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)e world is experiencing an unprecedented crisis due to the coronavirus disease (COVID-19) outbreak that has affected nearly
216 countries and territories across the globe. Since the pandemic outbreak, there is a growing interest in computational model-
based diagnostic technologies to support the screening and diagnosis of COVID-19 cases using medical imaging such as chest
X-ray (CXR) scans. It is discovered in initial studies that patients infected with COVID-19 show abnormalities in their CXR
images that represent specific radiological patterns. Still, detection of these patterns is challenging and time-consuming even for
skilled radiologists. In this study, we propose a novel convolutional neural network- (CNN-) based deep learning fusion
framework using the transfer learning concept where parameters (weights) from different models are combined into a single
model to extract features from images which are then fed to a custom classifier for prediction. We use gradient-weighted class
activation mapping to visualize the infected areas of CXR images. Furthermore, we provide feature representation through
visualization to gain a deeper understanding of the class separability of the studied models with respect to COVID-19 detection.
Cross-validation studies are used to assess the performance of the proposed models using open-access datasets containing healthy
and both COVID-19 and other pneumonia infected CXR images. Evaluation results show that the best performing fusion model
can attain a classification accuracy of 95.49% with a high level of sensitivity and specificity.

1. Introduction

)e novel coronavirus, also known as severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) [1], causes a
respiratory illness called coronavirus disease 2019 (COVID-
19). )e virus was initially identified in Wuhan, China, in
December 2019 and was found to cause a series of unknown
pneumonia cases resulting in an ongoing pandemic [2]. )e
World Health Organization (WHO) declared COVID-19 a
pandemic onMarch 11, 2020 [3].)e pandemic has caused a
grievous crisis worldwide at the moment affecting 216
countries with more than 44 million cases and 1.1 million
deaths around the world as per WHO statistics of November

02, 2020. Health systems are badly affected and have reached
a point of failure due to inadequate facilities for intensive
care units, even in the developed parts of the world.

Common symptoms attributed to COVID-19 fall in the
category of fever, cold, cough, loss of taste, shortness of
breath, and acute respiratory syndrome. Besides, other vital
organs such as the liver and kidneys are likely to get affected
by the virus, according to scientific evidence [4]. Generally,
mild coronavirus cases recover within two weeks, and severe
cases may take up to six weeks for complete recovery. )e
recovery time can sometimes be longer due to potential
genetic mutations exhibited by the virus. As a whole, the
ongoing pandemic poses a severe threat to our society and
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requires immediate action to mitigate its impact. Motivated
by this, researchers are taking initiatives globally to assist
health practitioners with cutting-edge technology to detect
and possibly prevent the further spread of the virus.

Early detection of coronavirus cases is vital so that pa-
tients with the disease can be quarantined to reduce
transmission. Currently, the gold standard for diagnosing
COVID-19 is real-time reverse transcription polymerase
chain reaction (RT-PCR), which is a laboratory-based
procedure to test for the presence of SARS-CoV-2 RNA
(ribonucleic acid) in a sample (more recently saliva sample)
taken from the patient. Typically, a real-time RT-PCR
process takes approximately 4–6 hours to obtain the test
results. Furthermore, RT-PCR test kits are short in supply.
Consequently, many COVID-19 patients cannot be iden-
tified at early stages and are likely to infect other people
inadvertently.

To overcome the shortage of testing kits, various efforts
have been undertaken to discover alternative testing
methods. Generally, different radiology images such as chest
X-ray (CXR) and CT (computed tomography) scans are
easily accessible to health practitioners in clinical proce-
dures. )ese medical imagery modalities can play a vital role
in confirming the diagnosis of COVID-19 contraction and
monitoring disease progression over time. Ground-glass
opacities (GGOs) are abnormal patterns observed in CXR
and chest CT images when the lungs are sick. According to a
study [5], GGOs are commonly seen findings in patients
with COVID-19 related pneumonia.

Computational models in the area of AI and deep
learning have been significantly used in solving problems
related to medical imaging [6, 7] and general disease
identification systems [8–10]. Since the onset of the pan-
demic, many researchers have shown the effectiveness of
using radiology images in identifying COVID-19 infection
with various deep learning techniques. Owing to the
shortage of publicly available big COVID-19 related image
datasets, most of the existing works used limited-size
training samples and are likely to face the generalizability
problem to unseen data.

Lately, there has been a growing interest in developing
fusion models from heterogenous technologies and ex-
plicitly training fusion networks. Multiple deep learning
models (wide and deep) are combined to make superior
predictions. )us, the fusion representation of deep
learning models allows us to assimilate various individual
networks’ strengths to achieve promising performance.
To this end, we have proposed a deep learning-based end-
to-end fusion model that exploits the benefit of a com-
bination of parameters (weights) from multiple deep
CNN models to expedite the testing of CXR images in the
automated detection of positive COVID-19 encounters.
Specifically, our approach uses the Polyak and Juditsky
technique [11] to obtain an average of parameters
(weights) from different models seen towards the end of
the training process. )ese average model weights are fit
into a single clone model to extract features from images,
which are then fed to a custom classifier for the final
classification of CXR images.

We have experimented with three different fine-tuned
CNN models called ResNet50V2 [12], VGG-16 [13], and
InceptionV3 [14] to observe the benefit of parameter fusion
in extracting salient features from the input CXR images.
Furthermore, we utilize an explain-ability method to in-
vestigate how our models make predictions to facilitate
clinicians’ improved diagnosis. To evaluate our proposed
models, we have used a curated dataset of CXR images that
are collected from two publicly available data repositories
containing images from normal, COVID-19, and other non-
COVID-19 pneumonia categories.

In summary, we have made the following key contri-
butions to this paper:

(i) A deep learning-based CNN fusion framework is
introduced for the automatic screening of COVID-
19 patients using CXR images.

(ii) Parameters (weights) from different fine-tuned
CNN models are combined into a single model to
extract features from images to enhance diagnosis
performance.

(iii) An explain-ability method is developed using gra-
dient-weighted class activation mapping to visualize
the infected areas of CXR images.

(iv) A comparative study is presented to investigate the
effectiveness of the proposed weight fusion model
and individual base CNN models.

(v) We present extensive experimental analysis to
demonstrate the performance of the studiedmodels.
)e proposed best performing fusion model ach-
ieves an accuracy of 95.49% in classifying COVID-
19 images with a high degree of precision (96.19%),
sensitivity (99.19%), and AUC score (95.94%).

)e remainder of the paper is structured as follows.
Related studies are presented in Section 2. )e proposed
methodology, including the collection and preparation of
the dataset, is described in Section 3. Performance results,
analysis, and discussion are presented in Section 4. Finally,
conclusions are presented in Section 5 with some potential
future work.

2. Related Literature

Since the onset of the COVID-19 pandemic, researchers
have proposed deep learning-based methods for automatic
screening of positive COVID-19 cases using different ra-
diology images such as CXR and CT scans. )is section
contains the studies related to COVID-19 diagnosis and has
primarily employed various AI-based techniques, especially
machine learning and deep learning.

Zhang [15] proposed a CNN-based approach to address
the problem of extracting relevant and important features
from limited training data. Specifically, they developed a
triple-view CNN architecture for the automatic diagnosis of
COVID-19 patients. )ey utilized three different views (left
lung, right lung, and overall view) of a CXR image to extract
individual features and integrate them for joint prediction.
)ey have employed six different fusion methods based on
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various feature pooling and concatenation mechanisms. )e
performance results showed the effectiveness of their pro-
posedmodel for binary classification of healthy and COVID-
19 cases and three-class classification with healthy, COVID-
19, and other non-COVID-19 pneumonia cases.

Ghoshal and Tucker [16] introduced a deep learning-
based technique to estimate the uncertainty and interpret-
ability in detecting coronavirus. )e authors have used a
Bayesian convolutional neural network (BCNN) and pub-
licly available COVID-19 CXR images and found that the
prediction uncertainty is extremely correlated with pre-
diction accuracy. )e performance results demonstrate an
improvement in detection accuracy from 85.2% to 92.9%
using the pretrained VGG-16 model. )ey have also illus-
trated model interpretability by generating saliency maps to
better understand the results obtained by the proposed
model.

Narin et al. [17] presented a transfer learning-based
approach to categorizing CXR images into COVID-19 and
normal categories. )ey have used three pretrained models,
namely, InceptionV3, ResNet50, and InceptionResNetV2, in
their system and achieved the highest (98%) accuracy with
ResNet50 for binary classification. However, the number of
COVID-19 images in the curated dataset is only 50.

In another effort, Oh et al. [18] have introduced a patch-
based technique to train and fine-tune the ResNet18 CNN
model. )ey have used patches extracted from input CXR
images to train the model. A majority voting strategy was
used to obtain the final classification decision, and the model
attained a moderate accuracy of 88.9% in a multilabel
classification scenario. Ozturk et al. [19] took an approach
different from the majority of the AI-based detection models
for COVID-19, where they proposed an objected detection-
based technique. )ey have trained a DarkNet model for the
classification of CXR images for COVID-19 detection. )e
experimental results showed a high level of accuracy
(98.08%) for binary classification. However, the model
exhibited relatively low performance for multiclass classi-
fication and attained an accuracy of 87.02% only.

Jain et al. [20] have used transfer learning-based tech-
niques to detect and analyze COVID-19 cases using X-ray
images. )e authors compared the performance results of
three pretrained CNN models, namely, InceptionV3,
Xception, and ResNeXt, using X-ray images from an open-
source data repository and found that the Xception model
produces the highest (97.97%) accuracy. In another study,
Hoon et al. [21] proposed a deep learning-based decision
tree classifier for COVID-19 screening using CXR images.
More specifically, they built three binary decision trees, as
part of the classifier, which were trained using a convolu-
tional neural network. )e first tree classifies normal or
abnormal images, while the second tree determines if the
abnormal images are from the tuberculosis category. Finally,
the third decision tree identifies COVID-19 encounters. )e
experimental results showed that the final decision tree
could classify coronavirus cases with an accuracy of 95%.

Sharma et al. [22] used extensive image preprocessing
and augmentation to increase the dataset’s size and lever-
aged the transfer learning method for training and validating

classification models. )ey have combined the two best
performing models. Each model was trained using CXR
images with a certain degree of rotation and obtained state-
of-the-art detection accuracy in identifying COVID-19
cases. In a successive effort, Sakib et al. [23] suggested a deep
learning-based framework that leveraged a data augmen-
tation algorithm for radiography images. )e framework
adaptively used generative adversarial network (GAN) and
generic augmentation techniques to produce synthetic
COVID-19 images. A custom convolutional neural network
model was trained with the augmented images, and an
accuracy of 93.94% was obtained on the test data.

Haque and Abdelgawad [24] have proposed a custom
convolutional neural network model to detect COVID-19
patients using two different datasets containing normal and
COVID-19 positive images. )e proposed model achieved
an accuracy of 98.3% using a second dataset. However, the
model has only considered binary classification, and hence it
cannot differentiate between COVID-19 and other non-
COVID-19 cases of pneumonia.

Waheed et al. [25] applied data augmentation based on
auxiliary classifier generative adversarial network (ACGAN)
to improve detection accuracy. )e authors were able to
increase the accuracy to 95% by using the synthetic images
generated from the proposed GAN-based architecture. In
another effort, Periera et al. [26] performed COVID-19
identification based on multiclass and hierarchical classifi-
cation scenarios. )ey have applied both early and late
fusion techniques in the classification schema to use hand-
crafted texture features and features extracted from a pre-
trained CNN model. )e evaluation results demonstrated
the effectiveness of the proposed approach with an F1-score
of 0.89 for COVID-19 identification.

Islam et al. [27] proposed a deep learning technique
combining convolutional neural network (CNN) and long
short-term memory (LSTM) to automatically detect coro-
navirus infection from CXR images. )ey have used the
CNN model to extract salient features which are then fed
into the LSTM network for COVID-19 classification. )e
experimental results were obtained using a dataset con-
taining 4575 CXR images, out of which 1525 images were
from the COVID-19 category. )e proposed model achieves
an accuracy of 99.4% with a high degree of sensitivity and
specificity.

Gianchandani et al. [28] presented an ensemble of deep
transfer learning models from CXR images to differentiate
COVID-19, viral pneumonia, and bacterial pneumonia.
)ey leveraged four modified transfer learning models,
namely, VGG16, ResNet152V2, Inception ResNetV2, and
DenseNet201, and selected the two best performing models
to create the ensemble network, which was followed by two
dense layers for final classification. )ey evaluated their
model using two well-known datasets and achieved an ac-
curacy of 99.21% for multilabel classification. In a similar
effort, Singh et al. [29] employed a similar ensemble model
consisting of densely connected convolutional networks
(DCCNs), VGG16, and ResNet152V2 to detect COVID-19
from chest CTscans. )e experimental results demonstrated
the effectiveness of the proposed ensemble model in terms of
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all the common performance metrics, including accuracy,
sensitivity, and specificity. Das et al. [30] presented a
truncated Inception Net for detecting COVID-19 from CXR
images. )e authors employed six different types of datasets
containing COVID-19, pneumonia, tuberculosis, and
healthy cases for model training and testing.

Wang et al. [31] proposed a deep learning model for
detecting COVID-19 patients from CXR images and
achieved an accuracy of 93.3% in classifying COVID-19,
pneumonia, and normal cases. Towards the beginning of the
pandemic, we have proposed a deep learningmodel based on
fine-tuned CNNs and obtained a performance accuracy of
98.15% with a small dataset [32]. However, we noticed that
the model seemed to suffer from an overfitting problem with
the relatively larger dataset, and the performance was
somewhat degraded. To overcome this problem, we
employed the parameter (weight) fusion model concept in
this study. Besides, some other works focused on explainable
AI [33–35], metalearning [36], and segmentation [37] based
frameworks for COVID-19 and pneumonia-related
healthcare systems.

Generally, deep transfer learning models used in the
literature for COVID-19 detection face difficulty in con-
verging due to their challenging training process. Hence, the
final model may not be stable or may not have the best set of
parameters (weights). Consequently, training and validation
loss will show higher than anticipated variance and bounce
up and down during the training process. To overcome this
problem, we introduce a weighted fusion of parameters in
our system.We take the average of the weights frommultiple
models of the backbone network observed near the end of
the training process.

Moreover, while current deep learning approaches have
shown their advantage over other techniques in COVID-19
detection, most of these approaches do not support their
findings with sufficient interpretability of models related to
pertinent features of pathological signs in the CXR images.
)us, the clinical efficacy of these techniques is uncertain
until further studies are undertaken to interpret the high-
level features extracted from these models. It is highly im-
probable that clinicians in real life are going to accept a
black-box classification model even with highly accurate
experimental results. Our proposed system provides an
explain-ability method to produce heatmaps that visualize
the areas of CXR images that are most indicative of the
disease. )is provides interpretability of our model’s deci-
sion in a manner understandable to the clinicians.

3. Materials and Methods

We have proposed a deep learning-based fusion model that
exploits the benefit of a weighted average of the model
weights from backbone CNN models in extracting salient
features from the input CXR images that are used to obtain a
robust classification of these images into COVID-19, nor-
mal, and pneumonia categories. )is section starts by de-
scribing the various components of our proposed system
and the underlying technology to realize COVID-19
screening from the supplied CXR data.

Figure 1 shows the overall architecture of our proposed
COVID-19 detection system, which consists of several steps.
First, we create a curated dataset containing COVID-19,
normal, and other pneumonia CXR images from two
publicly available data sources. Original CXR images are
then passed through a data preprocessing pipeline to per-
form various tasks such as normalization, resizing of the
image, and shuffling. Different image augmentation tech-
niques are used for model training and validation to
overcome the problem of limited training data and increase
model generalizability. )e preprocessed image data is then
split into training, validation, and test sets, from which we
have used the training and validation data to train and
validate our models through 5-fold cross-validation. We
have performed a weighted fusion of parameters (weights)
from multiple instances of backbone CNN models along the
way. We have considered three widely used deep CNN
models, namely, VGG-16 [13], InceptionV3 [14], and
ResNet50V2 [12], as our backbone models. )e perfor-
mances of the proposed models are then measured with the
test dataset using standard metrics.

3.1. Proposed System. We present a schematic diagram of
our proposed system (as shown in Figure 2) to automatically
detect COVID-19 cases using a weighted fusion of pa-
rameters from deep CNN models. First, we perform pa-
rameter (weight) fusion from the weighted combination of
the parameters extracted from multiple backbone CNNs.
)e architecture of each backbone network can be either
custom-designed or off-the-shelf pretrained network ar-
chitecture. However, to facilitate the weight fusion mech-
anism, these network architectures need to be identical. A
clone of the backbone architecture conducts multilabel
classification on the fused parameters to realize coronavirus
infected cases.

Finally, model interpretation through feature repre-
sentation is demonstrated using the t-SNE visualization
technique to investigate how good the feature representa-
tions obtained from the clone network. A detailed de-
scription of the system is given in the following subsections.

3.1.1. Backbone Network Architecture. Our system has used
the above-mentioned three pretrained (on ImageNet dataset
[38]) CNN models along with their weights from con-
volutional layers for feature extraction from input CXR
images. )e VGG-16 network architecture [13] represents a
simple network with only 3× 3 convolutional layers stacked
together in increasing depth. Besides, the volume size is
reduced using max-pooling layers. As the name suggests, it
has 16 weight layers with the last two fully connected layers,
each with 4,096 nodes followed by a softmax classifier layer.
Traditional sequential deeper networks such as VGG-16
suffer from the vanishing gradient problem where the ac-
curacy becomes saturated and drops abruptly with in-
creasing depth. ResNet architecture [12] addresses this
problem by skipping through less important layers with
residual modules while training the network with a standard
SGD optimizer. )e ResNet (ResNet50V2) version used in
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this study contains 50 weight layers demonstrating a sig-
nificant decrease in the model’s size and the number of
FLOPs. )e third CNN model used in our fusion network is
Inception, introduced by Szegedy et al. [14]. It appears as a
microarchitecture to use a multilevel feature extractor by
computing convolutions of different sizes (1× 1, 3× 3, and
5× 5) within the same network module. Outputs from these
filters are stacked on top of each other along the channel
dimension and then fed into the next layer. )e original
manifestation of this network was called GoogLeNet, but the
subsequent incarnations are simply named as Inception with
appropriate versions. In this study, we have used Incep-
tionV3 [39], an updated version of the Inception module
that achieves further improvement in ImageNet classifica-
tion accuracy. InceptionV3 is characterized by its weights,
which are less than those of both ResNet and VGG.

As part of fine-tuning, we delete the classifier part of the
backbone CNNs. We include our custom prediction layer
consisting of a GAP (global average pooling) layer followed by
double dense layers consisting of 256 neurons and three

neurons. As opposed to the flattening layer, a GAP layer can
better address the overfitting problem by reducing the number
of model parameters. In the GAP layer, an h× w feature map is
converted to a single value by computing the average of all pixel
values in the feature map and thus obtains 1× 1× d tensor from
a 3D tensor of dimension h× w × d.

3.1.2. Weighted Parameter Fusion. As shown in Figure 3, we
carry out the fusion of parameters (weights) extracted from the
backbone CNN models. )is process is also known as “early
fusion.” )e resulting fused parameters are then fit into a clone
architecture of the backbone network, which extracts features
for final prediction.)us, our fusion architecture can be treated
as end-to-end, trainable, and capable of learning rich feature
representations and performing multilabel classification
through prediction. We introduce a weighted fusion of pa-
rameters in our systemprimarilymotivated by the fact that deep
learning models often fail to converge due to their challenging
training process.)is implies that themodel obtained at the end
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Figure 1: Process diagram showing the development flow of our proposed system.
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of the training phase may not be stable, or the final model may
not have the best set of parameters (weights). In other words, if
the model faces difficulty in converging, training and validation
loss will show higher than anticipated variance and bounce up
and down during the training process.

To address this issue, we take the average of the weights
from multiple models of the backbone network observed
near the end of the training process. )is is known as the
Polyak averaging or Polyak–Ruppert averaging technique
[11], widely used in stochastic gradient methods. It is
achieved by averaging multiple points in a parameter space
traversed by an optimization algorithm. If we consider that n
iterations of a gradient descent algorithm traverse n points (θ
(1), θ (2), . . ., θ (n)) in the parameter space, then we obtain
the output (θ

(n)
) from the Polyak averaging algorithm [11]

as follows:

θ
(n)

�
1
n

 θ(i)
i. (1)

For some specific problem classes, such as gradient descent
applied to a convex problem, this technique shows a more
robust assurance of convergence. More specifically, the opti-
mization algorithm may switch back and forth in the valley
without touching a point near the bottom of the valley. Polyak
average of the visited points on either side of the valley would
produce the desired result by settling a point closer to the
bottom of the valley. As for the nonconvex problems, the
optimization paths can be more complex and include many
distinct regions. In such cases, it is beneficial to use an expo-
nentially decaying average when applying the Polyak technique
[11] to nonconvex problems as follows:

θ
(n)

� αθ
(n− 1)

+(1 − α)θ(n)
. (2)

In this study, we consider equally, linearly decreasing,
and exponentially decreasing weighted average of model
parameters from multiple models to develop the final fusion

CNN models. )e detailed technique for the calculation of
average model weights is described below.

Our goal is to build a new weight fusion model from
multiple existing models with varying weights (parameters)
with the same architecture. We can build the new model by
taking the weighted average of the model weights. Convolu-
tional layers are the primary building blocks of the CNN
models. Each convolutional layer of amodel contains two sets of
weights: a block of filters and a block of biases.We retrieve these
weights from the same layer of each model and compute the
weighted average, which provides us with a new set of weights.
)en, we build a clone of the base architecture and fit these
calculated weights to obtain the new fusionmodel. Based on the
three averaging techniques mentioned above, we calculate the
new set of weights as follows:

For equally weighted average,

Wi �
1
n

, 1≤ i≤ n. (3)

For weighted average with linear decay,

Wi �
i

n
, n≥ i≥ 1. (4)

For weighted average with exponential decay,

Wi � e
− (i/α)

, 1≤ i≤ n, (5)

where Wi represents the weighting factor for each of the n
models and α denotes decay rate. Finally, we obtain the filter
weights, wf, and bias values, bf, of the fusion model by
applying Wi in each model’s weights:

wf � 
n

i�1
wi ∗Wi,

bf � 
n

i�1
bi ∗Wi.

(6)

pW1 W2 W3 Wn

(a)

pW1 W2 W3 Wn Wf

(b)

pW1 W2 W3 Wn Wf

(c)

pW1 W2 W3 Wn Wf

(d)

Figure 3: Illustration of various parameter fusion techniques in the proposed system: (a) weights fromCNNmodels; (b) average; (c) linearly
decreasing weighted average; (d) exponentially decreasing average.
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3.1.3. Feature Representation. To support the qualitative
analysis, we investigate how well the features are distributed
in the feature space to understand the class separability.
Since convolutional layers produce high-dimensional out-
puts, we need to adopt a dimensionality reduction technique
to visualize them in 2D space. To achieve this, we use t-SNE
(t-Distributed Stochastic Neighbor Embedding) [40], which
is a popular technique for exploring and reducing high-
dimensional data. t-SNE does this by calculating the affin-
ities between data points and preserving these affinities in
the reduced low-dimensional space.

Let X be a matrix consisting of all samples in the dataset
and Y be a target matrix containing the low-dimensional
representation.)e similarity between two data points in the
original high-dimensional space can be expressed as a
conditional probability [40]:

Pj|i � exp
− xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, normalized s.t.∀i 

k

pk|i .

(7)

)e affinity metric can be obtained by using a symmetric
variant of equation (1) where the affinities of U to V and V to
U are the same [40]:

Pij � Pi|j + Pj|i, normalized s.t. 
i


j

Pij � 1. (8)

Similarly, the affinities in low-dimensional space are
calculated considering a Student t-distribution for d di-
mensions as follows [40]:

Qij � 1 +
yi − yj

�����

�����
2

d − 1
⎛⎜⎜⎝ ⎞⎟⎟⎠

− (d/2)

, normalized s.t. 
i


j

Qij.

(9)

Given the affinities for every pair of data points in both
high- and low-dimensional spaces, the goal is to keep them
closer as much as possible. A loss function is used to estimate
the distances between the similarities. t-SNE uses Kull-
back–Leibler divergence as a loss function since the simi-
larities are defined using probabilities [40]:

KL(PQ) � 
i


j

Pijlog
Pij

Qij

. (10)

4. Results and Discussion

To demonstrate the efficacy of our proposed system in
screening COVID-19 encounters, we extensively evaluate
and compare the performance results of the model with fine-
tuned transfer learning models, namely, ResNet50V2, VGG-
16, and InceptionV3, using two publicly available CXR
datasets.

4.1. Dataset Preparation. We have collected CXR images
from two open-source repositories. First, a total of 616

COVID-19 positive images are gathered from the GitHub
repository managed by Cohen et al. [41]. Second, we col-
lected the same number of normal and other non-COVID-
19 pneumonia images from the Kaggle repository [42] to
avoid class imbalance in the curated dataset. )us, the final
dataset contains a total of 1848 X-ray images comprising all
three classes: healthy, COVID-19, and other non-COVID-19
pneumonia. To assess the used models’ performance, we
have used a 5-fold cross-validation technique where the
entire dataset is divided into five equal parts at the patient
level. Table 1 shows the distribution of images at a ratio of
60 : 20 : 20 in each fold for training, validation, and test
datasets. We use the training and validation sets during
training, while the holdout test set is used to evaluate the
models.

)e CXR images in the curated dataset come in varying
sizes due to different clinical settings. We have performed
several fundamental preprocessing tasks to prepare the input
images suitable for model training and validation. All images
are resized to 224× 224 pixels, and all pixel values are
rescaled to [0, 1] through the min-max normalization
technique. Some CXR image samples from different cate-
gories are shown in Figure 4. A healthy CXR image exhibits
clear lungs and does not contain any irregular “opacifica-
tion” area. Bacterial pneumonia typically displays a focal
nonsegmental pattern shown with white arrows in the upper
right lobe in the image. On the contrary, viral pneumonia
tends to show a narrow “interstitial” pattern in both lungs.
Finally, patients with COVID-19 infection mostly show
multifocal and bilateral ground-glass opacities in the CXR
images [43]. Besides, we use image augmentation to tackle
the problem of a small dataset and increase training effi-
ciency while preventing the models from overfitting. A
summary of the augmentation features used for preparing
the training dataset is given in Table 2.

4.2. Experimental Settings. )e fine-tuned CNN backbone
models and the proposed parameter fusion model are
implemented using TensorFlow. More specifically, we have
used Keras functional API to build the fusion model, which
can handle models with shared layers, nonlinear topology,
and multiple inputs or outputs. We also use a special form of
model cloning from Keras to implement the fusion model
with updated average parameters (weights), which has the
same architecture as the backbone network. We use the
Google Colab environment for the implementation of all our
models. Colab offers free GPU access, which is crucial for
training deep learning-based computer vision models. It
comes with all necessary Python 3.x packages preinstalled
with Keras API and TensorFlow backend. Towards the end
of the parameter fusion architecture, we add a dense layer
with 256 neurons with the ReLU activation function. Lastly,
a fully connected layer with a softmax activation function is
added to produce the classification scores.

We start model training with an initial learning rate of
0.001. )en, the learning rate is adjusted with decay com-
puted from the ratio of the initial learning rate to the number
of training epochs. Moreover, Keras callback called
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ModelCheckpoint is used to monitor the performance
metrics and periodically save the model based on some
monitoring criteria such as validation loss or accuracy. We
have used accuracy, precision, sensitivity, specificity, F1-
score, and AUC (area under curve) as our performance
metrics.

4.3. Result Analysis. We start by investing the learning
curves obtained by all backbone models without any pa-
rameter (weight) fusion during training and validation. All
the models show a modest learning progression (as shown
in Figure 5) during the training period by incurring a
relatively unstable decline in both types of losses. )is
implies that the model obtained at the end of the training
phase may not be stable, or the final model may not have
the best parameters (weights). In other words, the tested
models show higher than anticipated variance, and training
and validation losses bounce up and down during the
training process. We take the weights frommultiple models
of these backbone networks observed near the end of the
training process (approximately the last 10 epochs) to
address this issue. )e updated weight is then fit to a clone
model obtained from each of them.

As stated earlier, we have considered three variants of
average weight calculation, such as a simple average of
weights and linearly and exponentially decreasing weighted
average. Figure 6 reports validation accuracy curves of the
ResNet50V2 model observed for the last eleven epochs with
all three average weight types. It is evident from the per-
formance curves that the validation accuracy scores show a
more substantial stabilizing effect of employing exponential
decay instead of a linear or equal weighting of models. )us,
the use of the exponential decay of model weights would be
preferred over other averaging methods for the overall
performance evaluation of the models.

We compare the performance results of various fusion
CNN models using the holdout test dataset. In addition to
the overall performance (as shown in Table 3), class-wise
performance is also evaluated using the samemetrics (shown
in Table 4). It is noticed that the ResNet50V2 model shows
consistently better results than other models in performance
metrics, including accuracy (95.49%), sensitivity (99.19%),
and area under the curve (AUC), which are deemed to be
very critical performance estimates for applications in
medical settings. )e sensitivity result indicates that
ResNet50V2 can accurately identify positive COVID-19
cases with an accuracy of 99.19% from all positive cases.
Surprisingly, VGG-16 and InceptionV3 show values of
precision and specificity superior to those of ResNet50V2.

We also present class-specific results for various models
in Table 4. All the models tend to show relatively low
performance in classifying pneumonia images while deliv-
ering moderate performance in identifying healthy cases. As
per classifying the COVID-19 positive subjects, ResNet50V2
offers superior performance in terms of accuracy and sen-
sitivity. )is result is hypothetically meaningful since ac-
curately classifying CXR images for all three subject groups
(COVID-19, normal, and pneumonia) is essential for a
useful diagnostic tool.

For a deeper understanding of the performance of the
evaluated models, the receiver operating characteristic (ROC)
curve and confusion matrix for each model are shown in

Table 1: Training, validation, and test datasets from various CXR image categories.

Class
No. of samples

Training set (60%) Validation set (20%) Testing set (20%) Total (100%)
Normal 368 124 124 616
Pneumonia 368 124 124 616
COVID-19 368 124 124 616

(a) (b) (c) (d)

Figure 4: Samples of CXR images from the curated dataset: (a) healthy; (b) bacterial pneumonia; (c) viral pneumonia; (d) COVID-19.

Table 2: Parameters and functions used for model training.

Training parameters Values/types
Epoch count 50
Size of batch 8
Optimizer Adam
Loss function Categorical cross-entropy
Warmup learning rate 0.001
Rotation range 15
Shear range 10%
Zoom range 10%
Width and height shifting 10%
Horizontal flip Yes
Fill mode Nearest
Rescaling 1/255
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Figure 7 and Table 5, respectively. A ROC curve plots the true
positive rate (TPR) against the false positive rate (FPR). All the
tested CNN models show superior discrimination abilities for
COVID-19 classes but exhibit poor classification performance
for non-COVID-19 types. )is is substantiated by the fact that
the curve for COVID-19 is slightly higher than the other classes.
We observe from the confusion matrix (in Table 5) a reduced
count of FN cases for ResNet50V2, which implies that the
number of COVID-19 cases that are missed is less, and it
contributes to an increased value of sensitivity. In reality, it is
vital to keep the count of FN cases low and ensure that the
model does not identify somebody contracted with the virus as
healthy, thus hampering the patient’s line of treatment.
However, we observe that both VGG-16 and InceptionV3
models generate fewer false positive (FP) cases for COVID-19
classes than ResNet50V2.

FP’s low value indicates that the number of cases that
are misidentified as COVID-19 positive is less and pos-
itively contributes to increased values of precision and
specificity. To limit the count of FP cases is very im-
portant to reduce unwanted financial liabilities on health
providers.

4.4. Visualization. Figure 8 shows the visualization of fea-
tures extracted from various CNNmodels using CXR images
from the holdout test dataset. It is observed that the
ResNet50V2 model exhibits better feature representation
compared to other models. )e t-SNE of all the fusion
models seems to be well-plotted in a relatively compact space
and shows a clear separation of COVID-19 classes compared
to normal and pneumonia classes. However, all the models
show an area of overlap between normal and pneumonia
classes.

We also investigate how themodels aremaking decisions
regarding COVID-19 prediction. It is crucial to comprehend
what the models are learning from the input images during
training and validation [44, 45]. We use Grad-CAM [44],
which works based on the gradients with respect to the target
class flowing into the last convolutional layer to generate a
localizationmap pinpointing the crucial regions in the image
for correct prediction.

Figure 9 shows the heatmap visualization of two CXR
images of both COVID-19 and other pneumonia patients
with Grad-CAM. )e illustration includes the original
image (focus areas marked with red arrows in the second

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

Ac
cu

ra
cy

0 10 20 30 40 50
Epoch

Train
Val

Model accuracy
1.0

0.2

0.8

0.6

0.4

0.0

Lo
ss

0 10 20 30 40 50
Epoch

Train
Val

Model loss

(a)

0.90

0.85

0.80

0.75

0.70

0.65

Ac
cu

ra
cy

0 10 20 30 40 50
Epoch

Train
Val

Model accuracy
0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

Lo
ss

0 10 20 30 40 50
Epoch

Train
Val

Model loss

(b)

Figure 5: Training and validation curves for (a) ResNet50V2 and (b) VGG-16 models without using weight fusion.
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image) followed by a heatmap highlighting the critical
regions within the lungs and an overlay of heatmap onto
the original image using ResNet50V2 and InceptionV3.
ResNet50V2 seems to focus on both sides of the respi-
ratory tract to classify this particular case. However,
InceptionV3 seems to focus on relatively larger areas,
including the lower respiratory tract, even though both
the models have produced correct predictions for the
image. )is needs to be verified clinically with an ex-
perienced radiologist through careful testing. )e bottom
line is to make sure that our model depends on proper
knowledge from the images to make the classification
decisions.

4.5. Discussion. To summarize, we have presented the
performance comparison between the proposed fusion
models in this study to detect COVID-19 cases automati-
cally. Based on the presented results, we conclude that our
fine-tuned weight fusion model using ResNet50V2 appears
to be the best performing model. It is worthwhile to mention
that the size of the dataset used in this study containing
COVID-19 CXR images is still limited and merely adequate
to train our proposed fusion models to obtain stable clas-
sification performance. Hence, one of our future goals is to
collect more COVID-19 images as they become available to
ensure that the curated dataset contains sufficient training
and validation data and thus overcome the data scarcity
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Figure 6: Validation accuracy of ResNet50V2 (for the last 11 epochs) using different averaging techniques for the parameter (weight) fusion.

Table 3: Classification results for ResNet50V2, VGG-16, and InceptionV3 on the holdout test dataset.

Model Accuracy Precision Sensitivity Specificity F1-score AUC
ResNet50V2 95.49 96.85 99.19 98.27 98.00 95.94
VGG-16 92.70 97.50 94.35 98.69 95.89 95.73
InceptionV3 92.97 97.60 98.39 98.67 97.99 94.72
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problem. With more data, we expect that our model will
achieve further improvement in prediction results.

We also compare our proposed fusion model with a
representative set of existing studies from the literature. As
such, the comparison results are presented in Table 6. It is

worth noting that the size of the CXR dataset used in some of
these studies with COVID-19 positive cases is very small. For
model training, some of the earlier studies (e.g., [17, 31])
used even less than 100 COVID-19 images. Wang et al. [31]
proposed COVID-Net as one of the first attempts to detect

Table 4: Performance results for each class using all evaluated models on the test dataset.

Model Class Accuracy Precision Recall F1-score

ResNet50V2
Pneumonia 90.24 93.0 90.0 92.0
Normal 94.30 94.0 94.0 94.0

COVID-19 99.19 97.0 99.0 98.0

VGG-16
Pneumonia 89.43 90.0 89.0 90.0
Normal 94.30 91.0 94.0 92.0

COVID-19 94.35 97.0 94.0 96.0

InceptionV3
Pneumonia 86.99 91.0 87.0 89.0
Normal 93.49 90.0 93.0 92.0

COVID-19 98.38 98.0 98.0 98.0
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Figure 7: ROC curves for multiple classes (COVID-19, normal, and other pneumonia) using various models: (a) ResNet50V2; (b) VGG-16;
(c) InceptionV3.
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COVID-19 from CXR images. For the prediction of
COVID-19 events, they proposed a custom deep learning
model. However, the model training dataset includes less
than 100 COVID-19 samples and a significant number of
samples from the healthy and non-COVID-19 groups. As a
result, their dataset is a bit unbalanced, which could affect
the model’s performance. Narin et al. [17] used several
pretrained transfer learning models and achieved the highest
accuracy of 98% with ResNet50 for binary classification.
However, there are only 50 COVID-19 images in the curated
dataset that they used. Waheed et al. [25] addressed the issue

of limited training data by generating synthetic images using
generative models and achieved an accuracy of 95%.
However, their approach suffers from a high false negative
rate. Although the false predictions in ResNet18 [18] and
Dark COVID-Net [19] are relatively less, the model accuracy
is only 88.9% and 87%, respectively, for the multiclass
classification problem. )e triple-view CNN architecture
proposed by Zhang [15] achieved high accuracy (99.8%) for
binary classification of healthy and COVID-19 cases but
showed comparatively lower performance in terms of ac-
curacy (84.4%) for three-class classification with healthy,
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Figure 8: Feature representation based on predicted labels with t-SNE plot for multilabel classification using all base CNN models:
(a) ResNet50V2; (b) VGG-16; (c) InceptionV3.

Table 5: Confusion matrix for COVID-19 class using the test dataset.

Model TP FP TN FN
ResNet50V2 123 4 227 1
VGG-16 117 3 226 7
InceptionV3 122 3 222 2
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COVID-19, and other non-COVID-19 pneumonia cases.
)e deep learning-based decision tree classifier proposed by
Hoon et al. [21] showed a similar performance to our
proposed fusion model, where the final decision tree could
classify coronavirus cases with an accuracy of 95%.

Based on the above discussion, we observe that the
proposed fusion model shows performance similar to or
better than many other existing studies in terms of accuracy,
sensitivity, specificity, and AUC in detecting COVID-19
cases considering a 3-class classification problem. Given the
amount of work done so far for the automatic diagnosis of
COVID-19 patients using deep learning models, we can
realize AI’s role in assisting health practitioners for proper
and faster diagnosis of this deadly virus during the ongoing

pandemic. )is research is one step near a more transparent
comprehension of the infections caused by this novel
coronavirus. It proposes an improved deep learning-based
solution for automatic and fast detection of potential
COVID-19 encounters.

It is imperative to state some of the limitations of our
current work. Research findings from some recent studies
suggest three distinct stages of COVID-19 disease pro-
gression: early infection, pulmonary phase, and hyper-
inflammation phase [46]. Each of these stages shows variable
degrees of symptoms. )e early infection phase is charac-
terized bymild symptoms such as common cold or flu. In the
pulmonary phase, the infection strongly affects the patient’s
immune system with primary respiratory symptoms,

Original image Heatmap Overlay Original image Heatmap Overlay

(a)

Original image Heatmap Overlay Original image Heatmap Overlay

(b)

Original image Heatmap Overlay Original image Heatmap Overlay

(c)

Figure 9: Model interpretation with heatmap visualization using Grad-CAM for (a) COVID-19 patients, model: ResNet50V2; (b) COVID-
19 patients, model: InceptionV3; (c) pneumonia patients, model: ResNet50V2.

Table 6: Comparison of the proposed weight fusion model with other existing deep learning-based studies from the literature.

Method Target classes
Evaluation results

Acc. Prec. Sens. Spec. AUC
Proposed fusion method 3 classes: COVID-19, normal, pneumonia 0.954 0.968 0.991 0.982 0.959
COVID-Net [31] 3 classes: COVID-19, normal, non-COVID-19 0.933 0.989 0.910 — —
CovidGAN [25] 2 classes: COVID-19, normal 0.950 0.900 0.970 —
Pretrained CNN [17] 2 classes: COVID-19, normal 0.980 1.00 0.960 1.00 —
ResNet18 [18] 5 classes: normal, bacterial, tuberculosis, viral, COVID-19 0.889 0.834 0.859 0.964 —

Triple-view CNN [15] 2 classes: normal, COVID-19 0.998 0.996 0.999 0.997 —
3 classes: normal, COVID-19, other 0.844

DarkNet [19] 2 classes: COVID-19, no findings 0.980 0.980 0.951 0.953 —
3 classes: COVID-19, no findings, pneumonia 0.870 0.899 0.853 0.921 —

Deep learning-based decision tree [21] Multiple classes: COVID-19, TB, non-COVID-19, non-TB 0.950 0.940 0.970 0.930 0.950
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including frequent cough, shortness of breath, and reduced
oxygen levels. In the third stage, patients develop acute
respiratory distress syndrome (ARDS) and may experience
injury to kidneys and other organs. Our proposed model
cannot identify the stage at which the disease is detected
from the CXR images. Further study is required with ap-
propriate metadata along with the CXR images to report the
exact stage of disease in addition to mere diagnosis. In
addition, our work is limited by the fact that the curated
dataset is composed of CXR images (COVID-19, normal,
and other non-COVID-19 pneumonia) from two different
sources. A critical study by Maguolo and Nanni [47] reveals
that this heterogeneity of data sources might add a bias to the
prediction. Hence, the learning patterns of the model might
not entirely be correlated to the existence of COVID-19.

Although recent findings suggest that CXR images may
not be the best modality for early detection of COVID-19,
other research findings (reported in the literature studies)
confirm that radiology images show salient information
about COVID-19 infection during disease progression.
)us, we would safely argue that our proposed fusion model
is by no means a replacement for a human radiologist.
Instead, we expect our current findings to offer a valuable
contribution to the growing recognition and adoption of AI-
aided applications in clinical settings. Even if it is not suf-
ficient to solely rely on the results obtained from CXR
images to prescribe the line of treatment for a patient, an
automated early screening can greatly help health profes-
sionals identify and quarantine positive encounters until a
comprehensive test is conducted.

5. Conclusions and Future Work

In this paper, we introduce a novel CNN-based deep
learning fusion framework using the transfer learning
concept to detect COVID-19 from CXR images auto-
matically. )e fusion architecture takes the average of the
weights from multiple models of the backbone network
observed near the end of the training process and fits
them to a single model to extract features from images,
which are then fed to a custom classifier for prediction.
Specifically, we use ResNet50V3, VGG-16, and Incep-
tionV3 models and leverage the models’ weighted con-
tribution with exponential decay to improve the
performance. )e best performing model (ResNet50V2)
obtains an accuracy of 95.49%, sensitivity of 99.19%, F1-
score of 98.0%, and AUC of 95.49%. Our model also
shows desirable explain-ability properties by efficiently
identifying various areas in CXR images related to
COVID-19 infection. We anticipate that the results
achieved from our proposed fusion model will assist
clinicians in the automatic detection of COVID-19 pa-
tients and reduce their workload. Simultaneously, it is
important to identify some of the limitations of our work,
which could be addressed in future studies. )e major
drawback is that the dataset used in this analysis, which
contains COVID-19 CXR images, is still limited. As an
immediate future work, we plan to extend our work by
collecting more COVID-19 images as they become

available to achieve further improvement in prediction
results. In the future, we also plan to adopt an improved
fusion model based on feature concatenation extracted
from CXR images and multimodal COVID-19 data for
enhanced prediction results.
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