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ABSTRACT: Based on UHPLC-QTOF-MSE analysis and quantized processing, combined with
machine learning algorithms, data modeling was carried out to realize digital identification of bear
bile powder (BBP), chicken bile powder (CIBP), duck bile powder (DBP), cow bile powder
(CBP), sheep bile powder (SBP), pig bile powder (PBP), snake bile powder (SNBP), rabbit bile
powder (RBP), and goose bile powder (GBP). First, 173 batches of bile samples were analyzed
by UHPLC-QTOF-MSE to obtain the retention time-exact mass (RTEM) data pair to identify
bile acid-like chemical components. Then, the data were modeled by combining support vector
machine (SVM), random forest (RF), artificial neural network (ANN), gradient boosting (GB),
AdaBoost (AB), and Naive Bayes (NB), and the models were evaluated by the parameters of
accuracy (Acc), precision (P), and area under the curve (AUC). Finally, the bile medicines were
digitally identified based on the optimal model. The results showed that the RF model
constructed based on the identified 12 bile acid-like chemical constituents and random forest
algorithm is optimal with ACC, P, and AUC > 0.950. In addition, the accuracy of external
identification verification of 42 batches of bile medicines detected at different times is 100.0%. So based on UHPLC-QTOF-MSE

analysis and combined with the RF algorithm, it can efficiently and accurately realize the digital identification of bile medicines,
which can provide reference and assistance for the quality control of bile medicines. In addition, hyodeoxycholic acid,
glycohyodeoxycholic acid, and taurochenodeoxycholic acid, and so forth are the most important bile acid constituents for the
identification of nine bile medicines.

■ INTRODUCTION
Animal bile medicines refer to the medicines made from the
bile of animals through simple processing.1−3 Animal bile
medicines are an important part of animal medicines; their
clinical use has been reported for thousands of years and has a
very long history, and there are many valuable Chinese
medicines, such as bear bile powder (BBP).4−6 Compared with
plant medicines, animal bile medicines have received wide-
spread attention due to their strong medicinal activity,
significant therapeutic effects, and low side effects. At present,
the commonly used animal bile medicines in clinical practice
mainly include bear bile powder (BBP), chicken bile powder
(CIBP), duck bile powder (DBP), cow bile powder (CBP),
sheep bile powder (SBP), pig bile powder (PBP), snake bile
powder (SNBP), rabbit bile powder (RBP), and goose bile
powder (GBP). The efficacy of various kinds of bile medicines
is very different, and the differences between rich and poor
resources are also very great. However, due to their similar
characteristics and microscopic features, some production
enterprises used cheap and easy-to-obtain animal bile instead
of rare animal bile medicines for production cost savings,
resulting in animal bile Chinese herbal medicines of varying
quality, the market order is very chaotic, seriously affecting and
jeopardizing the economic interests of consumers and health.7

Therefore, it is necessary to strengthen the identification
analysis and quality control of bile medicines.

To realize identification analysis and quality control of bile
medicines, traditional empirical identification mainly includes
macroscopic and microscopic characteristics, and physico-
chemical property has been used to identity bile medicines.7,8

Zhang et al. used chip-based nanoelectrospray ionization
tandem mass spectrometry to realize rapid identification of
bear bile powder from other bile sources.9 Based on HPLC-
CAD technology and chemometrics, Yuan et al. determined
the content of different bile acids in BBP samples with a view
to improving quality control.10 In addition, Lei et al.
constructed the recognition model for the identification of
BBP and its counterfeits based on the machine learning
algorithm.11

The abovementioned studies helped strengthen the quality
control and market supervision of bile medicines to a certain
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degree. To further enrich the identification means of bile
medicines, in this paper, first, we used UHPLC-QTOF-MSE to
detect nine kinds of bile medicines.12 Further, bile acid-like
chemical composition identification was performed based on
chemical reference substances, and digital quantized proces-
sion was performed based on a quality control sample. Then,
based on the identified chemical constituents of bile acids, the
data models were constructed by combining various machine-
learning algorithms to realize the digital identification and
analysis of bile medicines. Finally, we selected the best model
for external identification analysis based on evaluation
parameters such as Acc, P, and AUC. At the same time,
important variable indicator screening was performed to
explore the differential key chemical components.

■ MATERIALS AND METHODS
Chemical Reference Substances and Herbal Materi-

als. The chemical reference substances of 17 bile acids, shown
in Table 2, were purchased from the National Institutes for
Food and Drug Control (NIFDC) and Shanghai yuanye Bio-
Technology Co., Ltd. In addition, the bile materials were
collected from NIFDC and contains 37 BBPs, 35 CIBPs, 14
DBPs, 25 CBPs, 21 SBPs, 21 PBPs, 26 SNBPs, 21 RBPs, and
15 GBPs. Samples were stored in herbarium before test
analysis.
Reagent Consumables and UHPLC-QTOF-MSE Anal-

ysis. The methanol (MS grade, Lot: 10315431) was purchased
from Honeywell Trading Co., Ltd. of Shanghai China. The
acetonitrile (MS grade, Lot: 10315419) was purchased from
Thermo Fisher Scientific shier Technology Co., Ltd. of
Shanghai China. Mass spectrometry-grade ammonium formate
(Lot: 102580561) was purchased from Honeywell Trading
Co., Ltd. of Shanghai China. Ultrapure water (Lot: GB 19298)
was purchased from Watsons Food and Beverage Co., Ltd.,
Guangzhou China. The 2 mL disposable sterile syringe (Lot:
20230312) was purchased from Shandong Weigao Group
Medical Polymer Products Co. The Waters injection vial (Lot:
5660631710) was purchased from Waters Co., and the 0.22
μm organic filtration membrane (Lot: F210801) was obtained
from Shimadzu Co.

The UHPLC-QTOF-MSE analysis was performed on a
Waters Xevo G2-XS QTof. At the same time, ESI-mode was
used for detection and analysis and the MSE data acquisition
method was used, in which the data acquisition rate was set to
0.2 s; the scanning range of m/z was 100−1200; collision gas
was high purity argon, and the real-time mass axis calibration
solution (lock mass) was Leucine Enkephalin (LE), whose
concentration is 200 ng/mL.13 In addition, capillary: 3.0 kV;
sampling cone: 40 V; source offset: 80 V; desolvation
temperatures: 450 °C; desolvation gas: 600 L/h, collision
energy: 10∼50 V as well as source temperatures: 120 °C.13

Before sample analysis, the calibration of the mass axis and lock
mass were performed. In addition, for the analysis of BBP,
CIBP, DBP, CBP, SBP, PBP, SNBP, RBP, and GBP, the
chromatographic separations were conducted on Waters
Acquity UPLC BEH-C18 (2.1 mm × 100 mm, 1.7 μm)
chromatographic column. The column temperature and
injection volume were 35 °C and 2.0 μL. The gradient elution
of mobile phases is shown in Table 1, in which A-methanol, B-
acetonitrile, and C-5% ammonium formate solution.13

Sample Pretreatment. 10.00 mg of each chemical
reference substance was accurately weighed, and a mixed
standard solution was made at a concentration of 500 ng/mL

in a suitable amount of methanol.13 At the same time, for bile
medicines, 25.00 mg of bile medicines was accurately weighed
and added to 25.00 mL of methanol for ultrasonication for 30
min (power: 500 W, frequency: 40 kHz); then, the samples
were cooled to room temperature and filtered through the 0.22
μm filtration membrane.12,13 In addition, the quality control
sample is a mixed sample of nine bile medicines.
Data Processing and Analysis. Based on chemical

reference substances, literature research, and database
comparison, we initially identified some bile acid chemical
constituents. On the other hand, the mass spectrometry
information of BBP, CIBP, DBP, CBP, SBP, PBP, SNBP, RBP,
and GBP was processed by Progenesis QI software (Version
2.3).14 Furthermore, the quantized data of identified bile acid
chemical components were screened out, and the data models
were constructed by combining SVM, RF, ANN, GB, AB and
NB algorithms in Orange software (Version 3.35.0). Finally,
the best model was selected for external identification analysis
based on evaluation parameters such as Acc, P, and AUC. At
the same time, important variable indicator screening was
performed to explore the differential key chemical compo-
nents.

■ RESULTS AND DISCUSSION
UHPLC-QTOF-MSE Analysis. Under the united exper-

imental conditions, the chromatograms of blank, mixed
chemical reference substances, samples, and the quality control
sample are shown in Figure 1.

As shown in Figure 1, different bile medicines showed
different base-peak chromatograms as a whole. For a small
number of samples, chromatogram comparison is sufficient to
realize identification. However, as the number of samples
increases and individual differences come to the fore,
chromatogram comparison is to be inefficient. The identi-
fication efficiency can be greatly improved if an identification
model can be constructed based on stable and defined
chemical composition data and machine learning algorithms.11

Therefore, in the subsequent section, we initially identified
several bile acid components and quantified the base-peak
chromatogram to conduct data modeling. In addition, as
shown in Figure 1B and Table 2, there were 17 chemical
reference substances, which can be used to identity bile acids.

Further, based on the abovementioned bile acid chemical
reference substances, literature references and database
comparisons,9,10,12,15,16 we identified the bile acid components.
For example, compound A (11.06_514.2830 m/z) and its
dimerization (11.06_1029.5717 m/z [2M-H]−) can be
detected in all bile medicines. Its corresponding chemical
reference substance is taurocholic acid (Rt = 11.06 min_m/z
514.2769, TCA). Using the same method, we preliminary

Table 1. Gradient Elution Program of Liquid
Chromatography13

time flow (mL/min) % A % B % C

0 0.3 14.0 23.0 63.0
15 24.0 29.0 47.0
20 20.0 29.0 51.0
25 15.0 29.0 56.0
30 30.0 35.0 35.0
40 25.0 72.0 3.0
41 14.0 23.0 63.0
45 14.0 23.0 63.0
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Figure 1. Base-peak chromatogram of blank, mix reference standards, some samples, and the quality control sample (A: blank; B: mixed chemical
reference substances; C: QC sample; D: BBP; E: CIBP; F: DBP; G: GBP; H: RBP; I: PBP; J: CBP; K: SBP; L: SNBP).
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identified 12 bile acid-like chemical constituents in bile
medicines. The detailed information on 12 bile acid-like
chemical constituents is shown in Table 3.

At the same time, in UHPLC-QTOF-MSE analysis of BBP,
CIBP, DBP, CBP, SBP, PBP, SNBP, RBP, and GBP, we
explored sample pretreatment and acquisition methods. The
results showed that ultrasonic extraction (power: 500 W,
frequency: 40 kHz) with methanol for 30 min has the better
extraction effect. In addition, the MSE mode was used to obtain
the mass spectrometry information, thus ensuring more data
information.13,17 However, the reality of bile medicines is that
they were largely difficult to fragment and were in the form of
parent ions, which is consistent with what is documented in
the database.13,15

■ DATA MODELING AND DISCUSSION
The Progenesis QI software (version 2.3) accomplished the
quantized data transformation of bile medicines using mixed
QC samples as standards. Further, the quantized data of 12
bile acid components that had been identified in 173 batches
of samples were screened out and finally imported into Orange
software (Version 3.35.0) and combined with machine
learning algorithms to construct data models. The best
model was filtered out for external validation and identification
of 42 batches of samples. At the same time, the detailed
information on 173 batches of sample data used for data
modeling is shown in Table S1.

The 12 bile acid chemical components screened were used
as data variables. The data model was constructed by
combining SVM, RF, NB, GB, AB, and ANN, and 10-fold
cross-validation was performed, and the evaluation parameters
such as accuracy (Acc), F1-scores, AUC, Recall, and precision
(P) are shown in Table 4.

In the model evaluation of machine learning, Acc, AUC, and
P are three important indicators. Acc represents the accuracy
of model identification, and AUC specifically refers to the area
under the ROC curve. The larger the value (0.5−1.0), the
better the effect of the classifier, and the P represents the
proportion of positive samples predicted by the model to be
positive samples that are actually positive samples, which also
reflects the classification effect of the model, especially if the
data are unevenly distributed.18−20 As shown in Table 4, as far
as the evaluation parameter-AUC is concerned, the AUC of
each model was greater than 0.970 (max: 1.000) and was on
the same order of magnitude. It suggests that the overall
classification results for each model are good. Further, in terms
of Acc, the Acc of all the models is not less than 0.835; among
them, the GB model has the smallest Acc of 0.838, while the
RF model has the largest accuracy of 0.960. At the same time,
the Accs of ANN, AB, and NB models are 0.896, 0.948, and
0.879. Therefore, the RF model has the highest discrimination
accuracy. Since the sample size of bile medicines was not
homogeneous, the precision is equally informative. In terms of
P, RF > 0.960 > AB > 0.950 > NB > 0.900 > ANN > 0.850 >
SVM > 0.800 > GB. On the other hand, recall refers to the
proportion of all samples that are actually positive samples
predicted by the model as positive samples. Therefore, the

Table 2. Specific Information on 17 Bile Acid Components

compositions abbreviation ions compositions abbreviation ions

tauroursodeoxycholic acid TUDCA 8.74 min_m/z 498.2922 hyodeoxycholic acid HDCA 26.80 min_m/z 437.2958
taurohyodeoxycholic acid THDCA 9.56 min_m/z 498.2971 glycochenodeoxycholic acid GCDCA 26.93 min_m/z 448.3023
taurocholic acid TCA 11.06 min_m/z 514.2769 cholic acid CA 27.23 min_m/z 407.2870
glycoursodeoxycholic acid GUDCA 12.74 min_m/z 498.3023 glycodeoxycholic acid GDCA 30.09 min_m/z 448.3023
glycohyodeoxycholic acid GHDCA 14.07 min_m/z 448.3023 taurolithocholic acid TLCA 31.55 min_m/z 482.2889
glycocholic acid GCA 15.53 min_m/z 464.2968 chenodeoxycholic acid CDCA 34.70 min_m/z 437.2858
taurochenodeoxycholic acid TCDCA 17.05 min_m/z 498.2941 deoxycholic acid DCA 35.19 min_m/z 391.2844
taurodeoxycholic acid TDCA 19.63 min_m/z 498.2941 lithocholic acid LCA 37.83 min_m/z 448.2978
ursodeoxycholic acid UDCA 21.66 min_m/z 437.2958

Table 3. Detailed Information of 12 Bile Acid-like Chemical Constituents

composition molecular ions ionic forms sources

tauroursodeoxycholic acid C26H45NO6S 8.74_498.2922 m/z [M−H]− BBP, PBP
taurocholic acid C26H45NO7S 11.06_514.2769 m/z [M−H]− All Bile medicines
glycohyodeoxycholic acid C26H43NO5 14.07_448.3023 m/z [M−H]− PBP
glycocholic acid C26H43NO6 15.53_464.2968 m/z [M−H]− CBP, SBP, RBP
taurochenodeoxycholic acid C26H45NO6S 17.05_498.2941 m/z [M−H]− All Bile medicines
taurodeoxycholic acid C26H44NO6S 19.63_498.2941 m/z [M−H]− CBP, RBP, SBP
hyodeoxycholic acid C24H40O4 26.80_437.2958 m/z [M + HCOO]− PBP
glycochenodeoxycholic acid C26H43NO5 26.93_448.3023 m/z [M−H]− CBP, PBP
glycodeoxycholic acid C26H43NO5 30.09_448.3023 m/z [M−H]− CBP, RBP, SBP
taurolithocholic acid C26H45NO5S 31.55_482.2889 m/z [M−H]− CBP, PBP
chenodeoxycholic acid C24H40O4 34.70_437.2858 m/z [M + HCOO]− BBP, CIBP, PBP, DBP, GBP
deoxycholic acid C24H40O4 35.19_391.2844 m/z [M−H]− CBP, SBP

Table 4. Evaluation Parameters for Different Models in 10-
Fold Cross-Validation

models AUC Acc F1-score P recall

RF 0.999 0.960 0.959 0.961 0.960
ANN 0.997 0.896 0.877 0.871 0.896
NB 0.998 0.879 0.882 0.923 0.879
SVM 0.993 0.850 0.814 0.803 0.850
GB 0.985 0.838 0.793 0.767 0.838
AB 0.970 0.948 0.948 0.953 0.948
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recall is more concerned with the degree of coverage of
positive samples. The F1-score is an indicator that
comprehensively considers precision and recall and is a
harmonic average. The higher the F1-score, the better the
performance of the model. As shown in Table 4, the RF model
has a recall and F1-score of 0.960 and 0.959, higher than the
recall and F1-score of other models. In summary, compared to
SVM, NB, GB, AB, and ANN models, the RF model has the
best identification effect and is the optimal model. It can
effectively realize the digital identification and analysis of bile
medicines based on the RF identification model that was
constructed based on the quantized data of 12 bile acid
components and the RF algorithm.

Meanwhile, we adopt an automatic optimization strategy in
data modeling. The specific parameters of each model are
shown in Table 5.

On the other hand, under the same conditions, we also
compared data models constructed based on all quantized data
and the models constructed based on quantized data for 12
bile acid-like chemical components. The evaluation parameters
of each model constructed based on all quantized data are
shown in Table 6.

Comparing Table 4 and Table 6, it can be found that the
evaluation parameters of each model constructed using the
quantized data of 12 identified bile acid-like chemical
constituents have been significantly improved compared to
each model constructed using all of the quantized data; for
example, the RF model has an increase of 0.032 in the Acc and
recall. The SVM model has an increase of 0.152 in the Acc and
recall. Therefore, not all quantized data are valid and reliable
data in data modeling of bile medicines. The identified
quantized data of 12 cholic acid components are combined
with machine learning algorithms to build data models, which

can reduce interference of irrelevant data, thus improving the
model identification effect. On the other hand, all 12 bile acids
have been identified and reported to be stably detected in one
or more species of BBP, CIBP, DBP, CBP, SBP, PBP, SNBP,
RBP, and GBP, and some of them are even proprietary
chemical components. Therefore, these chemical compositions
are stable and reliable and can be detected at different times
and on different instruments, which facilitates the construction
of data models. In addition, the quality control sample, a mixed
sample of BBP, CIBP, DBP, CBP, SBP, PBP, SNBP, RBP, and
GBP, was taken as the reference to perform peak position
correction and data conversion. As we all know, it is difficult to
directly place the mass spectrometry data of nine kinds of bile
medicines in a unified analytical system, which is necessary for
data modeling due to their different data volumes and
characterizations. However, the quality control sample
provided us with the possibility. Using a quality control
sample as the reference for peak correction and data
transformation, the mass spectrometry data of nine bile
medicines can be integrated into a unified analysis system by
converting three-dimensional (3D) LC/MS mass spectra into
two-dimensional (2D) data matrices.
External Identification and Validation. According to

the constructed RF model, the quantized data of the 42
batches of samples collected in different periods and not used
as training sets were used as inputs for external validation
identification. The detailed information on 42 batches of
sample data used for appraisal verification is shown in Table
S2, and the identification results and sample information are
shown in Table 7.

As shown in Table 7, after identification verification, 42
batches of bile medicines (4 batches of DBP; 7 batches of BBP,
4 batches of CIBP, 4 batches of CBP, 4 batches of SBP, 4
batches of PBP, 4 batches of SNBP, 6 batches of RBP, and 5
batches of GBP), detected at different times, can be correctly
identified and recognized in the constructed RF model, with a

Table 5. Specific Parameters of Each Model

models specific parameters

RF number of tree ≤10; maximal number of considered features:
unlimited; maximal tree depth: unlimited; stop splitting nodes
with maximum instance ≤3

ANN neurons in hidden layers: 100; activation: ReLu; solver: Adam;
number of iterations ≤200

NB delete empty column: yes; discretizes numeric values: 4; equal
frequency: yes

SVM cost (C): 1.00; regression loss epsilon (ε): 0.30; kernel: RBF;
iteration limit ≤100

AB base estimator: tree; number of estimators ≤50; learning rate: 1.00;
classification algorithm: SAMME.R; regression loss function:
linear

GB method: catboost; number of trees ≤10; learning rate: 0.10; limit
depth of individual trees ≤3; fraction of features for each tree:
1.00

Table 6. Evaluation Parameters for Different Models Based
on all Quantized Data

models AUC Acc F1-score P recall

RF 0.993 0.928 0.924 0.931 0.928
ANN 0.852 0.836 0.827 0.854 0.836
NB 0.983 0.695 0.720 0.883 0.695
SVM 0.901 0.698 0.707 0.731 0.698
GB 0.980 0.818 0.775 0.840 0.818
AB 0.965 0.939 0.939 0.942 0.939

Table 7. Digital Identification Results of Bile Medicines
Based on the RF Model

bile medicines identification results bile medicines identification results

DBP01 DBP SBP03 SBP
DBP02 DBP SBP04 SBP
DBP03 DBP PBP01 PBP
DBP04 DBP PBP02 PBP
BBP01 BBP PBP03 PBP
BBP02 BBP PBP04 PBP
BBP03 BBP SNBP01 SNBP
BBP04 BBP SNBP02 SNBP
BBP05 BBP SNBP03 SNBP
BBP06 BBP SNBP04 SNBP
BBP07 BBP RBP01 RBP
CIBP01 CIBP RBP02 RBP
CIBP02 CIBP RBP03 RBP
CIBP03 CIBP RBP04 RBP
CIBP04 CIBP RBP05 RBP
CBP01 CBP RBP06 RBP
CBP02 CBP GBP01 GBP
CBP03 CBP GBP02 GBP
CBP04 CBP GBP03 GBP
SBP01 SBP GBP04 GBP
SBP02 SBP GBP05 GBP
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correct rate of 100.0%, which is consistent with the actual
situation. This indicated that the RF model based on the
quantized data of bile acid components and the RF algorithm
has certain practical value and can effectively realize the digital
identification of bile medicines.

■ DISCUSSION ON FITTING AND ROBUSTNESS OF
RANDOM FOREST

Overfitting is a situation where a machine learning model
performs well on training data but poorly on the test data. To
avoid overfitting, the data from the 173 batches of bile
medicines used for model construction and the 42 batches of
bile medicines used for external identification and validation
were detected and analyzed by different researchers in different
periods, fully considering the influence of changes in external
analysis conditions and personnel operation. We reduced the
number of random forest trees to reduce the complexity of the
model in constructing the RF model. Moreover, 10-fold cross-
validation is a good way to prevent model overfitting.
Therefore, in the model evaluation, we used 10-fold cross-
validation, which helps to reduce overfitting as each sample is
validated, resulting in a more representative evaluation of the
model’s performance. In addition, the external verification
correct rate of the RF model for samples in different periods is
as high as 100.0%, which also shows that the RF model is
robust. On the other hand, 12 bile acid components, which are
stable and reproducibly detectable, are taken as data variables
and the quantized processing based on quality control samples
also ensured the robustness of the RF model.

■ PRELIMINARY EXPLORATION OF KEY
DIFFERENTIAL BILE ACID COMPONENTS

On the basis of the random forest model, we conducted an
exploration of key differential bile acid components through
the Gini index.21,22 The Gini index is a measure of the purity of
the samples in a data set and can also be used to assess the
importance of variable features. In random forests, the Gini
index is used to select the best features when decision tree
nodes. By comparing the change in the Gini index when
splitting using different features, we can assess the contribution
of each variable feature to the improvement of the model
purity. The smaller the Gini index, the greater the contribution
of the variable feature to the model purity improvement and
therefore the higher its importance. The Gini indices of the 12
bile acid components are shown in Table 8.

Generally speaking, the smaller Gini index means that the
selected samples in the set are less likely to be wrongly
classified, which fits with the search for proprietary chemical
components in chemical analysis. As shown in Table 7,
hyodeoxycholic acid has the lowest Gini index value of 0.101,
and the Gini index values of glycohyodeoxycholic acid,
deoxycholic acid, taurolithocholic acid, and taurochenodeox-
ycholic acid are 0.115, 0.164, 0.166, and 0.167, which means
that the top 5 chemical components are the most important
among the 12 bile acid constituents for the proprietary
identification of bile acid medicines. Combined with Table 2, it
can be determined that hyodeoxycholic acid and glycohyo-
deoxycholic acid are the proprietary chemical components of
PBP samples. Deoxycholic acid can be only detected in CBP
and SBP samples. Taurolithocholic acid can be only detected
in CBP and PBP samples. In addition, taurochenodeoxycholic
acid can be detected in all bile medicines, but its intensity
(content) varies greatly among different bile medicines, so it is
equally important for identifying bile medicines. Further, we
found that the accuracy (0.953) and precision (0.956) of the
RF model were slightly reduced when the data of the above
five bile acid components were removed from the original data.
In terms of modeling effects, it is further shown that these
chemical marker components are helpful for the identification
of bile medicines. On the other hand, It also proves that
screening the proprietary chemical constituents of bile herbs is
feasible based on the Gini index (small value). Unfortunately,
there is no significant difference in the effect of the RF models
after only removing a certain chemical composition data. The
abovementioned results prompt us to use the above five bile
acid components as a “composition combination” to identify
bile medicines.
Research Limitations and Prospects. In this study, we

realized the identification and analysis of nine kinds of bile
herbs based on machine learning and UHPLC-QTOF-MSE

and preliminarily explored the differential bile acid constitu-
ents. However, it is undeniable that there are still some
shortcomings. This study relies on 173 batches of sample data
for modeling, and 42 batches are used for verification and
testing. Although it may be enough for the initial research, a
larger amount of data is necessary for further research based on
machine learning, which can further enhance the reliability and
generalizability of the model. As is well-known, the random
forest has low interpretability, so it needs to be analyzed by a
more interpretable model in the future.

■ CONCLUSIONS
In this paper, 9 kinds of bile medicines were analyzed by
UHPLC-QTOF-MSE, and 12 bile acid-like chemical compo-
nents such as taurochenodeoxycholic acid, hyodeoxycholic
acid, and glycodeoxycholic acid were successfully identified.
Further, the quantized data of 12 bile acid components were
combined with SVM, RF, ANN, NB, GB, and AB machine
learning algorithms to construct data models, and the results
showed that the random forest model was the optimal model
with Acc = 0.960, P = 0.961. After external validation and
identification, the random forest model achieved efficient and
accurate identification of nine bile medicines with a correct
rate of 100.0%. In addition, the exploration of key difference
components based on the Gini index showed that hyodeox-
ycholic acid glycohyodeoxycholic acid, deoxycholic acid,
taurolithocholic acid, and taurochenodeoxycholic acid are the
key components for identifying bile medicines. Based on

Table 8. Gini Indices of the 12 Bile Acid Components

composition Gini index

glycochenodeoxycholic acid 0.244
glycocholic acid 0.227
taurocholic acid 0.220
glycodeoxycholic acid 0.216
tauroursodeoxycholic acid 0.207
taurodeoxycholic acid 0.186
chenodeoxycholic acid 0.176
taurochenodeoxycholic acid 0.167
taurolithocholic acid 0.166
deoxycholic acid 0.164
glycohyodeoxycholic acid 0.115
hyodeoxycholic acid 0.101
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UHPLC-QTOF-MSE analysis and combined with the RF
algorithm, it can efficiently and accurately realize the digital
identification of bile medicines, which can provide reference
and assistance for the quality control and digital identity of bile
medicines.

■ ASSOCIATED CONTENT
Data Availability Statement
Mass spectra of all bile medicines were transformed by
Progenesis QI software (Version 2.3); The 12 bile acid-like
components were identified based on chemical control
substances and references and the HMDB database; the
quantized data screening of 12 bile acid-like components was
done through WPS office software; data modeling, external
validation analysis, and exploration of key variance compo-
nents are accomplished with Orange analytics software
(Version 3.35.0). The data information can be obtained in
the Supporting Information.
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Acc accuracy
ANN artificial neural network
AUC area under the curve
BBP bear bile powder
CA cholic acid
CDCA chenodeoxycholic acid
CBP cow bile powder
CIBP chicken bile powder
DBP duck bile powder
DCA deoxycholic acid
EMRT exact mass-retention time
GBP goose bile powder
GCA glycocholic acid
GCDCA glycochenodeoxycholic acid
GDCA glycodeoxycholic acid
GHDCA glycohyodeoxycholic acid
GUDCA glycoursodeoxycholic acid
HDCA hyodeoxycholic acid
LCA lithocholic acid
NB Naive Bayes
P precision
PBP pig bile powder
RBP rabbit bile powder
RF Random Forest
SBP sheep bile powder
SNBP snake bile powder
SVM Support Vector Machine
TCA taurocholic acid
TCDCA taurochenodeoxycholic acid
TDCA taurodeoxycholic acid
THDCA taurohyodeoxycholic acid
TUDCA tauroursodeoxycholic acid
TLCA taurolithocholic acid
UDCA ursodeoxycholic acid
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