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Abstract: The hallmark of osteoarthritis (OA), the most prevalent musculoskeletal disease, is the loss
of cartilage. By using machine learning (ML), we aimed to assess if baseline knee bone curvature (BC)
could predict cartilage volume loss (CVL) at one year, and to develop a gender-based model. BC and
cartilage volume were assessed on 1246 participants using magnetic resonance imaging. Variables
included age, body mass index, and baseline values of eight BC regions. The outcome consisted of
CVL at one year in 12 regions. Five ML methods were evaluated. Validation demonstrated very good
accuracy for both genders (R ≥ 0.78), except the medial tibial plateau for the woman. In conclusion,
we demonstrated, for the first time, that knee CVL at one year could be predicted using five baseline
BC region values. This would benefit patients at risk of structural progressive knee OA.

Keywords: cartilage volume loss; bone curvature; osteoarthritis; prediction; machine learning

1. Introduction

Osteoarthritis (OA) is the most prevalent musculoskeletal disease and a common joint
degenerative disease. OA is a global health burden and is accountable for substantial health
costs [1,2]. It is characterized by chronic pain and functional disability, and the knee is the
most affected among the joints [3]. The hallmark of the disease is the loss of a joint tissue,
the cartilage [3].

OA diagnosis often occurs late, i.e., when the destruction of articular tissues has
reached a late stage. This is of importance as although OA is characterized by being a
disease of “older age”, younger people are more and more being affected by this disease [4].
Moreover, its two most prominent risk factors, age and body mass index (BMI) [5], are also
of considerable concern for the healthcare system, as there is a growing number of aging
and obese people worldwide who will soon confront the system with an unsustainable
draw for OA individuals. Above all, there is not yet a curative cure (in the form of disease-
modifying OA drugs [DMOADs]) for this disease [3,6]. Currently, OA treatments only
relieve symptoms.

To be able to combat the rise of this disease, there is a critical need to identify, at
an early stage, individuals at risk of having a structurally progressive disease, i.e., rapid
degradation of cartilage. Indeed, therapeutic strategies used early during the pathological
process may permit to reduce/stop the structural progression of the disease. In turn, this
would lead to an improvement of the symptoms. This is important, as in recent years there
has been an issue about the safety of some of the symptom relief treatments, which were
related to potential detrimental systemic impacts such as cardiovascular risks, increased
risk of morbidity, and even mortality [7,8]. Moreover, the identification of individuals at risk
of having a structural progressive disease is also of high significance for the development
of DMOADs. Hence, a great part of the challenge in the development of such drugs is
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often the inclusion of patients in trials with advanced OA (severe cartilage loss), making
it difficult to reduce or stop the degenerative process, therefore not suitable for DMOAD
therapy, and impeding the power analysis of such trials.

Early identification of OA structural progressors currently depends on clinical judg-
ment with the help of radiographic evaluation. However, it is well known that X-rays are
not sensitive enough to detect early knee articular alteration [9,10]. Therefore, it is of great
importance to develop automated and practical tools that will identify, at an early stage,
OA patients for whom articular tissue alterations will progress rapidly.

A variety of fluid biomarkers has been evaluated for such discrimination. However,
despite a significant body of research in this field, there is not yet a validated signature for
early diagnosis or prognosis of the disease [11]. Limitations with fluid biomarkers include,
among others, the fact that there is often no direct correlation with joint structural changes,
the poorly defined association with age-related changes, some being related to obesity and
cannot distinguish between OA and obesity, and that the use of only one fluid biomarker
cannot fully reflect the complex patterns underlying this disease.

At present, for optimal forecasting of joint structural alterations, increasing evidence
points toward the use of articular structural (tissue) markers. At first, cartilage alteration
was evaluated as a marker for the knee. However, when cartilage begins to show degrada-
tion as evaluated by clinical features and/or radiography it is already at a moderate stage
of the disease. Recently, the change in knee bone was suggested as an accurate marker
to identify early OA structural progressors; knee bone alteration was shown to precede
cartilage losses and contribute to the development of the disease [12–17].

Over the years, many methodologies were introduced to evaluate such bony changes and
included bone attrition, joint incongruity, periarticular area, shape, and curvature [13,14,16,18–24].
However, some used radiographic determination, which could lead to imprecision due to its
dependence on the acquisition method and/or statistical modelling involving a component that
is operator-dependent, which may introduce errors. Others used magnetic resonance imaging
(MRI), and among the developed technologies, certain had shortcomings. For example, for
the bone area, the assessment is subjective with inconsistent associations with knee structural
progression. Machine learning (ML) techniques, coupled with MRI, have opened new possibilities
for large-scale data integration to assess precise measurements of OA status in a multidimensional
manner. Recently, by using these two methodologies (MRI and bone change), the measurement of
the bone shape vector [25] and the subchondral bone length (SBL) [26] were reported. Yet, the
bone shape vector was developed only for one bone, the femur, and included in its measurement
the osteophytes (bony projections), which may induce inaccuracy in bone shape measurement
changes, while the SBL uses 2D shape measurement. Another MRI fully automated methodology
was developed and assessed the bone curvature (BC) [20]. This BC assessment methodology
in addition to being quantitative, is patient-based, and, while preserving the measured bone
surface, did remove two bone alterations (peripheral osteophytes and bone marrow lesions [BML],
including edema and cysts) that could interfere with the bone measurement [20,27]. By using this
system, BC alteration was shown to precede cartilage volume loss (CVL), in addition to predicting
the effectiveness of OA treatment [20].

In the search for a model/tool that could offer an objective and quantitative assessment
in the early forecasting of knee OA structural progressors, we hypothesized that knee BC
features at baseline could predict, for an individual, CVL at one year. A primary concern
was the understanding of which bone regions can play an effective role in such a prediction.
Second, was the developed model able to predict CVL at one year in more than one knee
subregion with the same baseline variables. Third, could the developed model be accurate
for both genders, and fourth, could it be replicated and extended to another OA cohort for
the prediction of outcomes? To answer these questions, we (i) applied feature selection
by using ML algorithms on a fairly large sample to find the most important BC regions,
(ii) developed advanced gender-based prediction models that provide high prediction
performance on all the cartilage regions, and (iii) evaluated the reproducibility of the
developed models by using an external cohort of OA patients from a clinical trial. Data
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revealed that the combination of five knee BC region values at baseline could predict CVL
after one year on 12 knee regions with high accuracy and reproducibility.

2. Methods
2.1. Study Population

The models were developed using individuals from the Osteoarthritis Initiative (OAI)
cohort. The OAI cohort, an observational study of the natural progression of knee OA,
included men and women between the ages of 45 and 79, enrolled at four centers across
the United States (Columbus, OH; Baltimore, MD; Pawtucket, RI; Pittsburgh, PA). The
cohort included 4796 individuals at baseline (https://nda.nih.gov/oai/study-details, last
accessed date: 25 October 2019). For this study, 3395 participants, at the baseline, having the
parameters for the classification of participants into structural progressors or no-progressors
(see below for description), were included.

To validate the developed models, an external dataset consisting of knee OA patients
from a clinical trial was used [28]. This cohort comprised patients with primary symp-
tomatic knee OA from a multicenter, randomized, double-blind clinical trial evaluating
the effect of Licofelone (a lipoxygenase/cyclooxygenase inhibitor). Here, 77 patients were
selected from the comparator arm (Naproxen, a cyclooxygenase inhibitor) of this trial. This
cohort was named Naproxen.

2.2. Classification of Participants into Structural Progressors

This study was performed using the structural progressors, as we wanted to develop a
model on individuals presumed as having disease progression. To this end, each participant
was assigned a label for their probability values of being structural progressors (PVBSP),
as previously described [29]. In brief, the PVBSP label for each participant included the
values of five features at the baseline, as well as an outcome. The features were two X-rays:
the medial minimum joint space width (JSW) and medial joint space narrowing (JSN) as a
score [30], and three quantitative MRIs: mean cartilage thickness of peripheral, medial, and
central tibial plateaus. The outcome was JSN ≥ 1 at 48 months. For discrimination of the
structural progressor from the no-progressor, a binary classification in the context of multil-
abel classification was calculated by employing a threshold value using the maximizing F1
score, as described [31].

Data revealed that for the OAI cohort, 39% of the participants were classified as
structural progressors (1246; 659 women and 587 men) and used to build the model. For
the Naproxen cohort (validation), these proportions were reversed, and 69% (53; 20 women
and 33 men) of the patients were labelled structural progressors.

2.3. Knee MRI Tissue Acquisitions

For the OAI cohort, MRIs were acquired with a 3T apparatus (Magneton Trio, Siemens,
Germany) using a double-echo-steady state (DESS) imaging protocol, as per the OAI
protocol. For the Naproxen cohort, the MRI acquisition was done as previously described,
with a 1.5T apparatus with an integrated knee coil using 3D fast imaging with steady-state
precession (FISP) with water excitation (Siemens, Erlangen, Germany) or spoiled gradient
echo recalled (SPGR) with fat suppression (General Electric, Milwaukee, WI, USA) [28].

2.4. Bone Curvature

Bone curvature was evaluated using a fully MRI automated quantitative system, as
previously described [20]. In brief, the mean curvature of a surface corresponds to the
average of the two eigenvalues of the Weingarten matrix and is expressed as m−1. The
method used the cylindrical coordinate representation of the surfaces obtained by automatic
segmentation [27], smoothed using a Gaussian filter of standard deviation sigma = 4 and
size 6 * sigma in the configuration space, allowing for a curvature map of average resolution
of 2 mm in the image by 6 mm transversely to the images. For each knee bone surface, the
mean curvature was computed and averaged for all the samples of a region. In this study,
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the knee BC regions used as variables (input) included eight “basic” regions: lateral and
medial trochlea, lateral and medial central condyle, lateral and medial posterior condyle,
and lateral and medial tibial plateau. These regions were named basics, as added together,
they provided the global knee or subregions.

2.5. Cartilage Volume and Loss

The cartilage volume was measured using, as previously described and validated,
an automated (OAI) [32,33] or a semi-automated (Naproxen) [34–36] human knee carti-
lage segmentation. The percentage CVL was calculated as follows: (cartilage volume at
one year—baseline cartilage volume/baseline cartilage volume) × 100. Twelve global or
regional CVL at one year were evaluated and included: (i) global knee, femur (trochlea
+ condyle), condyle, and tibial plateau; (ii) lateral compartment (femur + tibial plateau),
femur (trochlea + condyle), condyle, and tibial plateau; (iii) medial compartment (femur +
tibial plateau), femur (trochlea + condyle), condyle, and tibial plateau. In this study, CVL at
one year was chosen, as it was the smallest elapsed time that could reliably measure the
change using MRI methodologies.

2.6. Model Development

The development of the prediction model was performed in two phases (Figure 1).
As illustrated in Figure 1a, Phase 1, the independent variables (input) based on gender
separation were grouped into two major OA risk factors (age and BMI) and eight knee BC
regions, and the outcomes (output) were the CVL at one year in 12 regions. After selecting
the best ML algorithm, the most representative region of CVL at one year as the outcome
was identified. Further, and as illustrated in Figure 1b, Phase 2, the relevant input variable
combination was identified.

2.6.1. Phase 1
Selecting the Best ML Algorithm

Five different ML-based methods were investigated. The ML techniques included
tree- or non-tree-based methods. The tree-based methods were random forest (RF) [37],
M5Rules [38], and M5P [38], and the non-tree-based methods were multilayer perceptron
(MLP) [39] and the adaptive neuro-fuzzy inference system (ANFIS) [40]). The outcomes
of ML analysis with tree- and non-tree-based methods and statistical analysis were im-
plemented using MATLAB and Waikato Environment for Knowledge Analysis (WEKA)
software. The main concept of each method is provided in the Supplementary Materials
Table S1.

Finding the Most Representative Region of CVL at One Year as the Outcome

In contrast to the custom ML problem using one outcome as the target, this study was
confronted with 12 outcomes, which was a challenging task. Our strategy was to find, as a
first step, the most representative region to develop a model, and then assess the algorithm
of the developed model with the other 11 regions. To this end, the best ML algorithm was
used to analyze each outcome region (CVL at one year) using three different statistical
indices (see below Statistical analysis).

2.6.2. Phase 2
Selecting the Variable Combination

With the use of the representative cartilage region as the outcome, we further investi-
gated the most influential variable combinations. Selecting the relevant variables in ML
models saves resources in the data collection step during model development or model
applications. Having fewer misleading variables not only improves the accuracy of the ML
model but removes multicollinearity that reduces the possibility of overfitting in the ML
model. The variable reduction was performed stepwise, in which each step included the
reduction of one and then two variables. This strategy not only removed the lowest-cost
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variable(s) among all possible input combinations but also led us to check the synergy of
two variables along with variable reduction. In total, with ten input variables, 1023 different
input combinations can be defined; however, by applying the above-mentioned strategy,
97 different variable combinations were evaluated.

Figure 1. Applied methodology in machine learning development. The development of the prediction
model was performed in two phases (a) Phase 1 and (b) Phase 2 as described. Outcome (Out)1, Out2,
. . . , Out12 represent 12 global or regional knee cartilage volume losses at one year; In1, In2, . . . , In10
represent two OA risk factors and eight knee bone curvature regions. BMI, body mass index; RF, random
forest; M5P, M5 prime; MLP, multilayer perceptron; ANFIS, adaptive neuro-fuzzy inference system.
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Systematic Controllability Variable Reduction

We then performed the systematic controllability variable reduction for CVL prediction
at one year. We had ten variables, then the process of variable reduction started with nine
and eight variables for which all possible combinations were analyzed. The best model
from this step was employed in the next step of variable reduction. This process of reducing
variables continued until the ML results showed a significant decrease in accuracy, and the
reduction in the number of variables did not further reduce the ML modelling accuracy.

2.7. Statistical Analysis

To evaluate the performance of the different methods with different variable combina-
tions, three statistical indices were employed. They included correlation coefficient (R) as a
correlation-based index, root mean square error (RMSE) and mean absolute error (MAE)
as two well-known absolute indices. The simultaneous use of these indices to verify the
efficiency of a model provided a robust evaluation [41].

3. Results
3.1. Participant Characteristics

A comparison between the structural progressor baseline characteristics of OAI with
Naproxen (Table 1) showed that OAI participants had lower BMI, WOMAC scores, JSW,
and BC in the medial compartment. Moreover, OAI participants had higher cartilage
volume in the global and lateral compartments. These indicate that the patients from the
Naproxen cohort had a higher level of disease severity, which also explained the higher
amount of structural progressor participants in the Naproxen (69%) compared to the OAI
(39%) cohorts.

Table 1. Baseline participant characteristics.

OAI Naproxen
p-Value

(n = 1246) (n = 53)

Gender, female—n (%) 659 (52.9) 33 (62.3) 0.180
Age—years 64.0 (56.0; 71.0) 63.0 (58.0; 66.0) 0.158

Body mass index—kg/m2 29.1 (26.2; 32.6) 31.5 (27.5; 34.9) 0.009
Target knee—n (%) (n = 1245) 0.256

Right 732 (58.8) 27 (50.9)
Left 513 (41.2) 26 (49.1)

WOMAC
(n = 1245)

Pain score (0–20) 3.0 (0.0; 6.0) 10.8 (9.8; 12.6) <0.0001
(n = 1240)

Function score (0–68) 7.0 (1.0; 18.2) 35.4 (30.6; 46.0) <0.0001
(n = 1243)

Stiffness score (0–8) 2.0 (0.0; 3.0) 5.2 (3.8; 6.2) <0.0001
(n = 1238)

Total score (0–96) 11.8 (3.0; 27.0) 51.4 (44.9; 64.2) <0.0001
Kellgren–Lawrence grade—n (%) (n = 1245)

0 69 (5.6)

Not available
1 102 (8.2)
2 375 (30.1)
3 528 (42.4)
4 171 (13.7)

Joint space width, mm 3.1 (1.9; 3.7) 3.7 (2.5; 4.2) 0.003
Cartilage volume at baseline, mm3

Global knee 11,843 (9867; 14,898) 10,649 (9272; 12,628) 0.024
Lateral compartment 6662 (5465; 8147) 5811 (4891; 6931) 0.003
Medial compartment 5266 (4222; 6761) 4901 (4501; 5760) 0.344
Bone curvature, m−1

Global knee 27.1 (23.9; 30.1) 28.0 (24.9; 31.3) 0.306
Lateral compartment 29.9 (26.3; 33.0) 30.0 (24.8; 34.6) 0.974
Medial compartment 23.9 (20.3; 27.9) 26.0 (21.3; 30.2) 0.028

Data are from the Osteoarthritis Initiative (OAI) or the Naproxen arm of the Licofelone clinical trial cohorts [28].
Data are median (1st quartile; 3rd quartile) unless otherwise indicated. Continuous variables were compared
using the Wilcoxon Mann–Whitney test and proportions using the Pearson Chi-Square test. p values < 0.050 (in
bold) were considered statistically different. n, number of participants; WOMAC, Western Ontario and McMaster
Universities Osteoarthritis Index.
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3.2. Gender-Based Model Development
3.2.1. Finding the Optimal Parameters for Each of the ML Methods

Five well-known ML techniques in solving complex nonlinear problems were eval-
uated: M5P, RF, M5Rules, MLP, and ANFIS. The optimal values of the parameters for
each ML technique were found through a trial-and-error process and are described in the
Supplementary Materials, Table S1.

3.2.2. Selection of ML Technologies

Next, the best ML-based modelling algorithm was investigated. All ten variables (risk
factors and BC regions) were employed to estimate 12 outcomes (CVL regions) using the
five mentioned ML-based models. Results showed (Supplementary Materials, Table S2) for
all the outcomes that ANFIS had higher or equal accuracy (R) and lower or equal RSME
and MAE than the other ML methodologies, except in one region (lateral tibial plateau
for the MLP, where the difference for the R was only 3%). Accordingly, ANFIS was then
further used to develop gender-based models.

3.2.3. Finding the Representative Region of CVL at One Year as the Outcome

To find the most representative outcome between the 12 regions, the performance of
each cartilage region was examined with the ANFIS methodology using the ten variables.
Data showed (Table 2) that the medial condyle and the global tibial plateau had the highest
accuracy. Moreover, although the R value was identical for these two regions, the RMSE
and MAE were lower in the medial condyle. Therefore, the medial condyle region was
elected as the most representative outcome.

Table 2. Performance of prediction of cartilage volume loss at one year in 12 regions using the
ANFIS methodology.

Outcome R RMSE MAE

Global knee 0.78 0.020 0.015
Global femur 0.74 0.022 0.015

Global condyles 0.81 0.021 0.016
Global tibial plateau 0.86 0.027 0.020
Lateral compartment 0.78 0.021 0.015

Lateral femur 0.77 0.023 0.016
Lateral condyle 0.78 0.025 0.017

Lateral tibial plateau 0.74 0.036 0.026
Medial compartment 0.77 0.027 0.020

Medial femur 0.78 0.026 0.018
Medial condyle 0.86 0.026 0.018

Medial tibial plateau 0.76 0.057 0.040
R, correlation coefficient; RMSE, root mean square error; MAE, mean absolute error. Bold indicates data of the
most representative regions.

3.2.4. Uncovering the Most Effective Input Variable (Risk Factors and BC Regions) Combination

Further, by using the medial condyle region as the representative outcome, the system-
atic controllability variable reduction was employed to find the optimal input combination
for prediction, i.e., the best statistical indices and the lowest number of variables possible.

As the first step, 55 different variable combinations (Table 3) were analyzed, in which
the M1 represented the model with all ten BC region variables, and M2-M55 corresponded
to all possible combinations for nine (M2-11) and eight (M12-M55) variables.

As shown in Table 3, the lack of one of the variables provided in M1 resulted in a
decrease in accuracy (R, RMSE, MAE) in all models, but in M11 (missing age), in which
the accuracy was about the same as in M1. Therefore, age can be considered as a potential
variable that can be removed with the least impact on the accuracy of the ML model in
outcome prediction. Further investigation with eight variables revealed that among the
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models, M20 (missing age and medial tibial plateau) performed as M1 and better than M11.
Thus, the combination of age and medial tibial plateau can be removed from the input
variables without any impact on the accuracy of outcome prediction.

Therefore, by using M20, seven and six variables were analyzed. The results (Table 4)
for models with seven variables revealed that M20-8 (missing age, medial tibial plateau,
and BMI) outperformed not only other combinations but also M20. When looking at six
variables, M20-13 (missing age, lateral central condyle, medial posterior condyle, and
medial tibial plateau) presents statistical indices similar to M1 and M20, but the R has a 1%
difference with M20-8.

Further, with M20-13, we looked at the five variables (Table 5). The model M20-13-
6 with five variables (in addition to the missing M20-13 variables, BMI is also lacking)
had equal statistical indices to M1. ML models with a lower number of variables were
also assessed and data demonstrated a significantly reduced accuracy (data not shown).
Consequently, the best prediction model for medial condyle CVL at one year was M20-13-6,
which employed only five knee BC regions at baseline including lateral and medial trochlea,
lateral posterior condyle, lateral tibial plateau, and medial central condyle.

Figure 2 shows a representation of the knee with the subregions in which the M20-13-6
variable combination is denoted (dark regions).

Figure 2. Representation of the knee bone curvature regions for the best prediction model for medial
condyle cartilage volume loss at one year. The regions represented with the model M20-13-6 (dark) are
lateral and medial trochlea, lateral posterior condyle, lateral tibial plateau, and medial central condyle.

Table 6 recapitulates the obtained results of the proposed systematic controllability
feature reduction for the prediction of medial condyle CVL at one year. Discrimination
of the model M20-13-6 for each gender (Table 7) showed that the man has slightly better
statistical indices than the woman.

3.2.5. Impact of Each M20-13-6 Variable in Medial Condyle Volume Loss at One Year Forecasting

Table 8 shows the statistical indices of M20-13-6, wherein the effect of each feature was
assessed by removing one variable at a time (M20-13-6-1 to M20-13-6-5). Data revealed that
the lateral tibial plateau (M20-13-6-3), followed by the medial central condyle (M20-13-6-1),
have a higher impact on the outcome forecasting; the worst statistical values were obtained
when they were excluded. A lower impact (i.e., best statistical indices) was achieved with
the lateral posterior condyle and the lateral and medial trochlea, respectively.
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Table 3. Models in the systematic controllability variable reduction approach for nine and eight bone curvature region variables with their performance in predicting
medial condyle cartilage volume loss at one year.

Ten Variables
Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

M1 • • • • • • • • • • 0.86 0.026 0.018

C
om

bi
na

ti
on

s
w

it
h

ni
ne

va
ri

ab
le

s

M2 • • • • • • • • • 0.75 0.034 0.024
M3 • • • • • • • • • 0.81 0.030 0.021
M4 • • • • • • • • • 0.72 0.036 0.024
M5 • • • • • • • • • 0.77 0.033 0.023
M6 • • • • • • • • • 0.75 0.034 0.024
M7 • • • • • • • • • 0.78 0.033 0.024
M8 • • • • • • • • • 0.80 0.031 0.022
M9 • • • • • • • • • 0.80 0.031 0.022
M10 • • • • • • • • • 0.78 0.032 0.023
M11 • • • • • • • • • 0.85 0.028 0.019

In
pu

tc
om

bi
na

ti
on

s
w

it
h

ei
gh

tv
ar

ia
bl

es

M12 • • • • • • • • 0.77 0.033 0.023
M13 • • • • • • • • 0.81 0.030 0.022
M14 • • • • • • • • 0.79 0.031 0.022
M15 • • • • • • • • 0.76 0.034 0.024
M16 • • • • • • • • 0.76 0.034 0.025
M17 • • • • • • • • 0.73 0.035 0.026
M18 • • • • • • • • 0.76 0.033 0.023
M19 • • • • • • • • 0.72 0.036 0.026
M20 • • • • • • • • 0.86 0.026 0.018
M21 • • • • • • • • 0.81 0.031 0.021
M22 • • • • • • • • 0.73 0.036 0.025
M23 • • • • • • • • 0.79 0.032 0.022
M24 • • • • • • • • 0.83 0.029 0.020
M25 • • • • • • • • 0.81 0.030 0.021
M26 • • • • • • • • 0.76 0.034 0.024
M27 • • • • • • • • 0.83 0.029 0.021
M28 • • • • • • • • 0.85 0.028 0.019
M29 • • • • • • • • 0.76 0.033 0.025
M30 • • • • • • • • 0.77 0.033 0.023
M31 • • • • • • • • 0.77 0.033 0.024
M32 • • • • • • • • 0.80 0.031 0.022
M33 • • • • • • • • 0.77 0.033 0.024
M34 • • • • • • • • 0.70 0.037 0.028
M35 • • • • • • • • 0.80 0.031 0.021
M36 • • • • • • • • 0.76 0.034 0.025
M37 • • • • • • • • 0.83 0.029 0.021
M38 • • • • • • • • 0.82 0.030 0.021
M39 • • • • • • • • 0.83 0.029 0.020
M40 • • • • • • • • 0.82 0.030 0.021
M41 • • • • • • • • 0.83 0.029 0.019
M42 • • • • • • • • 0.77 0.033 0.024
M43 • • • • • • • • 0.80 0.031 0.022
M44 • • • • • • • • 0.79 0.032 0.023
M45 • • • • • • • • 0.81 0.030 0.021
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Table 3. Cont.

Ten Variables
Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

M1 • • • • • • • • • • 0.86 0.026 0.018

M46 • • • • • • • • 0.82 0.030 0.021
M47 • • • • • • • • 0.81 0.030 0.021
M48 • • • • • • • • 0.77 0.033 0.024
M49 • • • • • • • • 0.81 0.030 0.021
M50 • • • • • • 0.83 0.029 0.020
M51 • • • • • • • • 0.83 0.029 0.019
M52 • • • • • • • • 0.82 0.030 0.022
M53 • • • • • • • • 0.79 0.032 0.021
M54 • • • • • • • • 0.83 0.029 0.020
M55 • • • • • • • • 0.69 0.037 0.026

The symbol • indicates the presence of the bone curvature region variables in the model. In1, Age; In2, Body mass index; In3, Lateral trochlea; In4, Lateral central condyle; In5, Lateral
posterior condyle; In6, Lateral tibial plateau; In7, Medial trochlea; In8, Medial central condyle; In9, Medial posterior condyle; In10, Medial tibial plateau. Model (M)1 includes all the ten
bone curvature region variables; M2 to M11, nine variables, M12 to M55, eight variables. The horizontal bar indicates the separation between the variable combinations. R, correlation
coefficient; RMSE, root mean square error; MAE, mean absolute error.

Table 4. Models in the systematic controllability variable reduction approach for seven and six bone curvature region variables with their performance in predicting
medial condyle cartilage volume loss at one year.

Ten Variables
Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

M1 • • • • • • • • • • 0.86 0.026 0.018

C
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M20-1 • • • • • • • 0.80 0.031 0.022
M20-2 • • • • • • • 0.83 0.029 0.021
M20-3 • • • • • • • 0.84 0.029 0.020
M20-4 • • • • • • • 0.82 0.030 0.022
M20-5 • • • • • • • 0.79 0.032 0.023
M20-6 • • • • • • • 0.81 0.030 0.021
M20-7 • • • • • • • 0.82 0.030 0.020
M20-8 • • • • • • • 0.87 0.026 0.018
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Table 4. Cont.

Ten Variables
Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

M1 • • • • • • • • • • 0.86 0.026 0.018

C
om

bi
na

ti
on
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w
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h

si
x

va
ri

ab
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s

M20-9 • • • • • • 0.82 0.029 0.021
M20-10 • • • • • • 0.85 0.028 0.019
M20-11 • • • • • • 0.76 0.034 0.023
M20-12 • • • • • • 0.83 0.029 0.020
M20-13 • • • • • • 0.86 0.026 0.018
M20-14 • • • • • • 0.80 0.031 0.021
M20-15 • • • • • • 0.82 0.030 0.021
M20-16 • • • • • • 0.78 0.033 0.024
M20-17 • • • • • • 0.79 0.032 0.023
M20-18 • • • • • • 0.78 0.033 0.023
M20-19 • • • • • • 0.79 0.032 0.022
M20-20 • • • • • • 0.72 0.036 0.026
M20-21 • • • • • • 0.68 0.038 0.027
M20-22 • • • • • • 0.85 0.027 0.019
M20-23 • • • • • • 0.79 0.032 0.022
M20-24 • • • • • • 0.84 0.028 0.021
M20-25 • • • • • • 0.82 0.030 0.021
M20-26 • • • • • • 0.68 0.038 0.027
M20-27 • • • • • • 0.78 0.032 0.023
M20-28 • • • • • • 0.81 0.030 0.021
M20-29 • • • • • 0.66 0.039 0.028
M20-30 • • • • • • 0.72 0.036 0.026
M20-31 • • • • • • 0.81 0.030 0.022
M20-32 • • • • • • 0.71 0.037 0.026
M20-33 • • • • • • 0.72 0.036 0.025
M20-34 • • • • • • 0.84 0.028 0.019
M20-35 • • • • • • 0.73 0.035 0.026
M20-36 • • • • • • 0.71 0.037 0.026

The symbol • indicates the presence of the bone curvature region variable in the model. In1, Age; In2, Body mass index (BMI); In3, Lateral trochlea; In4, Lateral central condyle, In5,
Lateral posterior condyle, In6, Lateral tibial plateau; In7, Medial trochlea; In8, Medial central condyle; In9, Medial posterior condyle; In10, Medial tibial plateau. Model (M)1 includes all
the ten bone curvature region variables; M20-1 to M20-8, models with seven variables; M20-9 to M20-36, models with six variables. The horizontal bar indicates the separation between
the variable combinations. R, correlation coefficient; RMSE, root mean square error; MAE, mean absolute error.
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Table 5. Models in the systematic controllability variable reduction approach for five bone curvature
region variables and performance in predicting medial condyle volume loss at one year.

Ten Variables
Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

M1 • • • • • • • • • • 0.86 0.026 0.018

C
om

bi
na

ti
on
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w

it
h

fiv
e
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s M20-13-1 • • • • • 0.78 0.035 0.025
M20-13-2 • • • • • 0.83 0.031 0.023
M20-13-3 • • • • • 0.82 0.032 0.023
M20-13-4 • • • • • 0.82 0.032 0.023
M20-13-5 • • • • • 0.75 0.037 0.027
M20-13-6 • • • • • 0.86 0.026 0.018

The symbol • indicates the presence of the bone curvature region variable in the model. In1, Age; In2, Body mass
index; In3, Lateral trochlea; In4, Lateral central condyle; In5, Lateral posterior condyle; In6, Lateral tibial plateau;
In7, Medial trochlea; In8, Medial central condyle; In9, Medial posterior condyle; In10, Medial tibial plateau. Model
(M)1 includes all the ten bone curvature region variables; M20-13-1 to M20-13-6, models with five variables. R,
correlation coefficient; RMSE, root mean square error; MAE, mean absolute error.

Table 6. The best models obtained with a decreasing number of bone curvature region variables.

Variable
Number Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

10 M1 • • • • • • • • • • 0.86 0.026 0.018
9 M11 • • • • • • • • • 0.85 0.028 0.019
8 M20 • • • • • • • • 0.86 0.026 0.018
7 M20-8 • • • • • • • 0.87 0.026 0.018
6 M20-13 • • • • • • 0.86 0.026 0.018
5 M20-13-6 • • • • • 0.86 0.026 0.018

The symbol • indicates the presence of the bone curvature region variable in the model. In1, Age; In2, Body mass
index; In3, Lateral trochlea; In4, Lateral central condyle; In5, Lateral posterior condyle; In6, Lateral tibial plateau;
In7, Medial trochlea; In8, Medial central condyle; In9, Medial posterior condyle; In10, Medial tibial plateau. Model
(M)1 includes all the ten bone curvature region variables, M11, the best model with nine variables; M20, the best
model with eight variables; M20-8, the best model with seven variables; M20-13, the best model with six variables;
M20-13-6, the best model with five variables. R, correlation coefficient; RMSE, root mean square error; MAE, mean
absolute error.

Table 7. The best selected model in which the gender was discriminated.

Model
Man Woman

R RMSE MAE R RMSE MAE
M20-13-6 0.90 0.023 0.016 0.84 0.029 0.020

Model (M)20-13-6 with five bone curvature variables. R, correlation coefficient; RMSE, root mean square error;
MAE, mean absolute error.

Table 8. Impact of each M20-13-6 bone curvature region variable in medial condyle cartilage volume
loss at one year forecasting.

Model In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 R RMSE MAE

M20-13-6 • • • • • 0.86 0.026 0.018
M20-13-6-1 • • • • 0.76 0.025 0.034
M20-13-6-2 • • • • 0.79 0.024 0.032
M20-13-6-3 • • • • 0.74 0.026 0.035
M20-13-6-4 • • • • 0.81 0.022 0.031
M20-13-6-5 • • • • 0.81 0.023 0.031

The symbol • indicates the presence of the bone curvature region variable in the model. In1, Age; In2, Body mass
index; In3, Lateral trochlea; In4, Lateral central condyle; In5, Lateral posterior condyle; In6, Lateral tibial plateau;
In7, Medial trochlea; In8, Medial central condyle; In9, Medial posterior condyle; In10, Medial tibial plateau. Model
(M)20-13-6, the best model with five bone curvature region variables; M20-13-6-1 to M20-13-6-5, the model with
four variables. R, correlation coefficient; RMSE, root mean square error; MAE, mean absolute error.

3.2.6. Performance of the M-20-13-6 Model on All 12 CVL Region Outcomes

Next, we assessed the predictive validity of the selected ML algorithm on the other
11 cartilage regions (Table 9). Data showed very good accuracy for both genders and all
12 cartilage regions in the testing stage. The lowest accuracy in men was for the medial
tibial plateau (R, 0.82; RMSE, 0.045; MAE, 0.030) and women, the medial femur (R, 0.79;
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RMSE, 0.027; MAE, 1.019) both in the testing stage. These results demonstrate the high
performance of the M20-13-6 algorithm in the prediction of CVL in all 12 studied regions at
one year based on five BC regions at the baseline.

Table 9. Performance of prediction of cartilage volume loss at one year in 12 cartilage regions using
five bone curvature regions at the baseline.

Outcome
Man Woman

Training Stage Testing Stage Training Stage Testing Stage
R RMSE MAE R RMSE MAE R RMSE MAE R RMSE MAE

Global knee 0.87 0.013 0.010 0.87 0.016 0.012 0.87 0.018 0.013 0.85 0.017 0.013
Global femur 0.85 0.014 0.010 0.92 0.014 0.011 0.86 0.018 0.013 0.86 0.017 0.012

Global condyle 0.86 0.015 0.012 0.90 0.018 0.012 0.82 0.023 0.016 0.85 0.020 0.015
Global tibial Plateau 0.85 0.023 0.015 0.88 0.020 0.014 0.87 0.029 0.020 0.85 0.027 0.018
Lateral compartment 0.88 0.014 0.010 0.91 0.014 0.010 0.84 0.021 0.015 0.81 0.019 0.015

Lateral femur 0.89 0.014 0.010 0.91 0.015 0.011 0.86 0.020 0.014 0.86 0.018 0.012
Lateral condyle 0.89 0.016 0.012 0.89 0.020 0.014 0.84 0.023 0.016 0.88 0.019 0.014

Lateral tibial plateau 0.85 0.023 0.017 0.88 0.023 0.018 0.88 0.031 0.021 0.87 0.026 0.018
Medial compartment 0.88 0.019 0.014 0.92 0.016 0.012 0.85 0.023 0.016 0.85 0.023 0.016

Medial femur 0.85 0.020 0.014 0.88 0.020 0.015 0.83 0.025 0.017 0.79 0.027 0.019
Medial condyle 0.90 0.022 0.015 0.90 0.023 0.016 0.83 0.029 0.021 0.84 0.029 0.020

Medial tibial plateau 0.89 0.041 0.030 0.82 0.045 0.030 0.82 0.052 0.036 0.80 0.051 0.033

The model was developed using individuals from the Osteoarthritis Initiative (OAI) cohort. R, correlation
coefficient; RMSE, root mean square error; MAE, mean absolute error.

3.3. Validation of the Developed ML Model with an External Cohort from a Clinical Trial

The purpose of a ML-based predictive model is to offer valid outcome predictions for
new individuals that assure the generalizability of the model. To this end, the performance
of the M20-13-6 model was evaluated using an external cohort (Naproxen) on all 12 car-
tilage regions studied discriminating men and women. The predictive model (Table 10)
demonstrated very good accuracy for men and women (R ≥ 0.78), except for the medial
tibial plateau for women.

Table 10. Validation of the M20-13-6 model in the prediction of cartilage volume loss at one year in
12 cartilage regions using five bone curvature regions at the baseline.

Outcome
Man Woman

R RMSE MAE R RMSE MAE

Global knee 0.89 0.018 0.015 0.89 0.022 0.016
Global femur 0.90 0.019 0.015 0.84 0.026 0.017

Global condyle 0.85 0.023 0.018 0.81 0.032 0.019
Global tibial Plateau 0.88 0.027 0.020 0.79 0.032 0.028
Lateral compartment 0.94 0.021 0.016 0.86 0.022 0.017

Lateral femur 0.92 0.021 0.016 0.83 0.027 0.018
Lateral condyle 0.96 0.026 0.018 0.86 0.031 0.020

Lateral tibial plateau 0.94 0.040 0.023 0.87 0.028 0.023
Medial compartment 0.87 0.027 0.021 0.90 0.031 0.023

Medial femur 0.88 0.027 0.022 0.89 0.030 0.021
Medial condyle 0.91 0.026 0.021 0.87 0.037 0.027

Medial tibial plateau 0.78 0.041 0.029 0.47 0.062 0.045

The model was validated using osteoarthritis patients from a clinical trial cohort (Naproxen). R, correlation
coefficient; RMSE, root mean square error; MAE, mean absolute error.

4. Discussion

At present, we cannot discriminate, early during the OA process, patients for whom
cartilage will degrade rapidly from those for whom the progression will be slow. Such
discrimination would not only assist to modify the disease trajectory with a personalized
clinical treatment plan but would represent a unique opportunity to intervene before
cartilage degradation becomes too severe. Moreover, it would also enable patient screening
for clinical trials for the development of DMOADs. Indeed, such drug trials have not yet
achieved significant results, which appears to be mainly due to OA recruitment, in that
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patients have, for the most part, moderate to severe cartilage damage. Consequently, the
effect of a DMOAD could not be observed with enough statistical power. This study was
undertaken to fulfill these needs.

To achieve CVL forecasting, evidence points toward the use of joint tissue markers
and, more recently, BC was suggested for the knee. We developed a gender-based model
in which five BC regions at baseline (lateral tibial plateau, medial central condyle, lateral
posterior condyle, and lateral and medial trochlea) enable the prediction of 12 global and
regional CVL at one year with very good accuracy for both genders: OAI, R ≥ 0.79 (testing
stage) and Naproxen (validation) R ≥ 0.78, except for the medial tibial plateau for women.

As we aimed to detect CVL for multiple (12 global/regional) outcomes, a two-phase
ML-based methodology was performed. In Phase 1, after comparing the accuracy and
benefits of five ML algorithms, ANFIS was found to be the most reliable for prediction.
The selection of ANFIS was not surprising as it has the advantage over other ML method-
ologies of capturing the nonlinear structure of a problem, an adaptive capability and a
rapid learning capacity as it combines a neural network with fuzzy logic, in addition to a
significant potential for predicting systems with high uncertainty and in a dynamic nature.

Next, data showed that the most representative region of CVL (outcome) was the
medial condyle. Such a finding could reflect that the medial tibiofemoral compartment of
the knee, more specifically the medial condyle, displays a higher rate of cartilage change
with greater sensitivity than the other regions [42–45], as well as being highly related to
OA progression and total knee replacement [46–48].

In Phase 2, the relevant variables were selected. Reducing the number of variables
for ML development and application saves resources. Moreover, having fewer misleading
features not only improves the accuracy of a ML model but also removes multicollinearity,
thus reducing the possibility of overfitting. To this end, we employed a systematic control-
lability variable reduction (removing the lowest cost features among all input variables) to
identify the relevant ones.

In this study, of the five selected BC variables, the lateral tibial plateau and medial
central condyle demonstrated the highest impact in prediction forecasting. This finding
contrasts with a previous one in which two other BC regions, namely, medial posterior
condyle and lateral central condyle, were found to be the best regions to predict CVL
at two years [20]. In the current study, the weight of these two regions appeared to be
somewhat important as they were eliminated only when eight variables were examined
(M30). Removing these two variables resulted in a decrease of 10.5% in R, and an increase of
about 27% in RMSE and MAE, compared to model M1 (all ten variables). It should also be
taken into consideration that the period examined between the two studies, as well as the
methodology varied, which could be responsible for the change in the selected variables.

Here, the selection of the lateral tibial plateau and medial central condyle was not
unexpected as they both showed a high level of bony remodeling during OA. Indeed, the tibial
plateau demonstrated expansion and increased depression during the OA process [49–52], and
bony changes in the lateral tibial plateau were associated with the presence of radiographic
OA [53]. Moreover, uneven lateral support of the tibial plateau has been reported to be a key
factor that leads to the non-uniform settlement of the knee and a shift of the mechanical axis
to the medial compartment, more specifically, on the medial central condyle [54]. The stresses
engendered could be responsible for the reported flattening of the medial central condyle
bone during OA [14,23]. Bone remodeling in the medial central condyle could also be due to
the presence of a high level of BMLs in the OA knee in this region [55]. Although BML was
removed from our BC segmentation [27], such subchondral bone changes are suggested to
increase the levels of contact stresses, thus, bone remodeling [56].

Even though all the 12 studied global and regional cartilage regions could be predicted
with high accuracy with the OAI participants, validation using OA patients from a clinical
trial (Naproxen) showed that generalization was attained in all cartilage regions, except
in the medial tibial plateau for women. The lower accuracy in this region in women
could reflect the fact that (i) compared to the OAI, participants from the Naproxen cohort
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displayed more disease severity, as ascertained by the clinical parameters, (ii) during the OA
process, there was a high level of cartilage thinning/loss as well as inter-subject variability
in this region [33,43,57], in addition to (iii) the cartilage volume of women being smaller
than in men [58].

The finding that BMI was not included in the model with five variables was rather sur-
prising as a link between BMI and knee bone remodeling has been previously reported [59].
However, this is still under debate as other studies have not shown such an association [53].
Of note, the weight of this variable was, to some extent, important as it was included when
six variables were investigated.

Some challenges and limitations of this study should be acknowledged. First, ANFIS
was selected as the best ML algorithm for model development. Because of the use of ten
input variables, a limitation of this method could have been the high computational expense
due to the high number of iterations needed to achieve high accuracy. However, care was
given to the selection of the appropriate number and shape of membership function in the
ANFIS model as they impact the accuracy of the final results and computational complexity
of the ANFIS-based model, and although a challenging task, we were able to define the
appropriate membership function, i.e., Gaussian (Table S1) for this study.

Second, in practice, for a given ML problem, multiple equivalent solutions in vari-
able selections can exist [60]. A shortcoming of some variable selection methods is that
they injudiciously identify only a single solution, minimizing a loss function like mean
squared error, classification error, etc. Yet, a single solution is not proper when variable
selections can be considered both for building a predictive model with high accuracy and
for knowledge discovery. In this study, we opted to employ the systematic controllabil-
ity variable reduction as, instead of giving only one solution, it deals with achieving the
highest accuracy by removing the lowest cost variables. In addition, with this step-by-step
variable reduction, not only the sensitivity but also the synergy between two variables for
the estimation of the outcome could be evaluated.

Third, we could have used the cartilage volume as the outcome. We favored this
tissue volume loss as to whether baseline cartilage volume predicts future cartilage loss
is questionable.

Fourth, another challenge was the CVL period to be analyzed. We chose one year to
ensure both a reliable assessment of cartilage change sensitivity and high patient retention
for its use in clinical practice. However, a longer period was not evaluated, and the five
input variables found could differ. The next step will be to explore, for a longer observation
period, whether the developed ML model using the same BC variables could also predict
with high accuracy CVL for all the studied regions. Although the purpose of this study was
to evaluate BC as prognosis for CVL over time, assessing a longer period of cartilage loss
(e.g., two to four years) could educate us on the collinearity between these two structures.
In addition, validating the ML model for longer periods converts it into an application that
can be of broader use in clinical practice.

This study has several strengths. The use of MRI to assess BC and cartilage volume at
baseline permits for automation of these two knee structures (thus, avoiding human error)
and quantitative segmentation/measurement in the same knee [27,32]. In addition, the 3D
nature of the MRI data over radiographs for knee tissue measurement avoids difficulties
in interpreting findings that may be related to positioning during image acquisition and
to projection effects. Moreover, when studying BC in OA, care should be taken not to
confuse the osteophytes and BMLs with true differences in the bone. This putative problem
was circumvented by the exclusion of these two tissues in the measurement methodology
used [27]. Finally, special emphasis needs to be given to the validation (reproducibility) of
data using an external clinical trial cohort which, in addition to mimicking patients seen in
clinical routine, adds to the robustness and generalization of the developed ML model in
that the accuracy persisted.
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5. Conclusions

In this comprehensive study, we developed, for the first time, a reliable and gen-
eralizable ML model to predict global and regional CVL at one year based on five BC
regions at the baseline, including the lateral tibial plateau, medial central condyle, lateral
posterior condyle, and lateral and medial trochlea. This study offers a novel automated
system for forecasting knee OA cartilage degradation as an important step toward OA
precision medicine, which will significantly improve clinical prognosis with real-time
patient monitoring.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10061247/s1, Table S1: A machine learning model
to predict knee osteoarthritis cartilage volume changes over time using baseline bone curvature;
Table S2: Performance of five machine learning algorithms in predicting cartilage volume loss at one
year in 12 regions.
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