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Abstract

Post-translational modification refers to the biological mechanism involved in the enzymatic

modification of proteins after being translated in the ribosome. This mechanism comprises a

wide range of structural modifications, which bring dramatic variations to the biological func-

tion of proteins. One of the recently discovered modifications is succinylation. Although suc-

cinylation can be detected through mass spectrometry, its current experimental detection

turns out to be a timely process unable to meet the exponential growth of sequenced pro-

teins. Therefore, the implementation of fast and accurate computational methods has

emerged as a feasible solution. This paper proposes a novel classification approach, which

effectively incorporates the secondary structure and evolutionary information of proteins

through profile bigrams for succinylation prediction. The proposed predictor, abbreviated as

SSEvol-Suc, made use of the above features for training an AdaBoost classifier and conse-

quently predicting succinylated lysine residues. When SSEvol-Suc was compared with four

benchmark predictors, it outperformed them in metrics such as sensitivity (0.909), accuracy

(0.875) and Matthews correlation coefficient (0.75).

Introduction

Post-translational modification (PTM) refers to the enzymatic modification of proteins [1]. As

part of this biological mechanism, one or more amino acids of a protein interact with specific

molecular groups. Such interaction functionally changes the amino acids, thereby impacting
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the function of the entire protein. From the 20 amino acids that make up the genetic code,

lysine has proven to be the most susceptible residue to PTM. It has been involved in many

PTMs including methylation [2, 3], sumoylation [4], acetylation [5], glycation [6] and malony-

lation [7]. One of the recently identified PTMs is succinylation, which reportedly impacts the

function and structure of proteins within biological interactions [8]. Succinylation mainly

refers to the addition of a succinyl group to lysine residues. This molecular change alters the

charge of the lysine to -1, thus introducing a large structural moiety. Succinylation occurs in

both eukaryotic and prokaryotic cells, and is common in enzymes involved in mitochondrial

metabolism, amino acid degradation, and fatty acid metabolism. It has been also observed in

histones with functions in chromosome configuration and gene expression. Nevertheless, the

role of succinylation in other biological reactions needs to be extensively clarified. Therefore,

the identification of succinylation sites can provide detailed insights into the function of pro-

teins and their biological interactions.

The identification of PTM sites has become a serious challenge in the last years [9]. In this

direction, many bioinformatics methods have been proposed for detecting them within pro-

tein sequences [10–30]. Experimental methods like mass spectrometry remain the main tech-

nique for identifying lysine succinylation sites. However, these methods are costly and unable

to keep up with the exponential growth of sequenced proteins. Consequently, there is an

urgent demand for fast and accurate computational methods capable of predicting succinyla-

tion sites. In the past years, a wide range of prediction methods have been proposed to tackle

this issue, but their performance is consistently limited. This limitation is more apparent for

lysine succinylation than for other PTMs because of its recent discovery. Thus far, the pioneer-

ing methods proposed to solve this problem have been mainly focused on analyzing the pro-

tein sequence. Two of these methods are SucPred [31] and SuccFind [32]. The former is a

semi-supervised machine learning-based method, which incorporates the sequence and physi-

cochemical features into a support vector machine for classification. The later, however, intro-

duced a more robust approach that considers information about the neighboring amino acids

of succinylated and non-succinylated lysines to better discriminate between them. Another

method, iSuc-PseAAC, employed a strategy that integrates the peptide position-specific pro-

pensity into the general form of pseudo amino acid composition for training a support vector

machine [33]. Another method that incorporates sequence-coupling effects into the pseudo

amino acid composition was iSuc-PseOpt [34]. It introduced the k-nearest neighbors strategy

and hypothetical training samples in an attempt to ameliorate the imbalance between classes.

Subsequently, a random forest algorithm was designed for prediction. SuccinSite also regarded

a random forest classifier but with informative encoding features, such as the composition of

k-spaced amino acid pairs, binary encoding and specific physicochemical attributes [35]. How-

ever, the above predictors showed a poor sensitivity when it comes to detecting succinylated

lysine residues.

Studies related to protein subcellular localization [36], structure and function prediction

[37, 38], and local structure and torsion angles prediction [39] have demonstrated that the

structural and evolutionary information of proteins can significantly improve prediction per-

formance. We previously proposed two different predictors: SucStruct [40] and PSSM-Suc

[41], which corroborated the above premise. For instance, SucStruct used structural features

like secondary structure and torsion angles [40], whereas PSSM-Suc transformed the evolu-

tionary information of the position specific scoring matrix (PSSM) for succinylation predic-

tion [41]. Both approaches trained a pruned decision tree for classification purposes, and

outperformed state-of-the-art predictors which only relied on sequence and physicochemical

attributes. These predictors clearly demonstrated that the use of powerful classifiers alongside

evolutionary and structural attributes can significantly improve succinylation prediction.

Improving succinylation prediction accuracy
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In order to design an efficient sequence-based computational predictor for solving biologi-

cal problems, a long list of studies [25, 26, 42–47] has made reference to a five-step rule [48].

This rule comprises the following steps: (1) the construction or selection of a correct dataset

for training and testing a predictor, (2) the use of an accurate mathematical expression for

transforming the biological sequence and considering the intrinsic correlation to future pre-

dictions, (3) the development of an exact algorithm for making predictions, (4) the proper use

of statistical metrics for assessing the predictor accuracy, and (5) the design of a user-friendly

server for making the predictor available to the public. These steps will be described in the sub-

sequent sections.

Given the explosion of biological sequences, one of the most serious challenges is how to rep-

resent these sequences as discrete models or vectors while keeping the information related to the

order of sequences. This problem is often caused by the intrinsic limitations of machine learning

algorithms, which can only handle numerical vectors [16]. Besides any vector could lose the

information of patterns in a sequence. In order to overcome the above limitations for protein

sequences, the pseudo amino acid composition (PseAAC) [49] was proposed. Since its proposal,

the concept known as Chou’s PseAAC, has been widely used in the area of computational prote-

omics [9, 50]. PseAAC has been recently incorporated in three software: ‘PseAAC-Builder’,

‘propy’, and ‘PseAAC-General’. The first two are aimed at creating models of Chou’s special

PseAAC, whereas the third one uses the Chou’s general PseAAC [48]. These software considered

the special modes of feature vectors in addition to high-level vectors such as ‘functional domain’,

‘gene ontology’ and ‘sequential evolution’, or ‘PSSM’ modes [48]. Due to the usefulness of

PseAAC for dealing with protein/peptide sequences, a new concept coined pseudo k-tuple nucle-

otide composition [51], aimed at generating feature vectors from DNA/RNA sequences, was

proposed. Recently, a new web server called ‘Pse-in-One’ [52] and its updated version ‘Pse-in-

One 2.0’ [53], which facilitate the generation of feature vectors from protein/peptide or DNA/

RNA sequences, were developed. Our study made use of secondary structure and evolutionary

information for defining pseudo components and thus identifying succinylation sites.

In this work, we propose a new predictor, SSEvol-Suc, which primarily integrates informa-

tion about the best secondary structure and the PSSM for predicting succinylation sites [54,

55]. Our predictor combines both features and transforms them into profile bigrams [56] in

order to describe each lysine residue. The k-nearest neighbors strategy was employed for

reducing the imbalance between succinylation and non-succinylation sites [34]. An AdaBoost

classifier was finally designed for discriminating between lysine residues. We compared the

prediction results of SSEvol-Suc with those of iSuc-PseAAC [33], SuccinSite [35], iSuc-PseOpt

[34] and pSuc-Lys [57]. SSEvol-Suc achieved remarkable results by outperforming all the

above predictors. Its sensitivity, accuracy and Matthews correlation coefficient (MCC) were

recorded at 0.909, 0.875 and 0.75, respectively.

Materials and methods

In this paper, we propose a novel predictor, SSEvol-Suc, which makes use of the secondary

structure and the PSSM of proteins for accurately predicting succinylation sites [58–60]. These

features were transformed into profile bigrams and employed for describing each lysine resi-

due. The resulting matrix was then used for training an AdaBoost classifier and predicting suc-

cinylated lysines.

Benchmark dataset

The benchmark dataset was extracted from the Compendium of Protein Lysine Modifications

(CPLM) [61, 62]. This compendium consists of over 45,000 proteins from 122 species, and 12
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different annotated PTMs. In the CPLM, succinylation was the most abundant and diversely

distributed mark across all the included species [62]. The original collection comprised 2,521

succinylation and 24,128 non-succinylation sites from 896 unique proteins. To avoid overesti-

mations due to homology and be able to directly compare our results with those of previous

studies, we removed those proteins with� 40% pairwise sequential similarity. We then ended

up with a benchmark dataset consisting of 670 unique proteins, where the longest and shortest

proteins were 5,656 and 47 residues long and the average protein comprised 464 residues. The

1,782 succinylation and 18,344 non-succinylation sites located in such proteins were grouped

into two mutually exclusive collections: positive and negative. The subsequent sections will

introduce the structural and evolutionary features computed from the protein sequences.

Secondary structure feature

The secondary structure of proteins provides accurate information about their local structure

and how they fold into their general tertiary configuration. We predicted the secondary struc-

ture of each protein in our benchmark dataset with the tool SPIDER2 [63, 64]. SPIDER2 is one

of the latest predictors aimed at computing the local structure of proteins. This software has

been successfully used to compute the structural properties of proteins in sequence-based pre-

dictions of protein binding sites. Secondary structure indicates the contribution of each amino

acid to specific local structures, namely, helix, strand, and coil for determining the local 3D

structure of proteins. In other words, secondary structure determines the local structure of

proteins by considering the local configuration of amino acids in the sequence. Therefore, its

understanding can provide critical information about the function and folding of proteins. We

run SPIDER2 on each protein sequence by providing all the sequences in FASTA format. SPI-

DER2 automatically detects a FASTA file, and for each sequence, it retrieves the local structure

with the highest probability. This results in a matrix of size L × 3, where L represents the pro-

tein length and the three columns indicate the transition probabilities to the three secondary

structure conformations (helix, strand and coil). Hereafter, we refer to this matrix as SSpre.

Evolutionary feature

Evolutionary information provides valuable insights into structural, functional and sequential

similarities among proteins based on how they evolved [65]. PSSM describes the substitution

probability of each amino acid in a protein with all the amino acids of the genetic code. This

matrix was computed with the alignment toolbox PSI-BLAST [66], which aligns each protein

to similar proteins in the Protein Data Bank [67]. We run PSI-BLAST on all the proteins in

our benchmark dataset and retrieved the corresponding PSSM. For each protein, PSI-BLAST

produces two L × 20 matrices, where L is the protein length and the 20 columns indicate the

amino acids of the genetic code. The running of PSI-BLAST was conducted on non-redundant

proteins in the Protein Data Bank, with a cutoff (E) of 0.001 and three iterations. From these

matrices, we used the normalized matrix which comprises the substitution probabilities of

amino acids.

Lysine residues as profile bigrams

The structural and evolutionary features were used to describe each succinylated and non-suc-

cinylated lysine residue. Lysines (K) were described by considering their adjacent 15 upstream

and 15 downstream amino acids (Fig 1A) [34]. If a lysine residue did not contain 15 amino

acids (either upstream or downstream), we mirrored the missing peptide stretch (Fig 1B). The

sequence segment S consisting of 15 upstream and 15 downstream residues in addition to the

Improving succinylation prediction accuracy
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lysine K was expressed as

S ¼ fR� 15;R� 14; . . . ;R� 2;R� 1;K;R1;R2; . . . ;R14;R15g ð1Þ

where R−i and Ri (for 1� i� 15) are upstream and downstream amino acids, respectively. It

can be observed from Eq (1) that 31 amino acids (including K) were used for defining each

lysine residue. Accordingly, each lysine represented by the sequence segment S was labeled. In

R-15                   R-14                   . . .   R-i   . . .                      R-1                      K               R1                         . . .   Ri   . . .                    R14                    R15                 

Lysine

upstream residues

PSSM + bigram
20×20 = 400 features

SSpre + bigram
3×3 = 9 features+

downstream residues
A

R-15                   R-14                   . . .   R-i   . . .                      R-1                      K               R1                         . . .   Ri   . . .                           

Lysineupstream residues
B

  . . .   R-i   . . .                      R-1                      K               R1                         . . .   Ri   . . .                    R14                    R15                 

Lysine downstream residues

R-15                   R-14                   . . .   R-i   . . .                      R-1                      K               R-1                      . . .   R-i   . . .                    R-14                    R-15                 

upstream residues upstream residues

R15                   R14                     . . .   Ri   . . .                        R1                      K               R1                        . . .   Ri   . . .                     R14                    R15                 

downstream residues downstream residues

right mirroring

left mirroring

    ( i < 15)                      

    ( i < 15)                      

Fig 1. Schematic representation of a lysine residue and its surrounding amino acids. (A) lysine with 15 residues on both sides, (B) lysine with

missing residues to the right and left.

https://doi.org/10.1371/journal.pone.0191900.g001
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other words, the segment S comprising a succinylation site was labeled as 1 whereas that

describing a non-succinylation site was labeled as 0.

To describe each lysine, the submatrices SSpre and PSSM around the lysine were retrieved

and transformed into frequency vectors of bigrams (PSSM + bigram and SSpre + bigram).

These transformations resulted in two matrices of sizes 20 × 20 (for PSSM + bigram) and 3 × 3

(for SSpre + bigram). Each segment S was finally described by a 409-feature vector. This feature

vector was then used to capture the structural and evolutionary information about the lysine

represented by the segment S.

The bigram method has shown promising results when it comes to exploring discrimina-

tory information [36, 56, 68–70], so that we used it here. The scheme for transforming the sub-

matrices SSpre and PSSM into frequency vectors is explained below. The PSSM matrix M of

size L × 20 and the SSpre matrix N of size L × 3 were used to construct a feature vector. Each

element mij and nij of the matrices M and N, respectively, represents the transitional probabil-

ity of the j -th amino acid/secondary structure conformation at i-th position in the protein

sequence. The sequence segment S (Eq (1)) was described by two matrices of sizes 31 × 20 (for

PSSM) and 31 × 3 (for SSpre). The matrices M and N were processed as profile bigrams [56] by

Bp;q ¼
P30

k¼1
mk;pmkþ1;q ð2Þ

and

B0r;s ¼
P30

k¼1
nk;rnkþ1;s ð3Þ

where 1� p,q� 20 for the matrix M and 1� r,s� 3 for the matrix N.

Thus, the matrix B, which represents PSSM + bigram and its elements Bp,q (for p = 1,2,. . .,

20 and q = 1,2,. . .,20), will be a 20 × 20 matrix. Similarly, the matrix B0, which represents SSpre
+ bigram and consists of elements B0r;s, (for r = 1,. . .,3 and s = 1,. . .,3) will be of size 3 × 3. Sub-

sequently, the matrices B and B0 can be transformed as

F ¼ ½B1;1;B1;2 . . . ;B1;20;B2;1; . . . B20;1; . . . B20;20;B
0
1;1;B

0

1;2
. . . ;B03;3�

T
ð4Þ

where T is the transpose. Therefore, the matrix B will have 400 transitional probabilities and

the matrix B0 will comprise 9 transitional probabilities. Eq (4) is the feature vector, which con-

tains 409 transitional probabilities and results from the PSSM + bigram and SSpre + bigram
matrices. In other words, each lysine residue was defined by a 409-dimensional vector of struc-

tural and evolutionary features.

This information was computed for all the lysine residues in our benchmark dataset, result-

ing in a training matrix of 1,782 succinylation sites (label = 1) and 18,344 non-succinylation

sites (label = 0). Such a matrix was further processed to reduce the imbalance between classes,

and ultimately used for training an AdaBoost classifier (refer to the following section).

One advantage of the bigram method is its window-size independent nature. For instance,

it extracts 400- and 9-dimensional feature vectors regardless of the window size adopted

around lysine residues. Thereby, the bigram method enables us to enlarge the window around

lysines without necessarily increasing the number of features.

AdaBoost classifier

Adaptive Boosting (AdaBoost) is a meta-classifier, which iteratively applies a base learner and

adjusts its parameters to build a strong ensemble classifier [71]. The base classifier, usually a

decision tree, is first applied to the training dataset. The weights are then iteratively adjusted

by increasing the weight for misclassified samples. This procedure continues until changes in

Improving succinylation prediction accuracy
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the weights become trivial. Finally, AdaBoost combines the base classifiers across all the itera-

tions to build the final predictor [72]. Decision trees are usually used as base classifiers because

they can reflect larger changes due to their sensitivity to weight adjustments [72, 73]. AdaBoost

has been successfully used in studies related to protein folding, attaining promising results that

emphasize its applicability to protein science [74, 75]. We utilized the Weka implementation

of the AdaBoost algorithm [76] with 1,000 iterations. Decision stumps, which are one-level

decision trees, were used as weak classifiers.

Results and discussion

Any predictor, aimed at predicting succinylation sites, must have its performance assessed. In

this work, we evaluated the performance of SSEvol-Suc in terms of four different statistical

metrics: sensitivity, specificity, accuracy and Matthews correlation coefficient [15, 36, 77–80].

The following sections will discuss these metrics in addition to aspects such as class imbalance

and predictor performance.

Evaluation metrics

The first metric, sensitivity, was used to evaluate the proportion of correctly predicted succiny-

lation sites. If the predictor is able to accurately detect succinylation sites in the dataset, a high

sensitivity will be achieved. For instance, a predictor with a sensitivity of 1 is able to accurately

detect positive (succinylation) sites whereas that with a sensitivity of 0 fails to detect these sites.

The second metric, specificity, assesses the predictor ability to correctly detect non-succiny-

lation sites. Similarly, a specificity of 1 presents a predictor able to classify all the negative sites

whereas a specificity of 0 points to a predictor unable to detect them.

The third metric, accuracy, evaluates the predictor ability to discriminate between succiny-

lation and non-succinylation sites. The predictor with an accuracy of 1 is an accurate one

while that with an accuracy of 0 is regarded an inaccurate predictor.

The fourth metric, Matthews correlation coefficient (MCC), is often used in binary classifi-

cation when the classes have different sizes. A perfect correlation between observed and pre-

dicted instances is indicated by a MCC of 1 whereas a perfect anticorrelation is confirmed by a

MCC of -1.

These four metrics can be summarized as

sensitivity ¼ 1 �
Nþ
�

Nþ
ð5Þ

specificity ¼ 1 �
N �
þ

N�
ð6Þ

accuracy ¼ 1 �
Nþ
�
þ N �

þ

Nþ þ N �
ð7Þ

MCC ¼
1 �

Nþ�
Nþ þ

N�
þ

N�

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�
þ
� Nþ�

Nþ

� �
1þ

Nþ� � N �
þ

N �

� �r ð8Þ

where N+ and Nþ
�

represent the total amount of positive (succinylation) sites and the number

of positive sites misclassified by the predictor. Likewise, N− and N �
þ

indicate the total amount
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of negative (non-succinylation) sites and the number of negative sites misclassified by the

predictor.

A promising predictor should ideally outperform in the above statistical metrics. In any

case, it should achieve a high performance in at least one of the statistics. Conversely, a predic-

tor with a low sensitivity will be clearly displaying an inability to accurately predict succinyla-

tion sites.

Validation scheme

For assessing the performance of any predictor, the use of an appropriate validation scheme is

absolutely necessary. Several validation schemes, including the n-fold cross-validation and the

jackknife, have been proposed [81, 82]. While the jackknife resampling model turns out to be

the least arbitrary and yield unique results for a dataset [83], the cross-validation strategy has

been extensively used to evaluate previous predictors [33, 34]. Therefore, we also used the

cross-validation scheme here for establishing a fair comparison with state-of-the-art

predictors.

The cross-validation technique was carried out as follows,

1. The initial dataset was split into n different subsets of equal size.

2. The predictor was trained on the n − 1 subsets and tested on the remaining fold.

3. The predictor parameters were adjusted with the n − 1 subsets.

4. The four statistical metrics (sensitivity, specificity, accuracy and MCC) were calculated on

the test fold.

5. Steps 1 to 4 were repeated n times and the average of each statistical metric was computed.

In this study, we assessed the performance of SSEvol-Suc with 6-, 8- and 10-fold cross-

validations.

Dataset balancing

After retrieving the succinylated and non-succinylated lysines from each protein sequence, we

obtained a number of non-succinylation (negative) sites greater than that of succinylation

(positive) sites. Although such a difference makes sense from a biological viewpoint, it could

strongly bias any computational predictor. Because of this, the elimination of class imbalances

in training datasets proves critical in pattern recognition studies for achieving bias-free classifi-

cations. It is worth noting that different techniques have been proposed for balancing datasets.

Though the upsampling of the positive set might further improve the predictor performance

as previously suggested [84], we chose to downsample the negative set in order to avoid intro-

ducing artificial training instances. Therefore, we used the k-nearest neighbors classifier [34].

To do this, we initially calculated the Euclidean distance between all the instances (lysine resi-

dues) in our benchmark dataset. Subsequently, we set a threshold of 10, which indicates the

number of neighbors to be regarded. This cutoff, used for ameliorating the imbalance between

classes, was intended to provide a better comparison with benchmark predictors [34], which

have utilized the same value for dataset balancing. It was computed as the division between the

amount of negative (18,344) and positive (1,782) lysines. As a result, those non-succinylation

sites, whose 10 nearest neighbors included at least one succinylation site, were removed. How-

ever, this initial filtering did not completely eliminate the imbalance so that new cutoffs were

computed. These thresholds were calculated by multiplying the initial threshold (k = 10) by

different integers. The computation procedure was repeatedly carried out until both sets
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(succinylation and non-succinylation sites) were balanced. Consequently, the number of nega-

tive instances was reduced to 1,604 sites with a cutoff of 60 (i.e., non-succinylation sites, whose

60 nearest neighbors comprised at least one succinylation site, were eliminated). The remain-

ing sets were then used to perform cross-validation and evaluate the performance of the pro-

posed predictor.

Comparison of SSEvol-Suc and current predictors

The proposed predictor, SSEvol-Suc, was compared with four state-of-the-art predictors: iSuc-

PseAAC [33], iSuc-PseOpt [34], SuccinSite [35] and pSuc-Lys [57]. These four predictors were

implemented into user-friendly web servers for succinylation site prediction. Thereby, we

manually uploaded all the protein sequences to the web servers and retrieved their predictions

for performance assessment. These web servers were previously trained on part of our

sequence dataset that is why we could only compute their performances on the validation set.

While the area under the curve (AUC) of iSuc-PseAAC [33], iSuc-PseOpt [34], SuccinSite [35]

and pSuc-Lys [57] could not be computed, that of SSEvol-Suc was calculated for 6-, 8- and

10-fold cross-validations.

As shown in Table 1, SSEvol-Suc represents a significant improvement over the four predic-

tors: iSuc-PseAAC [33], iSuc-PseOpt [34], SuccinSite [35] and pSuc-Lys [57]. SSEvol-Suc out-

performed the previous predictors in statistics such as sensitivity, accuracy and MCC. For

instance, sensitivity, accuracy and MCC significantly improved by 47.8%, 21.7% and 60.3%,

respectively, when compared to the highest value of each metric. These results clearly indicate

a considerable improvement (i.e., an increase in succinylation prediction accuracy) over cur-

rent predictors. It is worth noting that although the specificity (0.906) of SuccinSite [35]

remained high, its sensitivity (0.302) was remarkably low, leaving approximately 70% of succi-

nylation residues undetected. In addition, the AUC of SSEvol-Suc for 6-, 8- and 10-fold cross-

validations was 0.941, 0.938 and 0.942, respectively (Fig 2). These AUC values show that the

predictor performance was not significantly affected when 6- and 10-fold cross-validations

were conducted. However, the AUC value tended to slightly decrease when 8-fold cross-vali-

dation was performed.

Furthermore, we randomly created 100 negative sets of 1,782 samples each and trained the

AdaBoost classifier to properly sample the non-succinylation space. Nevertheless, the average

statistical metrics for 6-, 8- and 10-fold cross-validations did not dramatically vary (S1 File).

The above results illustrate the applicability of SSEvol-Suc when it comes to discriminating

between succinylation and non-succinylation sites. These could be achieved by the effective

combination of secondary structure and evolutionary information about proteins. The infor-

mation on each peptide segment around a lysine was transformed into matrices of profile

Table 1. Comparison of SSEvol-Suc and state-of-the-art predictors.

Method Sensitivity Specificity Accuracy MCC AUC

iSuc-PseAAC [33] 0.163 0.873 0.500 0.052 -

iSuc-PseOpt [34] 0.615 0.782 0.694 0.401 -

SuccinSite [35] 0.302 0.906� 0.588 0.258 -

pSuc-Lys [57] 0.587 0.866 0.719 0.468 -

SSEvol-Suc (6-CV) 0.900 0.835 0.870 0.739 0.941

SSEvol-Suc (8-CV) 0.905 0.836 0.872 0.745 0.938

SSEvol-Suc (10-CV) 0.909� 0.837 0.875� 0.750� 0.942�

�Highest value of this metric.

https://doi.org/10.1371/journal.pone.0191900.t001
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bigrams, and finally combined into a feature vector of transitional probabilities for classifica-

tion purposes. This transformation appears to be essential to detect succinylated lysines and

improve the sensitivity of SSEvol-Suc. Besides the AdaBoost classifier also contributed to such

prediction outcomes. In summary, the use of one single vector, which combines PSSM +

bigram and SSpre + bigram, seems to retain necessary information about lysine residues and

therefore enables us to accurately detect succinylation sites.

Structural and evolutionary information has been previously considered in two computational

predictors [40, 41]. For instance, SucStruct included the SSpre feature [40] whereas PSSM-Suc

only regarded information about the PSSM [41]. Although evolutionary information allowed us

A B

C

Fig 2. Receiver operating characteristic of SSEvol-Suc for (A) 6-, (B) 8- and (C) 10-fold cross-validations.

https://doi.org/10.1371/journal.pone.0191900.g002
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to discriminate lysines, better results are achieved when both types of characteristics are com-

bined rather than independently used.

As stated in [85] and demonstrated in numerous studies [10–14, 17, 20–22, 25, 26, 29, 30,

42–44, 47, 86, 87], the availability of user-friendly web servers should be the next step in every

computational predictor in order to enhance its impact [9]. To accomplish this, we will intend

to build such a web server in the future so that the scientific community could significantly

benefit from the proposed predictor.

Additional material related to this study can be downloaded from https://github.com/

YosvanyLopez/SSEvol-Suc.

Conclusions

In this paper, we present a novel predictor called SSEvol-Suc which effectively uses a combina-

tion of PSSM + bigram and SSpre + bigram for predicting succinylated lysine residues. The sec-

ondary structure and evolutionary information about proteins was processed using profile

bigrams and further integrated into a single vector for classification purposes. The k-nearest

neighbors technique was utilized for removing redundant instances, which were finally input

into an AdaBoost classifier for succinylation site prediction. When compared with previous

approaches, the sensitivity, accuracy and MCC of the proposed predictor significantly

improved by 47.8%, 21.7% and 60.3%, respectively. In spite of the significant performance of

SSEvol-Suc, it is worth emphasizing that machine learning techniques do not help us under-

stand why some lysines are succinylated and others are not. This is the main disadvantage of

such techniques, which do not provide much scientific knowledge.

Supporting information

S1 File. Performance of the AdaBoost classifier on randomly created negative sets using

6-, 8- and 10-fold cross-validations.

(XLSX)
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