199

Tailed

gp15 222 6 0.142 20.077 20.044 0 0.001 0.11 2.0(222892.43) 0.063 0.090

gp17 957 6 0.131 20.063 20.073 0 0 0 2.0(2309686.81) 0.016 0.190

gp18 366 6 0.134 20.148 20.037 0 0 0.004 2.0(250448.29) 0.041 0.286

gp19 1002 6 0.083 20.036 20.028 0 0 0 14.0(2154609.48) 0.167 0.056

gp21 387 6 0.165 20.026 20.004 0 0.029 0.414 1.0(284186.15) 0.016 0.217

gp22 462 6 0.183 20.081 20.006 0 0 0.251 5.0(2117532.59) 0.059 0.173

gp23 438 6 0.214 20.012 20.015 0.002 0.091 0.028 3.0(2136640.64) 0.032 0.204

gp28 681 6 0.150 20.143 20.051 0 0 0 4.0(2210583.82) 0.039 0.155

gp30 1173 6 0.096 20.076 0.015 0 0 0.978 11.0(2275129.17) 0.097 0.094

gp31 189 6 0.160 20.198 20.108 0 0 0 4.0(217092.57) 0.132 0.171

gp32 1230 6 0.120 20.228 20.070 0 0 0 1.0(2534906.31) 0.007 0.274

gp37 495 6 0.143 20.037 20.041 0 0.006 0 2.0(2104015.99) 0.028 0.044

gp40 336 6 0.220 20.007 0.003 0.636 0.254 0.645 0.0(2110168.19) 0.000 0.241

gp41 171 6 0.207 20.065 20.043 0.532 0.017 0.033 0.0(218167.72) 0.000 0.201

gp42 867 6 0.196 20.003 20.005 0.999 0.157 0.089 0.0(2516916.65) 0.000 0.226

gp45 906 6 0.155 20.155 20.086 0 0 0 1.0(2393658.44) 0.007 0.236

hw – the population mutation rate per site; r – correlation coefficient between pairs of loci; r2, d – correlation of r2 with distance; D9|, d - correlation of |D9| with distance;
Plk , Pr2, P|D9| - probabilities resulting form testing the null hypothesis of no recombination with a likelihood permutation test; 2Ner/Locus (-InL) – the population
recombination rate per locus under a coalescent framework; 2Ner/site/hw – the population recombination rate per locus per site; Mean v-the mean ratio of dn/ds.
doi:10.1371/journal.pone.0024984.t002
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The presence of at least one intact copy of each known structural

gene in a Wolbachia genome could allow for bacteriophage protein

‘‘commandeering’’ where the prophages that have mutations or

lack the tail module could use proteins encoded on other WO

prophages within the genome to complete their assembly and

movement. A similar mechanism of transfer by defective phages

has been shown for the Sp family from E. coli O157 [60].

Despite a reduced exposure to novel gene pools, WO is not

completely immune to acquiring new genes. Transposons are

frequently found within WO genomes and are known to play

important roles in shaping the genomic diversity of Wolbachia

[61,62]. Additionally, the majority of WO prophages contain a

few, unique genes with no defined role in phage functionality.

Brussow and Hendrix [5] postulate that novel genes located within

bacteriophages are frequently under their own transcriptional

control and are maintained because they are advantageous to the

bacterial host. Although a majority of novel WO genes are located

in uncharacterized regions, some could be important to bacterial

biology. Several of the novel genes are also found in non-phage

regions of the Wolbachia genome, which indicates that WO could

be exchanging new genes through recombination with the host

genome.

Surprisingly, homologs of several genes required for complete

function in dsDNA phages (holins, lysozymes, transcription

factors) could not be identified in all prophage WO. It is possible

that the large number of conserved hypothetical genes provide

those missing functions. There is precedent for such genes that lack

sequence homology to known functional phage proteins but

perform identical roles [5,63]. Further, the modular structure of

phages is conserved among phages that infect Bacteria and

Archaea, but there is little to no sequence homology between

genes that provide an equivalent function.

Recombinases are one example of WO genes that are diverse in

nucleotide identity but are functionally comparable. Prophage

WO haplotypes encode a range of recombinases. Since recombi-

nase genes are frequently interspersed throughout the Wolbachia

genome, it is easy to extrapolate that recombination between WO

and the host genome facilitates the switching of prophage

recombinases. The diversity of recombinases in WO correlates

with the apparent lack of a consensus in their integration site.

Unlike prophages that recombine into a specific gene, such as a

tRNA gene, the integration point of prophage WO cannot be

predicted and seems to vary based on the prophage haplotype.

Evidence from ssDNA phages that do not evolve modularly has

shown that structural genes (‘‘self’’ genes) are more evolutionarily

conserved, while genes that interact with the host (‘‘nonself’’ genes)

evolve more rapidly [64]. In this system, the viral coat proteins

have fewer than 1% amino acid changes, while the assembly

proteins have 1–10% amino acid differences, and the genes

required for phage entry and release are more than 10%

divergent. This theory offers one explanation for how phages

isolated from diverse areas and at different times have a high

degree of genetic similarity. The WO prophages follow this trend.

The head module, which does not interact with the host, is the

most conserved while the baseplate module, which is involved in

phage-host recognition, is the most genetically divergent.

Temperate bacteriophages, such as WO, tend to be highly

recombinogenic. Within WO, rates of intragenic recombination

Figure 5. Mean genetic distance of WO and Wolbachia genes. The average genetic distance and standard error was calculated for genes across
Wolbachia prophage WO haplotypes. The values for the hypervariable Wolbachia surface protein gene wsp and the highly conserved Wolbachia
housekeeping genes coxA and ftsZ are provided for comparison. Black bars represent genes having a predicted function while gray bars represent
genes for which no function can be predicted.
doi:10.1371/journal.pone.0024984.g005
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are 8-fold greater in genes from prophages with tail genes than in

genes from prophages without tail genes. Since prophages with

complete tail modules have a greater chance of forming virions

and being transferred into new genomes, the increase in

recombination could be due to a wider exposure over time to

other WO phages. The question still remains if WO prophages

that occur in the same genome can recombine with each other.

The nature of selection within prophage genes results in a

complex dichotomy between what is advantageous for the bacteria

versus what is best for the phage. Prophage WO genes are under

strong purifying selection, where deleterious mutations are selected

against and removed from the population. One major hypothesis

of phage evolution is through illegitimate recombination, which

often occurs within open reading frames [65]. If the recombination

leads to knockdown of a functional module and lack of a viable

phage, the deleterious event will be discarded [66,67,68]. In this

case, the phage genes under strong purifying selection are akin to

‘housekeeping’ genes that are conserved to maintain function.

While phage WO is, to date, unique in the obligate intracellular

bacteria, a modular dsDNA tailed phage, known as APSE, is

present in the facultative symbiont of pea aphids, Hamiltonella

defensa [69,70,71,72]. Diversity in APSE is driven by recombina-

tion and it has .90% nucleotide identity with other APSE

genomes [72], indicating that, like WO, it may not evolve by

modular evolution. Other similarities between APSE and WO

include the ability to gain novel genes and its variable copy

number in host genomes [70]. If the Modular Theory does not

apply to both WO and APSE, then it must be considered that

phages in bacterial endosymbionts have a reduced ability to

exchange DNA with other phages owing to their restricted niche

and limited exposure to other phage gene pools.

Materials and Methods

Prophages used in this study
Prophages analyzed in this study were i) from whole genome

Wolbachia sequences from the infections of Culex pipiens Pel (wPip,

NC_010981) [29], Drosophila melanogaster yw (wMel, NC_002978)

[30], Drosophila simulans Riverside (wRi, NC_012416) [43], and ii)

from shotgun or partial genome Wolbachia sequences from the

infections of Cadra cautella (wCauB, AB161975.2, AB478515.1,

AB478516.1) [44] and Nasonia vitripennis (wVitA, HQ906662,

HQ906663, and HQ906664) [28]. Prophages were divided into

head, baseplate, recombinase, replication, virulence, and tail

regions based on the predicted function of groups of genes oriented

in the same direction (Table 1). Functionality was inferred based on

i) the current gene annotation found in NCBI, ii) the annotation of

non-Wolbachia homologs identified in a tblastx search of the nr

database, and/or iii) the presence of conserved protein domains.

Identification of phage gene homologs and unique
genes

A tblastx search using each annotated gene from the sixteen

prophage WO genomes as the query was performed against the

whole genome sequences of wPip [29], wMel [30], wRi [43], and

wVitA (unpublished data) and the prophage and flanking

sequences of WOCauB2 and WOCauB3 [44]. Genes were

considered homologs if there was greater than 50% amino acid

homology over 30% of the coding length. The bacterial species

from which the closest relatives were identified was noted. Genes

that did not have a homolog in Wolbachia, and thus considered

unique to their phage haplotype, were used as the query in a

tblastx search against the NCBI nr database to identify potential

homologs in other bacteria.

Gene content and synteny
Prophage gene homologs of the WOCauB2 genes gp17, gp18,

gp19, gp21, gp22, and gp23 (identified in the tBLASTx search

described above) were aligned using the MUSCLE plugin [73] in

Geneious version 5.0.4 [74]. Each representative from each

haplotype was aligned with every other prophage WO homolog,

and the percent nucleotide identity was compared between

prophages integrated within the same Wolbachia genome and

between prophages integrated in different Wolbachia genomes.

Comparison of recombinases
The amino acid sequences of the annotated recombinases found

in the WO prophages were aligned using MUSCLE. A neighbor-

joining consensus phylogenetic tree using the Jukes-Cantor general

distance model, no outgroup, and 100 bootstrap replicates was

constructed using the Geneious Tree Builder. A blastx search of the

nr database was performed to identify the closest homologs and

recombinase protein families for each phage WO representative.

Comparison of WO flanking regions
The Wolbachia genomic sequences flanking each prophage were

compared using the Mauve [75,76] plug-in in Geneious to identify

homologous genes. For wCauB phages WOCauB2 and WOCauB3,

the entire known flanking sequence was compared. For the phages

for which the whole Wolbachia genome is sequenced, a minimum of

13.4 kb of flanking sequence was used for comparison.

Recombination and selection
The prophage WO homologs of seven genes from the head/

baseplate region (Table S4) and nine genes from the virulence/tail

region (Table S5) were aligned using MUSCLE. Criteria for the

taxa analyzed were (i) they must have coding genes and (ii) the taxa

were consistent among all of the alignments. Analysis of the head/

baseplate genes was restricted to WOCauB2, WOCauB3,

WOPip1, WOPip2, WOPip3, WOPip5, WOMelB1, WOMelB2,

WORiA, WORiB, WOVitA1 and WOVitA4. Analysis of the tail

region was restricted to WOCauB2, WOCauB3, WOPip5,

WOMelB1, WORiB, and WOVitA1. Indels were removed from

the alignment using MacClade version 4.08 [77].

To investigate the influence of recombination, the program

LDhat [57] was used. LDhat estimates the population recombina-

tion rate by composite-likelihood method and employs a parametric

approach, based on natural coalescence, to estimate the scaled

parameter 2Ner where Ne is the effective population size, and r is the

rate of recombination. The estimate of the population recombina-

tion rate is normalized by the mutation rate (h), which is estimated

using a finite-series version of the Watterson estimator. All the data

sets were run through both crossing-over model L and Gene

conversion model C with respective gene length and average tract

length of 50-bp and 100-bp for the analysis of biallelic sites. Because

recombination tract lengths are unknown for Wolbachia and the

estimates of 2Ner can be highly dependent on the recombination

tract lengths, recombination rates from the genetic exchange model

producing the best-likelihood score are presented and should be

interpreted with some caution. Nonetheless, all data sets produced

the best-likelihood score with a gene conversion, 50-bp tract model.

In order to address the strength of adaptive evolution on point

mutations, we used the method implemented in OmegaMap [54]

that employs a Bayesian approach to parameter estimation that is

independent of phylogeny, and therefore, less likely to falsely

identify sites subject to diversifying selection in sequences that

display clear evidence of recombination [55,56]. The program

estimates both variation in selection (v= dn/ds) and the
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population recombination rate (r). The following prior distribu-

tions were used for the analyses: m, k and Öindel: improper inverse,

ù: inverse with range 0.01–10, r: inverse with range 0.01–10. The

variable block model was chosen for both v and r, with block sizes

of 30 and 30, respectively. Analyses were performed with 500,000

iterations and 10 reorderings as suggested in omegaMap

documentation (Wilson, 2006). To summarize the data, the

Summarize module of omegaMap program, which summarizes

the results from every 100th generation of the run, was used. The

first 50,000 sequences were discarded as a burn-in.

Mean evolutionary distance
To estimate the level of conservation for individual proteins within

the WO phage family, homologous amino acid sequences for each

protein were first aligned using ClustalW2 (http://www.ebi.ac.uk/

Tools/msa/clustalw2). The alignment was then imported into the

program MEGA4 [78], and the overall mean distance was calculated

under an equal input model. This model assumes that each amino

acid site has the same substitution rate but adjusts for differing amino

acid frequencies in the protein. Gaps within the alignment were

ignored so that only sites that were present in all sequences were

considered in the analysis. The overall mean distance represents the

average proportion of amino acids that differ among the sequences

aligned. For example, an overall mean distance of 0.2 indicates that,

on average, the homologous proteins differ from one another in 20%

of their amino acid residues. For comparison, the overall mean

distances of two Wolbachia housekeeping genes, ftsZ and coxA, and one

Wolbachia gene with a high level of variability among strains, wsp, were

calculated using protein sequences from the same strains of Wolbachia

in which the WO prophages are located. Standard error for each

overall mean distance estimate was also calculated by MEGA4 using

bootstrap analysis with 500 replications.

Supporting Information

Figure S1 WO Recombinases are Diverse. A neighbor-

joining phylogenetic tree based on nucleotide sequences demon-

strates that prophage WO recombinases cluster into three major

groups. Groups A belongs to the tyrosine-recombinase family.

Groups B and C belong to the serine-recombinase family.

(TIF)

Figure S2 Degradation of WO Genomes. The number of

transposon insertions and pseudogenes were tallied in order to

measure the degradation and gene loss in WO prophage genomes.

A) The fraction of transposase genes and pseudogenes out of the

total number of genes in each prophage WO genomes are denoted

along with the standard error of proportion. B) The fraction of

transposons and pseudogenes per functional module, normalized

to account for difference in module size, is shown.

(TIF)

Figure S3 Synteny analysis of the WOCauB2 family of
phages. Alignments were performed between the prophages and

flanking regions of WORiB, WOCauB2, and WOVitA2. Dotplot

analysis shows that these prophage genomes are syntenous and

contain few breakpoints between the genomes.

(TIF)

Table S1 Average percent nucleotide identity for each
prophage gene within a Wolbachia genome. Parentheses
indicate the number of phage genes/haplotypes per
Wolbachia.
(DOC)

Table S2 Genes present in WO haplotypes that are not
present in WOCauB2.
(DOC)

Table S3 Genes found in a single WO haplotype.
(DOC)

Table S4 Genes used in selection and recombination
analysis from the head and baseplate modules of both
tailed and untailed phages.
(DOC)

Table S5 Genes used in selection and recombination
analysis from the virulence and tail modules.
(DOC)
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