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Abstract
Developmental coordination disorder (DCD) is a neurodevelopmental disorder occurring in 5–6% of school-aged children. 
Converging evidence suggests that dysfunction within cortico-striatal and cortico-cerebellar networks may contribute to 
motor deficits in DCD, yet limited research has examined the brain morphology of these regions. Using T1-weighted mag-
netic resonance imaging the current study investigated cortical and subcortical volumes in 37 children with DCD, aged 8 to 
12 years, and 48 controls of a similar age. Regional brain volumes of the thalamus, basal ganglia, cerebellum and primary 
motor and sensory cortices were extracted using the FreeSurfer recon-all pipeline and compared between groups. Reduced 
volumes within both the left and right pallidum (Left: F = 4.43, p = 0.039; Right: F = 5.24, p = 0.025) were observed in 
children with DCD; however, these results did not withstand correction for multiple comparisons. These findings provide 
preliminary evidence of altered subcortical brain structure in DCD. Future studies that examine the morphology of these 
subcortical regions are highly encouraged in order replicate these findings.
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Introduction

Developmental coordination disorder (DCD) is a neurode-
velopmental disorder characterized by motor impairment, 
which negatively impacts activities of daily living (Ameri-
can Psychiatric Association, 2013) as well as academic and 
psychosocial outcomes (Cairney, 2015). Motor deficits are 

evident from an early age and manifest as slow, inaccurate 
and/or clumsy movements (Wilson et al., 2013). Despite 
being a prevalent neurodevelopmental disorder, occurring 
in up to 6% of children (American Psychiatric Association, 
2013), the aetiology of DCD remains unknown (Gomez & 
Sirigu, 2015).

Much of our current understanding of the neural corre-
lates of DCD comes from studies that have employed func-
tional magnetic resonance imaging (fMRI) and diffusion 
tensor imaging (DTI). FMRI studies report activity and 
functional connectivity differences among children with 
DCD compared to healthy controls (Biotteau et al., 2016); 
these differences have been reported within primary senso-
rimotor areas of the parietal and frontal lobes (Debrabant 
et al., 2013; Kashiwagi et al., 2009; Licari et al., 2015; 
McLeod et al., 2014, 2016; Querne et al., 2008; Reyn-
olds et al., 2015; Zwicker et al., 2010, 2011), thalamic and 
basal ganglia structures (i.e., putamen, caudate, pallidum) 
(McLeod et al., 2014, 2016; Querne et al., 2008) and the 
cerebellum (Debrabant et al., 2013; McLeod et al., 2016; 
Zwicker et al., 2011). Similarly, DTI studies have found 
reduced anisotropy and diffusivity in cortical motor, tha-
lamic and cerebellar pathways (Brown-Lum et al., 2020; 
Debrabant et al., 2016; Langevin et al., 2014; Zwicker 
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et al., 2012). Given the converging evidence from fMRI 
and DTI studies, it has been hypothesized that the motor 
deficits observed in children with DCD may be related to 
dysfunction within cortico-striatal and cortico-cerebellar 
networks (Biotteau et al., 2016; Dewey & Bernier, 2016).

Despite the common notion of thalamic, basal ganglia 
and cerebellar involvement in DCD, few studies have 
investigated the macrostructure (i.e., volume) of these 
regions. Studies utilizing structural MRI in children with 
DCD have focused explicitly on cortical brain regions. 
One study, using voxel-based morphometry, found reduced 
premotor and frontal cortical volumes (Reynolds et al., 
2017). Another study found thinner cortex in the frontal, 
parietal and temporal lobes (Langevin et al., 2015). Addi-
tionally, as DCD co-occurs with attention deficit hyper-
activity disorder (ADHD) in up to 50% of cases (Dewey, 
2018; Goulardins et al., 2015), Langevin and colleagues 
examined cortical thickness in children with co-occurring 
DCD and attention deficits and reported greater and more 
widespread reductions in cortical thickness among chil-
dren with both DCD and ADHD (Langevin et al., 2015).

Shaw et al. (2016) and Dewey et al. (2019) provide pre-
liminary evidence of reduced volumes within striatal and 
cerebellar regions in children who they defined as at risk 
for DCD, based on a parent questionnaire that asked about 
children’s motor skills on common daily tasks (Shaw et al., 
2016) or low performance scores on a standardized motor 
exam (Dewey et al., 2019). However, children in these 
two studies were not clinically diagnosed and screening 
criteria was not comprehensive or in accordance with the 
criteria outlined in the Diagnostic and Statistical Man-
ual of Mental Disorders (DSM-5) (American Psychiatric 
Association, 2013). It remains unclear if structural differ-
ences, such as altered volumes in thalamic, basal ganglia 
and cerebellar regions, are present in children who meet 
diagnostic criteria for DCD.

The cerebellum is involved in coordination, timing and 
planning of movements (Glickstein & Doron, 2008; Manto 
et al., 2012). The thalamus and basal ganglia play criti-
cal roles in movement planning, motor control and motor 
learning (Herrero et  al., 2002; Lanciego et  al., 2012). 
Given that children with DCD show deficits in these motor 
domains (Blank et al., 2019), there is a pressing need to 
understand the morphology of these brain regions. The 
current study used T1-weighted neuroimaging to investi-
gate cortical (primary and secondary sensorimotor areas), 
thalamic, basal ganglia (caudate, putamen, pallidum) and 
cerebellar volumes in children with DCD. Based on previ-
ous findings of cortical thinning and reduced gray matter 
volumes, we hypothesized that children with DCD would 
display smaller volumes within the examined regions.

Methods

Participants

The current study combined two cohorts of children with 
DCD, aged 8 to 12 years. The first cohort included 19 
children with DCD (mean age 9.7 ± 1.3  years; range 
7.3–12.1 years; 9  (47%) male) and 19 controls (mean 
age 10.4 ± 1.3  years; range 8.6–12.6 years; 12  (63%) 
male), recruited between May 2012-August 2012 and 
scanned at the Seaman Family MR Research Center in 
Calgary, Alberta (Langevin et  al., 2014). The second 
cohort included 18 children with DCD (mean age 10.2 ± 
1.3 years; range 8.0–13.0 years; 12 (67%) male) recruited 
between July 2018-October 2019 and scanned at the 
Alberta Children’s Hospital in Calgary, Alberta. Con-
trols within the same age range (n = 29; mean age 10.1 
± 1.7 years; range 7.4–13.0 years; 15 (52%) male) were 
selected from a separate study on typical brain and behav-
ior development that used the same protocol and scanner 
at the Alberta Children’s Hospital (Andre et al., 2019). 
We refer to these cohorts as DCD1 and controls1 (cohort 
scanned at the Seaman Center) and DCD2 and controls2 
(cohorts scanned at the Alberta Children’s Hospital), 
respectively.

Participants were recruited through developmental/
community pediatricians, psychologists and physical/occu-
pational therapists in Calgary, Alberta, as well as through 
advertisements on social media. Exclusion criteria for all 
cohorts were: (1) preterm birth (< 36 weeks’ gestation), 
(2) contraindications to magnetic resonance imaging and 
(3) a neuropsychiatric (other than ADHD), neurological 
and/or chronic disorder.

Children were classified as DCD if the four diagnostic 
criteria outlined in the DSM-5 were confirmed (Ameri-
can Psychiatric Association, 2013). Specifically, children 
demonstrated motor deficits (criterion A) based on Total 
Test scores below the  16th percentile on the Movement 
Assessment Battery for Children-Second Edition (MABC-
2). Motor deficits interfered with children’s daily function-
ing (criterion B), began early in development (criterion C) 
and were not better explained by an intellectual disability, 
visual impairment or neurological condition (criterion D); 
as confirmed by a parent questionnaire designed in-house, 
which included a detailed medical history of the child (see 
supplementary material), as well as the child demonstrat-
ing typical cognitive performance (Full-Scale IQ scores 
≥ 80) on the Wechsler Abbreviated Scale of Intelligence-
Second Edition (WASI-II). Given the high co-occurrence 
of ADHD with DCD (Dewey, 2018), children with ADHD 
were included in the DCD group (2 children in the DCD1 
group and 10 in the DCD2 group). Diagnosis of ADHD 
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by a registered physician was screened for using the in-
house parent questionnaire outlined above. Children who 
were reported on the in-house parent questionnaire to be 
diagnosed with another developmental disorder such as 
autism spectrum disorder, Asperger syndrome or pervasive 
developmental disorder were excluded.

Children in the control group displayed typical motor 
development, confirmed by an MABC-2 Total Test scores 
above the  25th percentile (controls1) or parent report on the 
in-house questionnaire, which included a detailed medical 
history of the child and specific questions regarding motor 
development (controls2), as well as typical cognitive perfor-
mance on the WASI-II. Given the primary focus of this study 
was to investigate the structural correlates of motor deficits 
in children with DCD, a diagnosis of ADHD by a registered 
physician was not an exclusion criterion for controls (4 chil-
dren in the controls1 group and none in the controls2 group 
had a confirmed diagnosis of ADHD based on parent report 
on the in-house questionnaire). Similar to the DCD groups, 
children identified with other developmental disorders on 
the parent questionnaire were excluded.

Written informed consent from participants’ legal guard-
ians and child assent were obtained at enrollment. The 
University of Calgary Conjoint Health Research Ethics 
Board approved this research (REB18-0183; REB13-1346; 
REB15-1090).

Motor and cognitive screening

The MABC-2 (Henderson et al., 2007) is a valid standard-
ized motor assessment that evaluates motor performance 
across three domains: manual dexterity, aiming and catching 
and balance skills (Schoemaker et al., 2012; Van Waelvelde 
et al., 2007). The WASI-II is a short standardized assess-
ment that provides a valid and reliable (reliability of 0.90) 
measure of intelligence (McCrimmon & Smith, 2013). Par-
ticipants completed all four WASI-II subtests (Block Design, 
Vocabulary, Matrix Reasoning and Similarities).

Magnetic Resonance Imaging (MRI) acquisition

MR imaging for the DCD1 and controls1 groups was per-
formed at the Seaman Family MR Research Center in Cal-
gary, Alberta, on a 3 Tesla General Electric (GE) Signa scan-
ner with a 12-channel head coil (GE Healthcare, Milwaukee, 
WI, USA). A T1‐weighted spoiled gradient echo pulse 
sequence was acquired at rest (flip angle = 13°, repetition 
time = 7.4 ms, echo time = 3.1 ms, field of view = 256 mm, 
matrix = 256 × 256 pixels, slice thickness 0.8 mm, isotropic).

MR imaging for DCD2 and controls2 groups took place at 
the Alberta Children’s Hospital, Calgary, Alberta, on a GE 3 
Tesla MR750w research system, equipped with a 32-chan-
nel head coil and 70 cm wide bore (GE, Waukesha, WI). 

T1-weighted images were acquired at rest (flip angle = 10°, 
repetition time = 8.2  ms, echo time = 3.2  ms, field of 
view = 256, matrix = 512 × 512, slice thickness 0.8 mm, 
isotropic).

Magnetic Resonance Imaging (MRI) processing

Scans were quality checked by an investigator (MNG) 
blinded to participant group and demographics prior to 
pre-processing, to determine if they were of good quality 
or low-quality; 4 participants from the DCD1 group, 1 from 
controls1, 6 from DCD2 and 1 from controls2 were removed 
due to low quality scans, leaving the final number of par-
ticipants as follows: DCD1 n = 19, controls1 n = 19, DCD2 
n = 18, controls2 n = 29. Automated pre-processing and 
segmentation of T1-weighted anatomical scans were then 
conducted using FreeSurfer, V6.0.0 (Fischl, 2012). Briefly, 
the automated recon-all pipeline, with default settings, was 
used to perform: 1) skull stripping and brain extraction, 2) 
corrections for motion, head shape and position, 3) Talairach 
transformations, 4) intensity normalization, 5) segmentation 
of subcortical white and gray matter, 6) smoothing, topol-
ogy correction and surface deformation, and 7) cortical and 
subcortical parcellation. This automated pre-processing 
approach has been described in more detail elsewhere (Dale 
et al., 1999). Following pre-processing, outputs were quality 
checked for skull stripping, segmentation and surface recon-
struction errors by the same investigator (MNG). Manual 
corrections were performed if delineation of the pial surface 
and white matter boundary was poor, with defects spanning 
multiple sections within slices and/or consecutive slices. 
Placement of control points onto white matter voxels was 
done, followed by the recon-all -autorecon2 -cp process-
ing command following the recommendations of FreeSurfer 
developers. (http:// surfer. nmr. mgh. harva rd. edu/ fswiki/ FsTut 
orial). All scans underwent 0–2 rounds of editing (0 rounds: 
17 scans; 1 round: 51 scans; 2 rounds: 17 scans) and were 
quality checked post-processing to ensure boundary defects 
were corrected.

Estimates of total brain volume, as well as volumes for 
the thalamus, basal ganglia structures (i.e., caudate, puta-
men, pallidum), cerebellum, and pre-central (primary motor 
cortex), post-central (primary sensory cortex) and para-cen-
tral regions were extracted. Volumes were extracted sepa-
rately for the left and right hemispheres.

Statistical analysis

Statistical analysis was performed in Jamovi (Şahin & 
Aybek, 2019, V1.8.1) and SPSS (IBM SPSS Software, 
V25.0). Age and sex were compared between the DCD 
(DCD1, DCD2) and control groups (controls1, controls2) 
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using an independent samples t-test or chi-square test, 
respectively.

A linear mixed effects model was chosen for the pri-
mary analysis, which examine regional brain volume differ-
ences between controls (controls1, controls2) and the DCD 
groups (DCD1, DCD2), controlling for total brain volume, 
with fixed effects for Group and random effects for Scan-
ner. Total brain volume was controlled for given that sig-
nificant changes in brain volumes continue to occur between 
the ages 8–12 years (Giedd et al., 1999; Lenroot & Giedd, 
2006). Given the use of two different scanners, this statisti-
cal approach allowed for the data to be treated as a two-level 
structure with participants nested within scanner sites. We 
report results uncorrected and corrected for multiple com-
parisons using Benjamini–Hochberg False Discovery Rate 
(FDR) (18 multiple comparisons were performed with an 
FDR of 0.05).

As 4 controls had a diagnosis of ADHD, two secondary 
analyses were conducted: 1) ADHD was included as a covar-
iate, and 2) the controls with ADHD were removed. Finally, 
linear regressions were used to investigate relationships 
between motor performance and regional brain volumes; 
specifically, the relationships between MABC-2 Total Test 
standard scores and the volumes of regions showing sig-
nificant between group differences, controlling for scanner 
and total brain volume. It is important to note that controls2 
group was not assessed using the MABC-2; therefore, these 
regressions included only participants with a Total Test 
score on the MABC-2 (DCD1, controls1, DCD2).

Results

Participants

Group demographics and clinical characteristics are shown 
in Table 1. No group differences were observed for age 
(t(83) = 0.839, p = 0.404) or sex ( � 2(1) = 0.002, p = 0.963).

Clinical characteristics

As per inclusion criteria, all children in the DCD1 
and DCD2 groups scored below the  16th percentile on 
the MABC-2 (mean Total Test standard score DCD1: 
5.53 ± 1.68; DCD2: 2.84 ± 1.68) and children from the 
controls1 group scored above the  25th percentile (mean 
Total Test standard score 9.58 ± 1.35). None of the chil-
dren in the controls2 group had been diagnosed with a 
motor disorder based on the in-house parent question-
naire; they were, however, not formally assessed using 
the MABC-2. Typical cognitive performance was demon-
strated by all children.

Group volumetric differences

Between group volumetric differences were observed for 
the left and right pallidum (L: F = 4.43, p = 0.039, 95% CI 
[-143.0, -5.13]; R: F = 5.24, p = 0.025, 95% CI [-165.0, 
-12.8]) (Fig. 1), such that, lower mean volumes in these 
regions were observed in children with DCD compared 
to the controls. Findings did not survive corrections for 
multiple comparisons. Reduced bilateral pallidal volumes 
in the DCD group remained significant when ADHD was 
included as a covariate (L: F = 7.31, p = 0.008, 95% CI 
[-166.0, -26.5]; R: F = 4.32, p = 0.041, 95% CI [-161.0, 
-4.77]) as well as when the 4 control participants with 
diagnosed ADHD were removed (L: F = 4.12, p = 0.044, 
95% CI [-145.0, -2.52]; R: F = 4.22, p = 0.043, 95% CI 
[-145.0, -3.42]). No other group differences were noted 
in remaining cortical, subcortical or cerebellar volumes 
(Fig. 2; Supplementary Table 1).

Structure–function correlates

Volumes of the left and right pallidum did not predict 
MABC-2 Total Test standard scores (Table 2).

Table 1  Participant demographics and clinical characteristics. Test statistics are reported for group differences between DCD participants 
(DCD1 & DCD2) and controls (controls1 & controls2)

DCD1 Controls1 DCD2 Controls2 Test Statistic p value

N 19 19 18 29 - -
Sex (% Male) 47 63 67 52 χ2(1) = 0.002 0.963
Age (mean years ± SD) 9.7 ± 1.3 10.5 ± 1.3 10.2 ± 1.3 10.1 ± 1.7 t(83) = 0.839 0.404
MABC-2 Total Score
(mean standard Score ± SD)

5.53 ± 1.68 9.58 ± 1.35 2.84 ± 1.68 - - -

WASI-II Full-Scale IQ
(mean ± SD)

104 ± 20 109 ± 14 103 ± 13 109 ± 12 t(83) = 1.537 0.128

Co-occurring
Attention Deficit (n(%))

2(11) 4(21) 10(55) 0(0) χ2(1) = 6.079 0.014
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Discussion

Converging evidence suggests that dysfunction within 
cortico-striatal and cortico-cerebellar networks may con-
tribute to the motor deficits seen in children with DCD 
(Biotteau et al., 2017; Dewey & Bernier, 2016). Yet, to 
date very limited research has examined brain morphol-
ogy within thalamic, basal ganglia and cerebellar regions. 

Here, we show preliminary evidence of smaller brain vol-
umes within the pallidum among a sample of children with 
DCD.

The pallidum is one of the major output structures of the 
basal ganglia and plays a fundamental role in motor control 
and movement selection (Grillner et al., 2005; Kretschmer, 
2000; Nambu et al., 2002). Afferents from the cerebellum 
and structures of the basal ganglia, including the pallidum, 
project to motor or somatosensory cortices via different 

Fig. 1  Group comparisons for subcortical volumes. Volumes for the 
DCD (blue bars) and control (black bars) groups are shown as residu-
als, regressing out total brain volume and scanner effects. Error bars 

represent 95% confidence intervals. Brain image shows significant 
regions of interest. *Indicates significant results, uncorrected for mul-
tiple comparison corrections (p < 0.05)

Fig. 2  Group comparisons for cortical and cerebellar volumes. Vol-
umes for the DCD (blue bar) and control (black bar) groups are 
shown as residuals, regressing out total brain volume and scanner 

effects. Error bars represent 95% confidence intervals. *Indicates 
significant results, uncorrected for multiple comparison corrections 
(p < 0.05)

2760 Brain Imaging and Behavior  (2021) 15:2756–2765



nuclei of the thalamus (Alexander et al., 1990; Haber & 
Calzavara, 2009). These motor pathways contribute to the 
production of motor movements in response to sensory 
stimuli and play a key role in motor control and learning 
(Sommer, 2003). Previous research has reported that greater 
pallidal volumes were associated with better motor scores in 
children (Bolk et al., 2018; Loh et. al., 2019). Additionally, 
reduced volumes within the pallidum have been reported in 
adults (van den Bogaard et al., 2011; Georgiou-Karistianis 
et al., 2013; Motl et al., 2015; Gooijers et al., 2016; Cop-
pen et al., 2018) and children with motor impairment (Estes 
et al., 2011; Dewey et al., 2019). The current findings may 
suggest similar subcortical volume reductions in children 
with DCD and provides early support to the theory that focal 
differences in relevant brain regions may contribute to the 
motor difficulties observed in affected children.

Contrary to previous neuroimaging findings (Biotteau 
et al., 2016), we observed no significant group differences 
in brain volumes within cortical (pre-, post- and para-central 
regions) or cerebellar regions. This discrepancy could be 
related to heterogeneity across studies in both design and 
populations. For instance, some studies investigated brain 
structure corrected for total brain volume (Reynolds et al., 
2017) while others investigated uncorrected brain struc-
ture (Dewey et al., 2019; Langevin et al., 2015; Shaw et al., 
2016). Using uncorrected values may make it difficult to 
determine if the observed macrostructural differences are 
a result of differences in brain size between participants or 
regional structure (Brain Development Cooperative Group, 
2012).

With regards to population, different cutoff scores have 
been used to identify individuals with DCD. Some studies 
also included children with DCD who were born preterm 
or had co-occurring disorders, such as ADHD as in the pre-
sent study. These numerous factors that vary across studies 
could be driving the differences noted in brain structure. For 
example, altered cortical and subcortical brain structure has 
previously been described in children born preterm (Dewey 
et al., 2019; Loh et al., 2017, 2019; Ment et al., 2009). It 
is therefore, vital that larger studies including similar sam-
ples and study designs are undertaken to try to replicate the 

current findings, before any definitive conclusions regarding 
the presence of brain structural differences in children with 
DCD can be made.

Numerous FMRI and DTI studies suggest altered cor-
tico-striatal and cortico-cerebellar networks in children 
with DCD (Biotteau et al., 2016). However, given the lim-
ited structural differences observed in the current study, it is 
possible that altered macrostructural abnormalities, such as 
volume, within these regions may not be strongly associated 
with DCD. Furthermore, altered motor circuitry may not be 
detectable with coarser measures such as volume.

Despite preliminary findings of decreased subcortical vol-
umes among children with DCD, we did not observe a rela-
tionship between regional volumes and MABC-2 standard 
scores. The absence of an association between brain struc-
ture and motor functioning could be because the MABC-2 
is not sensitive or specific enough to capture potential struc-
ture–function relationships. Future studies that include tasks 
more directly related to the functional correlates of the basal 
ganglia (i.e., measures of motor control, motor learning and 
bilateral motor skills) (Doyon et al., 2009; Turner & Des-
murget, 2010; Gooijers et al., 2016) may be more likely to 
reveal relationships.

Strengths of the current study include a considerably 
larger sample of children with DCD, as well as more com-
prehensive screening and demographic data than previous 
neuroimaging studies investigating brain macrostructure in 
DCD (Biotteau et al., 2016; Wilson et al., 2017). However, 
this study with its current sample of 37 children with DCD 
and 48 controls may still be underpowered as our significant 
findings related to the pallidum did not survive correction 
for multiple comparisons. Our study is also limited by its 
cross-sectional design. To help elucidate if structural brain 
differences in children with DCD are present early in life 
and if they persist or change, throughout childhood and into 
adulthood longitudinal research studies are needed (Dewey 
et al., 2019). Another limitation is our use of data from dif-
ferent scanners. Intensity differences can arise between scan-
ners and subcortical brain regions intrinsically have poorer 
contrast and may be more susceptible to variability in con-
trast due to scanner differences (Stonnington et al., 2008). 

Table 2  Results of linear regressions examining the associations 
between MABC-2 Total Test standard scores and volumes of the right 
and left pallidum. Results are shown for the control and DCD groups 
combined, controlling for scanner and total brain volume, as well as 

for Control and DCD groups separately, controlling for total brain 
volume. LCI: lower level 95% confidence interval, UCI: upper level 
95% confidence interval

MABC-2 Total Test Standard Score

All Participants (n = 56)
p (LCI, UCI)

Control Participants (n = 19)
p (LCI, UCI)

DCD Participants (n = 37)
p (LCI, UCI)

Right Pallidum 0.804 (-0.232, 0.298) 0.462 (-0.654, 0.311) 0.512 (-0.155, 0.305)
Left Pallidum 0.859 (-0.245, 0.205) 0.751 (-0.473, 0.348) 0.534 (-0.140, 0.266)
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Therefore, the inclusion of images from two scanners could 
have limited our power to detect volumetric brain differences 
between groups. As it is challenging to recruit and scan 
large populations of children with DCD at one site, further 
research examining potential scanner effects in relation to 
brain volume differences is essential in order to support the 
conduct of larger multi-centred studies on this population.

It is also important to note that three of our cohorts 
included children with diagnosed ADHD (controls1, DCD1, 
DCD2). Previous studies have shown altered brain structure 
in children with ADHD (Samea et al., 2019), as well as more 
pronounced brain structural differences in children with co-
occurring DCD and ADHD (Langevin et al., 2015). Con-
sidering previous findings, we included secondary analyses 
controlling for the presence of ADHD as well as remov-
ing controls with an ADHD diagnosis. Importantly, find-
ings remained stable, suggesting that the brain structural 
differences observed here may be associated with DCD as 
opposed to ADHD. Furthermore, motor difficulties were 
excluded from our controls2 group via parent questionnaire; 
however, these children did not participate in a standardized 
motor assessment. Therefore, we cannot be certain if any 
of these participants had an undiagnosed motor difficulty. 
Future larger studies are required to verify our findings and 
to examine the effects of comorbidities on brain structure in 
children with DCD.

Conclusions

The current study provides preliminary evidence of altered 
subcortical brain structure in children with DCD. Given 
the limited number of structural neuroimaging studies in 
children with DCD, as well as the mixed findings across 
these studies, further research to replicate findings is neces-
sary. Defining a neural signature in DCD and linking the 
observed motor deficits to potential structural variants in 
localized brain regions could help inform future targeted 
interventions. Identifying different brain structural variants 
may also help to better understand the heterogeneity of the 
symptomology observed in DCD.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11682- 021- 00502-y.
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