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Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are typical phenylethanoids and also
powerful dietary antioxidants. This study aimed at evaluating the influence of three natural
phenylethanoids, which are dietary phenylethanoids of natural origins, on reversing gut
dysbiosis and attenuating nonalcoholic fatty liver features of the liver induced by metabolic
syndrome (MetS) mice. C57BL/6J female mice induced with high-fructose diet were
established and administrated with salidroside, tyrosol, and hydroxytyrosol for 12 weeks,
respectively. Biochemical analysis showed that S, T, and H significantly improved glucose
metabolism and lipid metabolism, including reduced levels of total cholesterol insulin (INS),
uric acid, low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (ALT).
Histopathological observation of the liver confirmed the protective effects of S, T, and H
against hepatic steatosis, which were demonstrated by the results of metabolomic analysis,
such as the improvement in glycolysis, purine metabolism, bile acid, fatty acid metabolism,
and cholinemetabolism. Additionally, 16S rRNA gene sequence data revealed that S, T, and
H could enhance the diversity of gut microbiota. These findings suggested that S, T, and H
probably suppress lipid accumulation and have hepatoprotective effects and improve
intestinal microflora disorders to attenuate metabolic syndromes.

Keywords: salidroside, fructose, gut microbiota, metabolic syndrome, hepatic protection

INTRODUCTION

Metabolic syndrome (MetS) is a group of metabolic risk factors, including obesity, insulin resistance,
dyslipidemia, hypertension, and hyperuricemia (Huang, 2009). The prevalence of MetS is growing at
an alarming rate worldwide in recent years, and it has now become a truly global problem (Saklayen,
2018). Research has shown that high consumption of large amounts of saturated fat and
carbohydrates has been considered the main predisposing factor to MetS (Hannou et al., 2018).
Fructose is closely related to people’s lives. It not only exists in some vegetables, fruits, and honey but
is also widely added to processed foods and beverages. Supplementing some beneficial dietary
ingredients to ameliorate the effects of fructose may be an effective strategy for the prevention of
MetS (Pan and Kong, 2018).

Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are not only typical phenylethanoids but also
one of the strongest dietary antioxidants. They are found in plants such as olive, green tea, Ligustrum
lucidum W.T.Aiton [Oleaceae], Rhodiola crenulata (Hook.f. & Thomson) H. Ohba [Crassulaceae],
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and both red and white wines. Studies have confirmed that they
display a range of pharmacological properties, including anti-
inflammatory, anti-tumor, anti-hypoxia, hepatoprotective, and
antioxidant activities (Kalaiselvan et al., 2016; Chen et al., 2019;
Markovic et al., 2019; Bertelli et al., 2020; Yu et al., 2020; Zhang
et al., 2020; Zhang et al., 2021; Li et al., 2022). These have been
attributed to increased attention to the interest in dietary tyrosol,
hydroxytyrosol, or salidroside. The European Food Safety
Authority (EFSA) has greatly emphasized the effect of tyrosol
and its derivates, such as the effect of hydroxytyrosol to protect
low-density lipoproteins (LDLs) from oxidation and pointed out
that the dietary ingestion of 5 mg is enough to obtain the benefits
(Efsa, 2011). Hydroxytyrosol has an ortho-diphenolic structure
and high antioxidant activity (Balducci et al., 2018). Analogously,
hydroxytyrosol, extracted from olive leaves and oil, has been
proved to prevent MetS onset by preserving the glycemic index,
reducing triglyceride (TG) levels, and preventing LDL oxidation
and inflammation (Jemai et al., 2008). Salidroside, a glucoside of
tyrosol, is one of the main active ingredients of the medicinal
herb, Rhodiola crenulata (Hook. f. & Thomson) H. Ohba (Chen
et al., 2008). Moreover, salidroside exhibits various biological
activities and is used for the prophylaxis and therapeutics of many
diseases, including non-alcoholic fatty liver disease (NAFLD),
type 2 diabetes, and cardiovascular diseases (Zheng et al., 2018;
Bai et al., 2019; Pu et al., 2020).

It is well established that the liver is the primary site of dietary
fructose metabolism. Interestingly, a recent study using isotope
tracing and mass spectrometry found that most dietary fructose is
metabolized by the small intestine (Jang et al., 2018). Only when
the intake of fructose overwhelms intestinal fructose absorption
and clearance, the excess fructose spills over to the liver and
microbiota (Ferraris et al., 2018). Pharmacokinetics and
bioavailability showed that when evaluating the bioavailability of
tyrosol, hydroxytyrosol, or salidroside, the efficiency of intestinal
absorption is not the only factor to be considered. We also need to
take into account the enterohepatic circulation (Miro-Casas et al.,
2003; Aleman-Jimenez et al., 2021). Therefore, in our study, we
paid more attention to tyrosol, hydroxytyrosol, and salidroside
influences on intestinal–hepatic metabolism. We provided
salidroside, hydroxytyrosol, and tyrosol to female mice and fed
an HFru diet to determine whether salidroside, hydroxytyrosol, or
tyrosol intervention could recover liver injury andmodulate the gut
microbiota in HFru diet-induced female mice.

MATERIALS AND METHODS

Chemicals and Materials
In total, 60 female C57BL/6J mice (6 weeks, 18–19 g) were
purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). The normal diet (ND)
was purchased from Xiao Shu Youtai (Beijing, China) Biological
Technology Co., Ltd., and the high-fructose diet (HFru) was
obtained from Tianjin Aoyide Experimental Products Co., Ltd.
(Tianjin, China).

Tyrosol (purity ≥98%, S31415) and pioglitazone (purity≥98%,
B21435) were purchased from Shanghai Yuanye Biological

Technology Co., Ltd. (Shanghai, China). Salidroside
(purity ≥98%) and hydroxytyrosol (purity ≥98%) were
obtained from Sichuan Victory Biological Technology Co., Ltd.
(Sichuan, China). Deuterium oxide (D2O, 99.9% atom %D) and
3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP-d4,
98% atom %D) were purchased from Cambridge Isotope
Laboratories (Cambridge, FL, United States). Methanol was
purchased from Sigma-Aldrich (St. Louis, MO, United States).

Dietary Intervention Study of Mice
All the animals were maintained at a controlled temperature
(23 ± 2°C) with a 12 h light/dark period and acclimated with ad
libitum access to a standard chow diet and water for 1 week. They
were randomly and equally divided into six groups, including the
control group (fed with ND diet; i.g. homologous saline per day),
model group (fed with HFru diet; i.g. homologous saline per day),
positive group (fed with HFru diet; i.g. 6.00 mg/kg dosage of
pioglitazone), salidroside group (fed with HFru diet; i.g. 50 mg/kg
dosage of salidroside), tyrosol group (fed with HFru diet; i.g.
23 mg/kg dosage of tyrosol), and hydroxytyrosol group (fed with
HFru diet; i.g. 26 mg/kg dosage of hydroxytyrosol). The feeding
cycle lasted for 8 weeks. The dose of salidroside was determined
according to the previous animal experimental results of the
research group (Song et al., 2021). Tyrosol and hydroxytyrosol
were calculated based on the molar conversion with salidroside.
The compositions of HFru were fructose (60%), casein (20.7%),
cellulose (8%), lard (5%), minerals (0.5%), vitamins (0.1%), DL-
methionine (0.03%), and food coloring. All animal procedures
and testing were performed according to the Laboratory Animals
Center at the Institute of Radiation Medicine Chinese Academy of
Medical Sciences, Tianjin, China.

The body weight was measured every week. At the end of
treatment, the animals were kept in an empty cage without
bedding to gather fresh stool samples into sterile tubes, and
they were snap-frozen in liquid nitrogen. All animals were
fasted overnight before being euthanized. The tail cutting
method was used to determine the level of fasted blood
glucose. Blood was collected by plucking the eyeballs and then
centrifuged to yield serum samples. Liver samples, dissected from
the thoracic and abdominal cavities, were immersed immediately
in liquid nitrogen and stored at −80°C for further analysis. The
study was approved by the Animal Ethics Committee of the
Institute of Radiation Medicine Chinese Academy of Medical
Sciences (Tianjin, China, Approval No: IRM-DWLL-2020127).

Serum and Liver Biochemistry
The obtained mouse blood was centrifuged at 4000 rpm for
10 min, and the supernatant was collected. The serum levels of
total cholesterol (TC), triglyceride (TG), low-density lipoprotein-
cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-
C), alanine aminotransferase (ALT), and glucose (GLU) of the
mice were determined by commercial kits on a biochemical
automatic analyzer (Hitachi, Japan, 7020). The levels of serum
uric acid (UA) and insulin (INS) were measured in strict
accordance with the kit instructions.

The liver tissue levels of alanine aminotransferase (ALT),
xanthine oxidase (XOD), tumor necrosis factor-α (TNF-α),
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total bile acid (TBA), farnesoid X receptor (FXR), and
monooxygenase-3 (FMO3) were determined in accordance
with kit instructions.

Hepatic Histopathological Examination
Fresh liver samples were fixed in 10% para formaldehyde,
embedded in paraffin, sectioned into 5 μm thickness, and
stained with hematoxylin/eosin (H&E). The sliced sections
were observed using a Nikon Ci-L microscope (Japan) and
analyzed using the HMIAS-2000 high-resolution digital
microscope image analysis system.

Hepatic Metabolomic Profiling
The 100 mg liver tissue was homogenized by 800 μL of pre-cold
CH3OH/H2O (2:1) on ice. The extractive solution was vortexed
for 30 s and centrifuged at 12,000 r and 4°C for 10 min. The
supernatant of 800 μL in a new tube was dried under nitrogen,
and 600 μL of phosphate-buffered saline (pH 7.4) containing
0.01% sodium 3-trimethysilyl [2,2,3,3-d4] propionate (TSP-d4)
was added. The solution was vortexed and centrifuged again. The
amount of 500 μL supernatant was pipetted and transferred into a
5-mm NMR tube. The NMR tube was stored at 4°C for the test.

1H-NMR spectra were recorded at 300 K on a Bruker Avance
III 600 MHz spectrometer, operating at 600.13 MHz for proton,
equipped with a cryogenic probe (Bruker, Biospin, Germany). A
CPMG (Carr–Purcell–Meiboom–Gill) pulse train was adopted
and scanned 64 times (NS) with a 90° pulse width (P1) of 14.09 μs,
acquisition time (AQ) of 3.41 s, a relaxation delay time of (D1) of
5 s, spectral width (SWH) of 9615 Hz, and receiving gain of
188 and a sampling data point of 65,536.

The NMR original data were processed by MestReNova
12.0.1 software (Mestrelab S.L., Spain). The process was
carried out by phase correction and baseline correction before
the methyl resonance of TSP-d4 was referenced to δ 0.00 ppm.
The 1H NMR spectra from δ 0.7–9.0 ppm were bucketed into
bins with an integral step of 0.001 ppm. The normalized integrity
data were imported into SIMCA (version 14.1, Sweden) to
perform partial least squares discriminant analysis (PLS-DA).
Differential metabolites were screened by variable importance in
the project (VIP) > 1 and t-test (p < 0.05). An FDR-adjusted
p-value, which was obtained by a t-test performed in
MetaboAnalyst 5.0, was used in the study. In addition, the
determination of trimethylamine N-oxide (TMAO) and
betaine in liver samples referred to a reported article (He
et al., 2021).

Bioinformatic Gut Microbiota Analyses
Total DNA for gut microbiota analysis was extracted from
approximately 100 mg of feces. To generate representative
complete sequences, the raw tags were improved and managed
using FLASH software (Version 1.2.11, United States). We
accepted the Quantitative Insights into Microbial Ecology
(QIIME) (Version 1.7.0) quality control process to obtain
clean tags. Subsequently, the clean tags, in comparison with
the reference database using the UCHIME algorithm
(UCHIME Algorithm), were used to remove the chimera
sequences to obtain effective tags. The effective tags were

determined quantitatively and analyzed using the Quanti-
Fluorimeter and the Hiseq2500 system (Illumina, Inc., San
Diego, CA, United States). Sequences with ≥97% similarity
were assigned to the same operational taxonomic units
(OTUs). QIIME software displayed was used to calculate the
alpha diversity index, including Chao1, Shannon, Simpson, ACE,
and beta diversity index (principal component analysis (PCA))
and non-metric multidimensional scaling (NMDS). The linear
discriminant analysis (LDA) and LDA effect size (LEfSe) methods
were applied to analyze the metagenomic biomarker among
groups (Galaxy Online Analysis Platform, http://huttenhower.
sph.harvard.edu/galaxy/), and the selected differences were sorted
by linear discriminant analysis (LDA) > 4.0.

Statistical Analysis
The obtained data were analyzed by GraphPad Prism 9.0 (San
Diego, CA, United States) and expressed as mean ± SD. One-way
analysis of variance (ANOVA) with the Dunnett test was
employed to evaluate the significance of differences among
animal groups.

Differences were considered statistically significant at p < 0.05.
Partial least squares discriminant analysis (PLS-DA) was
performed on SIMCA 14.1 (Sweden).

A value of *P or #p < 0.05, **P or ##p < 0.01, and ***P or ###p <
0.001 was considered a statistically significant difference for all
analyses.

RESULTS

Effect on Body Weight, Fasting Blood
Glucose, and Serum Biochemical Indicators
in Mice
MetS is a combination of a series of clinical risk factors, including
elevated blood pressure, obesity, high TG, and high blood glucose
levels. Tables 1, 2; Supplementary Figure S1A indicated that the
control group mice had the lowest ALT, TC, TG, LDL-C, HDL-C,
UA, GLU, FBG, and INS serum levels, and the model group mice
had the highest ALT, TC, TG, LDL-C, HDL-C, UA, GLU, FBG,
and INS levels (p < 0.05). After the administration of salidroside,
tyrosol, or hydroxytyrosol, the levels of ALT, TG, LDL-C, UA,
GLU, FBG, and INS in metabolic syndrome mice significantly
decreased (p < 0.05), while the level of TC only showed a
downward trend. It was worth noting that the change in the
HDL-C level was different from that reported in the literature.
Although pioglitazone or different extracts had no obvious effect
on the improvement of body weight, body weight had a down
tendency in the medicated administration group, especially in the
salidroside group. In a comprehensive comparison, the effect of
the salidroside group was stronger than that of the tyrosol or
hydroxytyrosol group.

Effect on Hepatic Biochemical Indicators
Table 1; Supplementary Figure S1B depicted that the levels of
ALT, XOD, TNF-α, and FMO3 in the serum of healthy mice were
the lowest, while TBA and FXR levels were the highest. Mice in
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the model group showed a contrary trend. The serum levels of
ALT, XOD, TNF-α, and FMO3 were the highest, and the TBA and
FXR levels were the lowest in the model group. After the
administration of salidroside, tyrosol, and hydroxytyrosol to
the respective groups, the levels of ALT, XOD, TNF-α, and
FMO3 in metabolic syndrome mice markedly decreased, while
the levels of TBA and FXR significantly increased (p < 0.05). The
salidroside group had the strongest action to improve these
indicators, which was significantly stronger than the tyrosol or
hydroxytyrosol group.

Effect on Liver Histopathology
The liver pathological sections of mice in each group were
observed under a 200x and 400x high power microscope
(Figure 1). In normal chow-fed mice, hepatic cords were
radially arranged around a central vein. Also, the portal canal
area had no inflammatory cell infiltration. However, the
accumulation of round and tense vacuoles in the hepatocyte
cytoplasm could be observed in the liver tissue of model mice, and
the lipid droplets increased obviously, and the inflammatory cells
infiltrated significantly. These undesirable conditions were

TABLE 1 | Body weight, fasting blood glucose, and serum metabolic parameters in mice.

Group C M P S T H

FBG (mmol/L) 7.15 ± 1.57 9.84 ± 2.04** 6.85 ± 2.00## 6.46 ± 1.64### 6.05 ± 1.35### 6.36 ± 1.42###

Final weight (g) 21.20 ± 1.08 22.18 ± 1.29 21.20 ± 0.80 22.36 ± 1.40 21.31 ± 1.23 20.95 ± 1.69
TG (mmol/L) 0.94 ± 0.24 1.27 ± 0.31* 0.93 ± 0.15## 0.82 ± 0.23### 0.69 ± 0.16### 0.78 ± 0.20###

TC (mmol/L) 2.57 ± 0.41 3.56 ± 0.49* 3.19 ± 0.44 3.32 ± 0.39 3.49 ± 0.34 3.39 ± 0.25
HDL-C (mmol/L) 1.14 ± 0.16 1.48 ± 0.19*** 1.19 ± 0.16## 1.27 ± 0.17# 1.29 ± 0.12 1.27 ± 0.12#

LDL-C (mmol/L) 0.24 ± 0.02 0.41 ± 0.07*** 0.25 ± 0.05### 0.32 ± 0.04## 0.33 ± 0.05# 0.32 ± 0.08#

ALT (U/L) 36.50 ± 7.11 47.67 ± 8.53* 34.10 ± 8.63### 31.67 ± 3.50### 37.22 ± 5.52# 38.22 ± 8.44#

GLU (mmol/L) 4.81 ± 0.75 6.67 ± 1.41* 4.56 ± 0.97## 3.53 ± 1.47### 4.29 ± 1.67## 4.23 ± 1.32##

UA (mmol/L) 106.40 ± 14.26 145.20 ± 18.52*** 111.90 ± 15.40### 107.40 ± 22.78### 112.60 ± 14.58### 111.00 ± 13.85###

INS (mIU/L) 1.82 ± 0.65 5.12 ± 0.57*** 1.99 ± 0.76### 2.60 ± 0.65### 1.44 ± 0.28### 1.48 ± 0.68###

Values presented are the mean ± standard deviation (N ≥ 8/group). *p < 0.05, **p < 0.01, ***p < 0.001, vs. C; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. M. P: mice treated with pioglitazone
(6.00 mg/kg); S: mice treated with salidroside (50 mg/kg); T: mice treated with tyrosol (23 mg/kg); H: mice treated with hydroxytyrosol (26 mg/kg). FBG: fasting blood glucose; ALT:
alanine aminotransferase; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; GLU: glucose; UA: uric acid; INS:
insulin.

TABLE 2 | Effect of three phenylethanoids on hepatic metabolic parameters in mice.

Groups C M P S T H

ALT (U/L) 26.20 ± 5.33 33.30 ± 3.20** 27.70 ± 4.47# 27.80 ± 4.52# 27.90 ± 4.28# 28.20 ± 4.02#

XOD (U) 17.10 ± 4.48 24.30 ± 2.58*** 17.90 ± 4.18## 18.10 ± 4.01## 18.00 ± 3.50## 18.50 ± 3.50##

TNF-α (pg/ml) 878.90 ± 38.19 1318.00 ± 83.51*** 777.60 ± 141.70### 773.70 ± 99.79### 790.40 ± 157.70### 847.60 ± 125.20###

TBA (μmol/L) 0.16 ± 0.05 0.15 ± 0.04*** 0.16 ± 0.05## 0.16 ± 0.05## 0.16 ± 0.05## 0.16 ± 0.05#

FXR (ng/ml) 5.26 ± 0.44 4.18 ± 0.74* 5.32 ± 0.29# 5.48 ± 0.86# 5.30 ± 1.14# 5.24 ± 0.90#

FMO3 (U) 17.88 ± 1.88 20.83 ± 1.84* 16.53 ± 2.64### 13.32 ± 1.37### 14.57 ± 2.46### 13.63 ± 1.64###

Values presented are the mean ± standard deviation (N ≥ 8/group). *p < 0.05, **p < 0.01, ***p < 0.001, vs. C; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. M. P: mice treated with pioglitazone
(6.00 mg/kg); S: mice treated with salidroside (50 mg/kg); T: mice treated with tyrosol (23 mg/kg); H: mice treated with hydroxytyrosol (26 mg/kg). ALT: alanine aminotransferase; XOD:
xanthine oxidase; TNF-α: tumor necrosis factor-α; TBA: total bile acid; FXR: farnesoid X receptor; FMO3: flavin monooxygenase 3.

FIGURE 1 | After treatment with salidroside, tyrosol, and hydroxytyrosol for 12 weeks, liver tissues were stained with H&E staining (×200 and ×400). C: control; M:
model; P: pioglitazone; S: salidroside; T: tyrosol; H: hydroxytyrosol.
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attenuated by salidroside, tyrosol, or hydroxytyrosol treatment,
especially the salidroside group that had stronger inhibitory
effects on liver lesions and regulated the MetS better than the
tyrosol and hydroxytyrosol groups.

Metabonomic Changes in Liver and
Differential Metabolite Analysis
The changes of metabolites in the liver were determined to assess
the effect of salidroside, tyrosol, and hydroxytyrosol.
Supplementary Figure S2; Supplementary Table S1 showed
the signal attribution of typical 1H-NMR spectra of liver tissue
extracts of six groups of mice. According to the literature, public
databases (The Human Metabolome Database, HMDB), and the
two-dimensional spectrum, a total of 52 metabolites were
identified, mainly including amino acids, organic acids,
alkaloids, sugars, and nucleotides. To investigate the differences
inmetabolic profiling between different groups, the PLS-DAmodel
and permutation test were performed and are shown in
Supplementary Figure S3; Supplementary Table S2x.

VIP >1 and p < 0.05 were chosen as screening criteria to screen
the differential metabolites (Supplementary Tables S3–7). A total
of 29 differential metabolites were identified between the control
group and model group, which were 3-hydroxybutyrate, leucine,
lactate, threonine, alanine, proline, O-acetylcarnitine, succinate,
trimethylamine, glutathione, glutamine, creatine, creatinine,
choline, phosphorylcholine, glycerophosphocholine (GPC),
taurine, trimethylamine-N-oxide (TMAO), glycerol, glycine,
N-phosphocreatine, threonate, inosine, glucose, serine, anserine,
xanthine, oxypurinol, and niacinamide. It was observed that HFru
mice clearly distinguished from chow-fed mice, and we suggested
that certain metabolic disorders had occurred in the model group.

There were 11 shared metabolites between C vs.M, S vs.M, T
vs. M, and H vs. M found by Venny analysis (http://www.ehbio.
com/test/venn/#/), including 3-hydroxybutyrate, lactate, alanine,
trimethylamine, choline, phosphorylcholine, GPC, taurine,
TMAO, inosine, and glucose (Figure 2). Also, the changes of
other differential metabolites are shown in Supplementary
Figure S4. By the intervention of salidroside, tyrosol, and
hydroxytyrosol, 26, 19, and 18 differential metabolites could

FIGURE 2 | Differential metabolites in mice liver between different groups. (A) Intersection differential metabolites changes in C vs. M, S vs. M, T vs. M, and H vs. M
by Venny analysis. (B) Individual relative content changes of differential metabolites in common were represented by the boxplot. *p < 0.05, **p < 0.01, ***p < 0.001, vs.
C; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. M. C: control; M: model; P: pioglitazone; S: salidroside; T: tyrosol; H: hydroxytyrosol.
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be regulated back, respectively. The results suggested that the
three natural phenylethanoids could significantly suppress the
increased hepatic absolute content of TMAO (p < 0.01, p < 0.001),
while only the salidroside group caused a significant reduction in
betaine absolute content (p < 0.01). The results showed that the
salidroside group had better improving metabolism
abnormalities than the tyrosol and hydroxytyrosol groups.

We further investigated the role of these differential
metabolites in metabolic pathways using the pathway analysis
module of MetaboAnalyst 5.0. Figure 3 shows that the protective
effect of salidroside, tyrosol or hydroxytyrosol on the mice model
of MetS may be attributed to the regulation of these differential
metabolites and their related metabolic pathways, including bile
acid metabolism, choline metabolism, glycolysis, purine

FIGURE 3 | Analysis of related metabolic pathways. (A) Pathway analysis for group C vs. M by using the KEGG database. The horizontal axis represents impact; a
higher impact indicates a greater degree of enrichment. The point size represents the number of differentially expressedmetabolites in KEGG, and the colors of the points
correspond to different p-value ranges. (B)Which metabolites have caused change after treatment with salidroside, tyrosol, and hydroxytyrosol for 12 weeks is shown.
The red font represents the upregulation of differential metabolites or biochemical indexes after administration, while the blue font represents the reverse.
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metabolism, amino acid metabolism, lipid metabolism, taurine
metabolism, and the tricarboxylic acid cycle.

Impact of Salidroside, Tyrosol, or
Hydroxytyrosol Intervention on the Gut
Microbial Community
Gut microbiota are strictly associated with a fructose diet. To
analyze the effect of salidroside, tyrosol or hydroxytyrosol on the
composition of gut microbiota, an analysis of gut microbiota 16S
rRNA in HFru-mice feces was performed. Shannon and
Simpson’s index revealed that the fecal microbiota diversity in
the model group was lower than that in the control group
(Supplementary Figure S5). In addition, Chao 1 and observed
species index indicated that salidroside, tyrosol, or
hydroxytyrosol could affect community richness
(Supplementary Figure S5), especially from the alpha
diversity index, the hydroxytyrosol group changed the most,
and there was a significant difference. PCoA analysis showed
that HFru intervention results had significant cluster separation
from those of the control group (Supplementary Figure S6A).

These conditions were partially recovered by salidroside, tyrosol,
or hydroxytyrosol treatment, suggesting that salidroside, tyrosol,
or hydroxytyrosol could alter the gut microbiota compositions to
some extent. The NMDS plot of the microbial compositions of
the 30 samples revealed that salidroside, tyrosol, or
hydroxytyrosol treatment groups and the control groups
demonstrated different microbiome compositions
(Supplementary Figure S6B). The Venn diagram showed that
a total of 204 OTUs were shared by all groups (Supplementary
Figure S6C). In addition, the main phyla observed in our study
include Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
and Verrucomicrobia (Figure 4). The largest proportions of the
phylum Amoebacteria and Proteobacteria were found in each
group. Particularly, a high-fructose diet could significantly
decrease the relative abundance of Firmicutes and
Bacteroidetes while significantly increasing the relative
abundance of Proteobacteria. At the genus level (Figure 5), we
found that the most abundant bacteria were mainly
Acinetobacter, Jeotgalicoccus, Lactobacillus, Staphylococcus, and
Sporosarcina. Detailed analysis at phylum and genus levels
revealed that salidroside, tyrosol, and hydroxytyrosol groups

FIGURE 4 |Histogram of mean value of intestinal microflora enrichment in mice at the phylum level in each group. C: control; M: model; S: salidroside; T: tyrosol; H:
hydroxytyrosol.
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had their relative regulation of bacteria. Salidroside and
hydroxytyrosol treatment had an advantage over upregulating
the abundance of Lactobacillus, and tyrosol and hydroxytyrosol
groups downregulated the abundance of Enterococcus. The
intervention of tyrosol could enhance the abundance of
Staphylococcus while decreasing the abundance of
Sporosarcina. Also, the hydroxytyrosol group increased the
abundance of Shigella. It was noted that treatment groups
could upregulate the abundance of Jeotgalicoccus and
downregulate the abundance of Acinetobacter. Next, LEfSe
analysis and cladogram analysis were performed to identify
fecal microbial taxa that accounted for the greatest differences
among all the groups. Our results indicated that there were 14, 16,
7, 16, and 15 significant differences in the control, high-fructose
diet, salidroside−50 mg/kg, tyrosol−23 mg/kg, and
hydroxytyrosol−26 mg/kg groups, respectively (Supplementary
Figures 7, 8). In general, salidroside, tyrosol, or hydroxytyrosol
intervention influenced the shaping of gut microbiota.

Furthermore, by Pearson correlation analysis, we found that
there was a potential link between changes in the intestinal flora
and liver metabolites. As depicted in Figure 6, there was a

negative correlation between Acinetobacter and taurine;
Oscillospira and niacinamide; Collinsella and niacinamide,
serine, creatine, inosine, oxypurinol, glutamine,
trimethylamine, and TMAO; Fusobacterium and glutathione,
niacinamide, serine, creatine, inosine, oxypurinol, glutamine,
trimethylamine, TMAO, proline, and threonine; Sporosarcina
and oxypurinol; Ruminococcus and GPC, niacinamide, serine,
inosine, oxypurinol; and Akkermansia and inosine, oxypurinol,
trimethylamine, and anserine, while Lactobacillus was positively
correlated with GPC and Kurthia was positively correlated with
inosine and anserine. These metabolites were mainly involved in
amino acid tRNA biosynthesis, glycine, serine, and threonine
metabolism, arginine and proline metabolism, and glyoxylate and
dicarboxylate metabolism.

DISCUSSION

Fructose would seem a safe and natural sweetener in daily life, but
mounting evidence suggests that high fructose intake has an
unfavorable impact on metabolism and a strong correlation with

FIGURE 5 | Histogram of mean value of intestinal microflora enrichment in mice at the genus level in each group. C: control; M: model; S: salidroside; T: tyrosol; H:
hydroxytyrosol.
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various diseases (Lim et al., 2010; Madero et al., 2012; Mirtschink
et al., 2018), especially with MetS. Previous studies have shown
that tyrosol, hydroxytyrosol, and salidroside could alleviate the
features of MetS such as dyslipidemia, hyperglycemia, insulin
resistance, or adiposity (Chandramohan et al., 2015; Ju et al.,
2017; Peyrol et al., 2017). However, rodent experiments with pure
tyrosol, hydroxytyrosol, and salidroside to elucidate the roles
between the liver intestine and its gut microbiota is lacking.
Therefore, a well-characterized MetS model was established to be
explored. In addition, male and female mice were screened.
Biochemical indices and pathological sections (Supplementary

Figure S9) showed that female mice were more likely to succeed
in modeling.

High fructose consumption could promote fat accumulation,
particularly in the liver, and induce hepatic pathological changes.
In addition, hepatic fructolysis, in contrast to the metabolism of
glucose, is not only more rapid but also bypasses insulin control
(Hannou et al., 2018). More importantly, its breakdown
metabolites could stimulate a high burden of lipogenesis and
uric acid production (Rutledge and Adeli, 2007), and this process
cannot be restricted. Obtained results showed that the model
groups had high levels of FBG, GLU, TC, TG, LDL-C, and UA in

FIGURE 6 | Heatmap of correlation analysis results between intestinal flora and liver metabolites.
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serum, and this can serve as a reminder of hyperglycemia,
hyperlipidemia, and hyperuricemia. In particular, we observed
increased XOD activity in the liver which is closely related to UA.
These symptoms play an indispensable role in the occurrence and
development of MetS. In other words, long-term high-fructose
feeding could disturb the body’s lipid metabolism and
glycometabolism balance. It was noted that the level of HDL-
C significantly increased, and this was contrary to our
expectation. The specific reasons for this phenomenon are also
unclear. The body weight of model groups only displayed a
tendency to gain weight. The reason why the body weight did
not increase significantly may be the reduction of food intake in
the later period. The change in food intake during the whole
experiment was not taken into account in this study, which was
one of our limitations. Interestingly, recent research
demonstrated that HFru-fed C57BL/6J mice had higher blood
glucose, endotoxin levels, fat mass, dyslipidemia, and glucose
intolerance without changes in body weight, which may be
associated with gut microbiota according to experimental data
(Do et al., 2018). After 84 days of diet intervention, tyrosol,
hydroxytyrosol, or salidroside could suppress the elevation of
UA, TG, and LDL-C levels to maintain the body’s lipid
metabolism steady state and reduce GLU, FBG, and INS
levels. Over-production of UA directly inhibits insulin
signaling in hepatocytes, so UA is referred to as a risk factor
for insulin resistance. Insulin resistance is also a key pathological
event in MetS. However, the content of TC was not improved
through drug intervention. As reported, excessive TG deposition
can contribute to accelerating the formation of a fatty liver
(Vergani, 2019), which is consistent with the HE staining of
our liver tissue. Based on these observations, we found that
salidroside showed a better protective effect than tyrosol and
hydroxytyrosol.

Metabolomics is considered an important tool to study
alterations in biochemical pathways intrinsic to the
pathophysiology of MetS (Stechemesser et al., 2017; Capel
et al., 2020). So, based on the high repeatability as well as the
non-destructive and non-invasive nature of the NMR spectrum,
our study used NMR metabolomics to evaluate changes in liver
metabolites. The experimental outcomes suggested that tyrosol,
hydroxytyrosol, and salidroside may be effective in regulating the
fructose-induced metabolic disorder to normal levels. Further
analysis based on differential metabolites suggested that long-
term HFru intake could trigger glucose metabolism and lipid
metabolism disorders and have a negative effect on amino acid
metabolism. The alterations in the amino acid profile may play a
crucial part in participating in the development and progression
of MetS (Ntzouvani et al., 2017; Roberts et al., 2020). Therefore,
some amino acids could be considered potential markers forMetS
risk. In the present study, salidroside, tyrosol, and hydroxytyrosol
groups significantly downregulated the relative concentration of
glycine, serine, glutamine, alanine, and serine that are strongly
associated with dyslipidemia by inhibiting some enzymes in the
liver that are activated due to excessive HFru intake. These results
are consistent with a large cross-sectional study (Tai et al., 2010).
The detailed mechanism of how amino acid metabolism and its
products contribute to disease needs to be investigated further.

Moreover, it was reported that TMAO had a positive correlation
with the etiology of cardiovascular and other diseases (Ufnal et al.,
2015). The level of TMAO is influenced by a variety of factors
including liver flavin monooxygenase activity, food, and gut
microbial flora (Janeiro et al., 2018). In our study, salidroside,
tyrosol, and hydroxytyrosol intervention significantly decreased
the expression of FMO3 in the liver and prevented mice from the
accumulation of hepatic TMAO in large amounts. It is worth
noting that these differential metabolites are more or less linked
to the gut microbiota. A study that used 16S rDNA amplicon
sequencing and metabolomic profiling revealed that a kind of
purified extract could alleviate gut dysbiosis and regulate
metabolism to ameliorate MetS (Zeng et al., 2020). Therefore,
the gut microbiota may become a promising target in drug
therapy to improve MetS. It is important to recognize that the
gut microbiome is a complex and susceptive ecosystem, especially
it is easily affected by dietary properties (Zmora et al., 2019).
Although salidroside, tyrosol, and hydroxytyrosol possess poor
absorption and low bioavailability, we thought they have
potential influence on the remodeling of gut microbiota.

In humans and rodents, five bacterial phyla predominate in
the gut: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
and Verrucomicrobia. Firmicutes (mainly Gram-positive) and
Bacteroidetes (Gram-negative) are the predominant phyla in
the feces of the host. A growing body of evidence makes it
clear that an increase in the Firmicutes-to-Bacteroidetes ratio
was confirmed to be linked with MetS in mice experiments
(Turnbaugh et al., 2008; Trompette et al., 2014) and human
trials (Mariat et al., 2009; Vaiserman et al., 2020). While using 16S
rRNA sequencing to compare gut microbial compositions, we
found that salidroside-, tyrosol-, and hydroxytyrosol-treated
groups did not decrease the Firmicutes-to-Bacteroidetes ratio.
The reasons for this are still unclear. Treatment with salidroside,
tyrosol, and hydroxytyrosol reduced Proteobacteria abundance,
which was reported to take an active part in glucose homeostasis.
The increasing trend of gut Proteobacteria reflects an energy
disequilibrium in the body and an unstable microbial
community. Hence, salidroside, tyrosol, and hydroxytyrosol
intervention could alleviate the energy imbalance caused by
the high-fructose diet. At the genus level, Acinetobacter and
Lactobacillus were the crucial genuses responding to
salidroside and hydroxytyrosol treatment, respectively. Our
findings showed that salidroside and hydroxytyrosol could
exert metabolic protection by lowering pathogenic bacteria or
elevating the beneficial ones in gut microbiota. However, tyrosol
had little effect on the beneficial intestinal bacteria as well as
pathogenic bacteria. The data from our study revealed that a small
group difference in phytochemicals could make a big influence on
gut microbiota, especially the phenolic hydroxyl
group. Therefore, when assessing the therapeutic action of
phytochemicals, it is of great importance to take the role of
gut microbiota into account. It has also been proposed that
tyrosol is the active ingredient of salidroside, and the two are
converted into each other in the body. However, the effect of
tyrosol on gut microbiota was far less than that of salidroside.
This fact has indicated that the metabolism of salidroside in vivo
is complex and variable, and this may be related to the dose added
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to the diet. Additionally, hydroxytyrosol was found to be non-
genotoxic and non-mutagenic when its concentrations exceeded
those attainable after dietary intake (Auñon-Calles et al., 2013).
This may be one of the reasons why the regulatory effect of
hydroxytyrosol on intestinal flora is evident. Using Pearson
correlation analysis, we found there was a potential link
between changes in the intestinal flora and liver metabolites.
For example, it was well-known that phosphatidylcholine is
metabolized by intestinal microbes, and the resulting
metabolites are choline and betaine. Meanwhile, choline and
betaine are also metabolized by gut microflora into
trimethylamine before it is converted to trimethylamine
N-oxide (TMAO) by hepatic flavin monooxygenase. In the
model group, phosphatidylcholine, choline, betaine,
trimethylamine, and TMAO levels were upgraded. In our
study, Fusobacterium, Collinsella, and Akkermansia were
responsible for the production of these choline metabolites,
especially TMAO. Indeed, manipulating the gut–liver axis may
improve the pathological state of various diseases (Milosevic et al.,
2019; Jones and Neish, 2021). In the present study, we found that
administration and intervention significantly activated hepatic
FXR levels, leading to elevated TBA levels. Bile acids are known to
play an important role in metabolic diseases (Thomas et al.,
2008). They mainly exist in the enterohepatic circulation system
and produce protective effect through recycling (Ticho et al.,
2019). Thus, our findings demonstrated the importance of gut
microbiota in the process of disease, too.

CONCLUSION

Taken as a whole, salidroside, tyrosol, and hydroxytyrosol
intervention for 84 days could ameliorate the features of MetS
in female mice fed with HFru diets, as determined by evaluating
serum and liver parameters and analyzing the differential
metabolite relationship between liver and intestinal bacteria.
The results showed that salidroside, tyrosol, and
hydroxytyrosol groups could be able to reduce the levels of
LDL-C, TG, GLU, and UA in serum as well as XOD, FMO3,
and TNF-α activities in the liver. These beneficial effects may be
achieved by regulating some metabolites through the gut–liver
axis, such as TMAO, bile acid, and amino acid. In addition, gut
microbial community analysis showed that supplementation with

salidroside, tyrosol, and hydroxytyrosol reduced Proteobacteria
abundance and increased Actinobacteria abundance, and
hydroxytyrosol regulated more effectively than salidroside and
tyrosol in the mouse gut. This study provides evidence to support
the potential use of salidroside, tyrosol, and hydroxytyrosol to
prevent MetS and promote these to process into beneficial dietary
components in the future.
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